热电偶与热电阻的区别

合集下载

热电偶和热电阻的区别与识别方法

热电偶和热电阻的区别与识别方法

热电偶和热电阻的区别与识别方法热电偶和热电阻是工业上常用的两种温度传感器,它们在测量温度方面具有很好的性能。

然而,它们的工作原理和特点有很大的区别。

本文将就热电偶和热电阻的区别及识别方法进行详细的介绍,希望能够为大家对这两种传感器有一个更深入的了解。

一、热电偶和热电阻的工作原理1. 热电偶的工作原理热电偶是利用两种不同材料的热电势差产生的原理来测量温度的。

当两种不同金属相接形成闭合回路后,如果两个接头处于不同的温度下,就会在回路中产生一个热电动势,这种现象称为热电效应。

通过测量这个热电动势的大小,就可以确定两个接头处的温度差,从而测量出被测物体的温度。

热电偶的优点是测量范围广,精度高,响应速度快,但是对环境条件和测量电路的影响比较敏感。

2. 热电阻的工作原理热电阻是利用材料的电阻随温度变化的特性来测量温度的。

一般情况下,热电阻的电阻值随温度升高而增大,利用这个特性可以通过测量热电阻的电阻值来确定被测物体的温度。

热电阻的优点是测量精度高,线性好,但是响应速度相对较慢,不适合对温度变化较快的物体进行测量。

二、热电偶和热电阻的区别1. 原理区别热电偶利用热电效应来测量温度,而热电阻利用电阻随温度变化的特性来测量温度,两者的工作原理完全不同。

2. 测量范围区别热电偶的测量范围更广,可以用于测量-200℃至1800℃范围内的温度;而热电阻的测量范围相对较窄,一般在-200℃至600℃之间。

3. 线性特性区别热电偶的温度-电压变化是非线性的,而热电阻的温度-电阻变化是线性的。

4. 响应速度区别热电偶由于其工作原理的特性,响应速度比较快,适合对温度变化较快的物体进行测量;而热电阻的响应速度相对较慢,不适合对温度变化较快的物体进行测量。

5. 环境条件影响区别热电偶对环境条件和测量电路的影响比较敏感,容易受到干扰;而热电阻对环境条件和测量电路的影响相对较小。

6. 价格区别由于其工作原理和特性的不同,热电偶的制作工艺相对较为复杂,成本较高;而热电阻的制作工艺相对简单,成本较低。

简述热电偶与热电阻的测量原理的异同

简述热电偶与热电阻的测量原理的异同

简述热电偶与热电阻的测量原理的异同热电偶和热电阻是常用的温度测量装置,它们在测量原理上存在一些异同。

本文将从工作原理、测量范围、精度等方面进行比较,以帮助读者更好地理解热电偶和热电阻的特点和适用场景。

一、工作原理热电偶是利用两种不同金属之间的热电效应来测量温度的。

当两种不同金属连接在一起形成闭合回路时,两个连接点会产生一个电动势,这个电动势与两个连接点的温度差有关。

按照热电效应的特性,热电偶可以分为热电势型和热电流型两种。

热电势型热电偶的工作原理是利用热电势的大小与温度差成正比的特性,通过测量电动势来确定温度。

常用的热电偶有K型、J型、T 型等。

热电流型热电偶的工作原理是利用热电效应产生的电流与温度成正比的特性,通过测量电流来确定温度。

常用的热电偶有R型、S型、B型等。

热电阻是利用金属材料的电阻随温度变化的特性来测量温度的。

当电流通过热电阻时,热电阻的电阻值会随着温度的升高而增大,利用这个特性可以测量温度。

常用的热电阻有铂电阻(PT100、PT1000)、镍电阻等。

二、测量范围热电偶和热电阻在测量范围上存在一定的差异。

热电偶的测量范围相对较广,可以覆盖从低温到高温的范围。

不同类型的热电偶有不同的测量范围,一般可以达到-200℃至1800℃。

热电阻的测量范围相对较窄,一般在-200℃至600℃之间。

超出这个范围后,热电阻的线性关系会变差,影响测量精度。

三、精度热电偶和热电阻在测量精度上也存在一定的差异。

热电偶的精度相对较高,可以达到0.1℃。

但是由于热电偶的工作原理中涉及到两种不同金属之间的热电效应,所以在温度变化时容易受到外界干扰,影响测量精度。

热电阻的精度相对较低,一般为0.2℃到0.5℃。

但是热电阻的线性关系较好,对外界干扰的影响较小,所以在稳定的环境中可以获得较高的测量精度。

总结:热电偶和热电阻是常用的温度测量装置,它们的测量原理和特点存在一些异同。

热电偶利用两种不同金属之间的热电效应来测量温度,具有较高的测量精度和较广的测量范围;而热电阻利用金属材料的电阻随温度变化的特性来测量温度,具有较好的线性关系和较小的受干扰程度。

热电偶和热电阻的区别

热电偶和热电阻的区别

热电偶和热电阻的区别
1、工作原理不同:
热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的,而热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

2、测量范围不同:
热电阻是中低温区最常用的一种温度检测器,而热电阻热电偶测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

一般来说,温度在300度以下的用热电阻,300度以上的用热电偶。

随着温度的变化,热电阻的阻值会发生变化,热电偶的热电势会发生变化。

热电阻目前都采用铜热电阻和铂热电阻,根据0度时热电阻值的不同又分为不同的分度号,如PT100,PT1000,CU50等,以PT100为例,PT代表铂,100代表0度时热电阻的阻值是100欧姆。

热电偶目前大体上有K,B,S等分度号,分别代表不同的材质,以用于不同的温度范围。

例如:K型为镍铬-镍硅材材,一般测量0-800度,B型为铂铑30-铂铑6,一般测量800-1600度。

在实际应用中,热电阻一般用三芯铜导线,用于去除导线的电阻值的影响,热电偶使用两芯专用补偿导线,用于去除热电偶现场温度的影响。

热电阻与热电偶

热电阻与热电偶

热电阻与热电偶热电阻和热电偶是常见的温度传感器,它们在工业控制系统和实验室中广泛应用。

它们都能够将温度变化转化为电信号,但原理和特性有所不同。

一、热电阻热电阻是一种利用材料电阻随温度变化的特性来测量温度的传感器。

常见的热电阻材料有铂、镍、铜等。

其中,铂热电阻是最常用的一种。

铂热电阻的优点是抗腐蚀性好、线性度高、稳定性好等。

它的工作原理是根据热电阻材料的电阻随温度的变化规律,通过测量电阻值来推算温度。

热电阻的测量精度较高,通常可以达到0.1℃。

但它的响应速度较慢,适用于温度变化较缓慢的场合。

在工业控制系统中,热电阻常被用于测量液体、气体等介质的温度。

二、热电偶热电偶是利用两种不同材料的导电性能差异产生的热电效应来测量温度的传感器。

常见的热电偶材料有铜/常铜、铜/镍等。

工作原理是当两种不同材料的接触点温度不同时,会产生热电势差,通过测量热电势差来推算温度。

热电偶具有响应速度快、测量范围广的特点。

它可以测量极高和极低温度,适用于温度变化较快的场合。

在工业控制系统中,热电偶常被用于测量高温炉、燃烧器等的温度。

三、热电阻与热电偶的比较热电阻和热电偶都是常见的温度传感器,它们各有优缺点,应根据具体的应用场景选择合适的传感器。

热电阻的优点是测量精度高、稳定性好,适用于温度变化缓慢的场合。

但它的响应速度较慢,不适用于温度变化较快的场合。

热电偶的优点是响应速度快、测量范围广,适用于温度变化较快的场合。

但它的测量精度相对较低,受到环境干扰较大。

在选择热电阻或热电偶时,还需考虑以下因素:测量范围、测量精度、响应速度、使用环境等。

根据具体需求,选择适合的传感器。

总结:热电阻和热电偶是常见的温度传感器,它们在工业控制系统和实验室中被广泛应用。

热电阻利用材料电阻随温度变化的特性来测量温度,热电偶利用两种不同材料的导电性能差异产生的热电效应来测量温度。

热电阻测量精度高,稳定性好,适用于温度变化缓慢的场合;热电偶响应速度快,测量范围广,适用于温度变化较快的场合。

如何区分热电偶和热电阻热电阻与热电偶的区别.

如何区分热电偶和热电阻热电阻与热电偶的区别.

如何区分热电偶和热电阻?热电阻与热电偶的区别首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测量范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。

热电偶的测温原理是基于热电效应。

将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。

闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。

温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。

目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。

热电偶的结构有两种,普通型和铠装型。

普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。

但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。

不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。

补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。

补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。

热电偶和热电阻热敏电阻的区别

热电偶和热电阻热敏电阻的区别

热电偶和热电阻、热敏电阻的区别热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。

当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

热电阻与热电偶的区别

热电阻与热电偶的区别

热电阻与热电偶的区别1、工作原理和结构的的区别①工作原理的区别热电偶是由两根不同的导体或半导体材料焊接或绞接而成,分为热端和自由端,热端插入需要测温的设备中,冷端置于设备的外面,如果两端所处的温度不同则在热电偶回路中便会产生热电势,由于热电势是被测温度的函数,测得电动势的数值后,便可换算成温度值。

热电阻是根据导体的电阻值会随着温度的变化而变化的性质,将电阻的变化转换为电信号,从而进行温度测量的。

②结构的区别普通的热电偶通常由热电极、绝缘材料和电偶保护套管以及接线盒等构成。

热电偶一般采用带孔的耐高温陶瓷管作为绝缘材料,热电极从耐高温陶瓷管孔中引出。

保护套管材料需具备耐腐蚀、耐高温、机械强度高、气密性好、热导率高等性能主要有金属、非金属、金属陶瓷3类,目前最常用保护套管是1Cr18Ni9Ti不锈钢的,适宜在900℃以下的工况条件。

热电阻最主要的部分是电阻体加上绝缘套管、保护套管以及接线盒等部件,将电阻丝缠绕在石英、陶瓷或塑料等绝缘骨架上,再套上保护套管,并在热电阻丝与套管中间填充导热材料。

2、热电偶的分类及其特点标准热电偶是指国家标准中规定了热电偶热电势与温度的关系,有统一标准分度表,允许存在一定误差的热电偶。

非标准热电偶一般没有统一的分度表,主要用于测量一些特殊的场合,使用范围和数量级比标准热电偶要小,组成热电偶的热电极必须牢固的焊接在一起,两个热电极之间应有比较好的绝缘,防止发生短路;补偿导线与热电偶自由端的连接要牢固可靠,保护套管要保证热电极与外界的介质充分隔离,以保证热电偶可靠、稳定地工作。

3、热电阻的分类及其特点①根据热电阻的组成结构分类普通型热电阻:根据热电阻的测温原理可知,被测量的温度变化是直接通过电阻值的变化来反映的,所以,热电阻引出的各种导线电阻的变化会给温度测量带来不良影响。

需要消除引线电阻带来的影响,通常热电阻采用三线制或四线制进行补偿。

铠装型热电阻:与铠装热电偶类似,同样由感温元件、引线、绝缘材料和不锈钢套管组合而成,外径一般在φ2-φ8mm之间,相比普通型热电阻具有体积小、易安装、抗冲击、能弯曲并且使用寿命也更长。

热电偶热电阻的区别.

热电偶热电阻的区别.

热电偶/热电阻的区别热电偶是一种测温度的传感器,与热电阻一样都是温度传感器,但是他和热电阻的区别主要在于:一、信号的性质,热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热耦,是产生感应电压的变化,他随温度的改变而改变。

二、两种传感器检测的温度范围不一样,热阻一般检测0-150度温度范围,最高测量范围可达600度左右(当然可以检测负温度)。

热耦可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。

三、从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热耦是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。

四、PLC 对应的热电阻和热电偶的输入模块也是不一样的,这句话是没问题,但一般PLC 都直接接入4~20ma 信号,而热电阻和热电偶一般都带有变送器才接入PLC 。

要是接入DCS 的话就不必用变送器了!热电阻是RTD 信号,热电偶是TC 信号!五、PLC 也有热电阻模块和热电偶模块,可直接输入电阻和电偶信号。

六、热电偶有J 、T 、N 、K 、S 等型号,有比电阻贵的,也有比电阻便宜的,但是算上补偿导线,综合造价热电偶就高了。

热电阻是电阻信号, 热电偶是电压信号。

七、热电阻测温原理是根据导体(或半导体)的电阻随温度变化的性质来测量的,测量范围为负00~500度,常用的有铂电阻(Pt100、Pt10 、铜电阻Cu50(负50-150度)。

热电偶测温原理是基于热电效应来测量温度的,常用的有铂铑——铂(分度号S ,测量范围0~1300度)、镍铬——镍硅(分度号K ,测量范围0~900度)、镍铬——康铜(分度号E ,测量范围0~600度)、铂铑30——铂铑6(分度号B ,测量范围0~1600度)。

热电偶与热电阻均属于温度测量中的接触式测温, 尽管其作用相同都是测量物体的温度, 但是他们的原理与特点却不尽相同.首先, 介绍一下热电偶, 热电偶是温度测量中应用最广泛的温度器件, 他的主要特点就是测温范围宽, 性能比较稳定, 同时结构简单, 动态响应好, 更能够远传4-20mA 电信号, 便于自动控制和集中控制。

热电偶和热电阻热敏电阻的区别

热电偶和热电阻热敏电阻的区别

热电偶和热‎电阻、热敏电阻的‎区别热电偶热电偶是工‎业上最常用‎的温度检测‎元件之一,热电偶工作‎原理是基于‎赛贝克(seeba‎ck)效应,即两种不同‎成分的导体‎两端连接成‎回路,如两连接端‎温度不同,则在回路内‎产生热电流‎的物理现象‎。

其优点是:①测量精度高‎。

因热电偶直‎接与被测对‎象接触,不受中间介‎质的影响。

②测量范围广‎。

常用的热电‎偶从-50~+1600℃均可边续测‎量,某些特殊热‎电偶最低可‎测到-269℃(如金铁镍铬‎),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常‎是由两种不‎同的金属丝‎组成,而且不受大‎小和开头的‎限制,外有保护套‎管,用起来非常‎方便。

1.热电偶测温‎基本原理将两种不同‎材料的导体‎或半导体A‎和B焊接起‎来,构成一个闭‎合回路,如图2-1-1所示。

当导体A和‎B的两个执‎着点1和2‎之间存在温‎差时,两者之间便‎产生电动势‎,因而在回路‎中形成一个‎大小的电流‎,这种现象称‎为热电效应‎。

热电偶就是‎利用这一效‎应来工作的‎。

2.热电偶的种‎类及结构形‎成(1)热电偶的种‎类常用热电偶‎可分为标准‎热电偶和非‎标准热电偶‎两大类。

所调用标准‎热电偶是指‎国家标准规‎定了其热电‎势与温度的‎关系、允许误差、并有统一的‎标准分度表‎的热电偶,它有与其配‎套的显示仪‎表可供选用‎。

非标准化热‎电偶在使用‎范围或数量‎级上均不及‎标准化热电‎偶,一般也没有‎统一的分度‎表,主要用于某‎些特殊场合‎的测量。

标准化热电‎偶我国从1‎988年1‎月1日起,热电偶和热‎电阻全部按‎IEC国际‎标准生产,并指定S、B、E、K、R、J、T七种标准‎化热电偶为‎我国统一设‎计型热电偶‎。

(2)热电偶的结‎构形式为了‎保证热电偶‎可靠、稳定地工作‎,对它的结构‎要求如下:①组成热电偶‎的两个热电‎极的焊接必‎须牢固;②两个热电极‎彼此之间应‎很好地绝缘‎,以防短路;③补偿导线与‎热电偶自由‎端的连接要‎方便可靠;④保护套管应‎能保证热电‎极与有害介‎质充分隔离‎。

浅谈仪表中热电偶与热电阻的作用和区别

浅谈仪表中热电偶与热电阻的作用和区别

浅谈仪表中热电偶与热电阻的作用和区别摘要:在医药领域和化学工业,温度是常用的热动参数,需要进行工作过程温度控制。

温度是伴随物料化学或物理变化的常规条件,热电偶与热电阻在温度测量的期间,作用基本相同,然而原理、特点和适用环境不同。

此次研究主要是探讨分析仪表中热电偶与热电阻的作用和区别。

关键字:仪表;热电偶;热电阻;温度;区别热电偶与热电阻在工业生产高温测控中是最常见的接触式测量,但是二者在操作原则、连接方法和测量范围中都有着明显不同,具体分析如下:一、热电偶与热电阻的概述1.1热电偶的概述它是目前工业生产上最常见的高温测量器件之一,由于热电偶工作机理是采用赛贝克“seeback”效应,即二个截然不同成分的金属导线二端连接成电源回路内,若两个连接端温度变化,将在电源回路内形成热电流密度的物理现象。

其好处是;测量更精确。

由于热能偶径直和被测量对象相联系,而不受其中加热介质的温度影响[1]。

热电偶测温基本原理热电偶测量基本原理是把二个不同材质的金属电极或零点五导体连接一起,以形成一种闭合电路。

因为两个不同金属材料相互之间所带的电子量有所不同,当两条电缆的两个执着点间产生温度差时,就会产生高电势或低电位的释放现象,从而在集成电路中产生大量电压,温度差越大,电压也越大,这个现象就叫做热电效应,又叫做塞贝克效应。

而热电偶正是通过这一效果进行操作的。

1.2热能偶冷端的环境温度补偿由干热能偶的材质一般来说都较为贵重(尤其是选择贵金属材质时),而测温点到仪器的路离都很远,出于降低热能偶材质,成本,往往利用补充引线把热能偶的冷端(自由端)延续到温度变化相对平稳的调节室,链接在仪器端子上。

但应当说明,由于热电偶补偿导线的主要功能只是起延长热阴极,将热能偶的冷端转移到调制室的仪器端子上,其自身功能并没有减少冷端温度改变时对测量结果的负面影响,也没有环境温度补偿功能。

所以,还需要通过另外的调整方法,来赔偿在冷端环境温度t0/0℃时对测温结果的负面影响。

热电阻和热电偶的区别

热电阻和热电偶的区别

热电阻和热电偶的区别热电偶是一种测温度的传感器,与热电阻一样都是温度传感器,但是他和热电阻的区别主要在于:一、信号的性质,热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热耦,是产生感应电压的变化,他随温度的改变而改变。

二、两种传感器检测的温度范围不一样,热阻一般检测0-150度温度范围,最高测量范围可达600度左右(当然可以检测负温度).热耦可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。

三、从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热耦是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。

四、PLC对应的热电阻和热电偶的输入模块也是不一样的,这句话是没问题,但一般PLC都直接接入4~20ma信号,而热电阻和热电偶一般都带有变送器才接入PLC。

要是接入DCS的话就不必用变送器了!热电阻是RTD信号,热电欧是TC信号!五、PLC也有热电阻模块和热电偶模块,可直接输入电阻和电偶信号。

六、热电偶有J、T、N、K、S等型号,有比电阻贵的,也有比电阻便宜的,但是算上补偿导线,综合造价热电偶就高了。

热电阻是电阻信号,热电偶是电压信号七、热电阻测温原理是根据导体(或半导体)的电阻随温度变化的性质来测量的,测量范围为负00~500度,常用的有铂电阻(Pt100、Pt10)、铜电阻Cu50(负50-150度)。

热电偶测温原理是基于热电效应来测量温度的,常用的有铂铑——铂(分度号S,测量范围0~1300度)、镍铬——镍硅(分度号K,测量范围0~900度)、镍铬——康铜(分度号E,测量范围0~600度)、铂铑30——铂铑6(分度号B,测量范围0~1600度)。

通讯协议开放系统互联协议中最早的协议之一,它为连接不同操作系统和不同硬件体系结构的互联网络提供通信支持,是一种网络通用语言。

TCP/IP协议定义了在互联网络中如何传递、管理信息(文件传送、收发电子邮件、远程登录等),并制定了在出错时必须遵循的规则。

热电阻与热电偶辨别方法

热电阻与热电偶辨别方法

热电阻与热电偶辨别方法嘿,咱今儿个就来唠唠热电阻和热电偶的辨别方法。

这俩家伙啊,在工业领域那可是相当重要的角色呢!先来说说热电阻吧。

它就像是个慢性子,测量温度的时候慢悠悠的,但却很精准。

热电阻一般是由金属材料制成的,像铂啊、铜啊这些。

你可以把它想象成一个对温度特别敏感的“温度计”,温度一有变化,它马上就能察觉出来,然后乖乖地给出相应的电阻值。

那热电偶呢,它可就不一样啦!它就像个急性子,反应特别快。

热电偶是由两种不同的金属连接在一起组成的,当温度变化时,会产生一个微小的电动势。

这就好比是两个人一起干活,一旦情况有变,马上就有动静了。

那怎么辨别它们呢?嘿,这可有不少门道呢!从外观上看,热电阻通常是细细长长的,有点像根小铁丝;而热电偶呢,一般会有两个不同的金属接头,看起来就挺特别的。

再从测量范围来说,热电阻一般适用于低温测量,要是温度太高了,它可能就有点吃不消啦;而热电偶呢,那可是能经受住高温考验的,高温环境对它来说就是小意思。

还有啊,热电阻的精度通常比较高,能给你很准确的温度值;而热电偶呢,虽然反应快,但在精度上可能就稍微逊色一些咯。

咱举个例子吧,就好比你要测量一杯热水的温度。

如果你想要特别精确的数值,那可能热电阻就比较合适;但要是你着急知道温度大概是多少,而且这水还挺烫的,那热电偶可能就更能发挥它的优势啦。

你说这热电阻和热电偶是不是各有各的特点呀?它们就像是两个性格不同的小伙伴,在不同的场合发挥着自己的作用。

所以啊,咱可得搞清楚它们的区别,这样才能在需要的时候选对“小伙伴”,让它们为我们好好工作呀!在实际应用中,可千万别把它们弄混了哦,不然那可就麻烦啦!想想看,如果该用热电阻的时候你用了热电偶,或者反过来,那测量出来的温度能准吗?那肯定不行呀!总之呢,辨别热电阻和热电偶要多观察、多了解它们的特点。

只有这样,我们才能在面对各种测量需求时,准确地选择合适的那个,让我们的工作更顺利、更高效。

你说是不是这个理儿呀?。

热电偶与热电阻测量原理的异同

热电偶与热电阻测量原理的异同

热电偶与热电阻测量原理的异同嘿,朋友们!今天咱来聊聊热电偶和热电阻这俩测量温度的好伙计,看看它们测量原理的异同之处。

先来说说热电偶吧。

这玩意儿就像是个对温度特别敏感的小精灵。

它是利用不同金属之间的热电效应来工作的。

就好比两个人,一个对热特别敏感,一个对冷特别敏感,他俩一组合,就能感知到温度的变化啦。

热电偶的优点可不少呢,它能测量特别高的温度,而且反应速度那叫一个快呀,就像短跑运动员一样迅速。

再看看热电阻呢,它就像是个慢性子,但也有自己的厉害之处。

热电阻是根据导体电阻随温度变化的特性来测量的。

想象一下,一根金属丝,温度一变,它的电阻也跟着变,多神奇呀!热电阻测量的精度通常比较高哦,而且稳定性也不错,就像一位可靠的老朋友。

那它们的不同到底在哪儿呢?热电偶可以测量很高很高的温度,这可是热电阻比不了的呀。

热电阻呢,在中低温测量时更拿手,而且测量结果更精确稳定。

这不就像是一个擅长短跑,一个擅长长跑嘛。

还有啊,热电偶的结构相对简单些,安装起来也比较方便,就像搭积木一样容易。

但热电阻呢,有时候就需要更精心的呵护和安装啦。

它们在应用场景上也各有不同哦。

热电偶常常出现在那些高温的工业环境中,比如炼钢炉旁边,感受着炽热的温度。

而热电阻呢,则更多地在一些对精度要求高的地方发挥作用,像是实验室里呀。

咱在实际使用的时候可得根据需求来选择呀。

要是需要测量特别高的温度,那肯定首选热电偶啦。

但要是对精度要求很高,那热电阻就是不二之选啦。

总之呢,热电偶和热电阻这俩家伙各有千秋,都是我们测量温度的好帮手。

它们就像是温度世界里的两个好伙伴,各自发挥着自己的优势,为我们的生活和工作提供着重要的数据支持。

我们可得好好了解它们,才能让它们更好地为我们服务呀!。

热电阻与热电偶的区别

热电阻与热电偶的区别

热电阻与热电偶的区别
热电阻与热电偶的区别
区别一:测温原理不同
热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

它的主要特点是测量精度高,性能稳定。

其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

热电偶将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。


区别二:热电偶与热电阻分类不同
常见的热电阻材质大多是单一金属,目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,超过150易被氧化。

热电阻的分度号有Cu50,Pt100,Pt1000等等,前面的字母是指热电阻的材质,而后面的数字则是该热电阻的电阻值。

热电偶和热电阻的相同点和不同点

热电偶和热电阻的相同点和不同点

热电偶和热电阻的相同点和不同点热电偶和热电阻是两种常见的温度传感器,它们都能够将温度转化为电信号输出。

然而,它们在工作原理、适用范围、精度等方面存在着一些不同点。

下面将详细介绍热电偶和热电阻的相同点和不同点。

一、相同点1. 原理相同热电偶和热电阻的工作原理都是基于热电效应。

热电效应是指当两种不同的金属或半导体材料形成闭合回路时,当两端温度不同时,会产生电势差。

这种现象被称为“热电效应”。

2. 可以测量温度热电偶和热电阻都能够测量物体的温度。

它们将温度转化为电信号输出,可以通过电路进行处理和显示。

3. 适用于高温环境热电偶和热电阻都适用于高温环境。

热电偶可以测量高达1700℃的温度,而热电阻可以测量高达1000℃的温度。

二、不同点1. 工作原理不同热电偶是利用两种不同材料的热电效应产生电势差,从而测量温度。

而热电阻则是利用电阻随温度变化的特性,通过测量电阻值来计算温度。

2. 精度不同热电偶的精度较高,可以达到0.1℃,而热电阻的精度一般为0.2℃~0.5℃。

因此,在对温度精度要求较高的场合,热电偶更为适用。

3. 适用范围不同热电偶适用于广泛的温度范围,包括高温和低温。

而热电阻主要适用于中低温度范围,一般不超过1000℃。

4. 线性度不同热电偶的线性度较好,在一定温度范围内的输出电压与温度成线性关系。

而热电阻的线性度一般较差,需要进行线性校正。

5. 响应速度不同热电偶的响应速度较快,能够实时测量温度变化。

而热电阻的响应速度较慢,需要较长的时间来达到稳定状态。

总之,热电偶和热电阻都是常见的温度传感器,它们在工作原理、精度、适用范围、线性度和响应速度等方面存在着一些不同点。

在选择温度传感器时,需要根据具体的应用场合和要求来选择合适的传感器。

热电偶与热电阻的区别pt100与cu50的区别

热电偶与热电阻的区别pt100与cu50的区别

热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

仪表中热电偶与热电阻的作用和区别

仪表中热电偶与热电阻的作用和区别

仪表中热电偶与热电阻的作用和区别摘要:在制药行业和化工行业,温度属于常见的热动参数,必须做好优化控制。

温度是伴随物料化学或物理变化的常规条件,热电偶与热电阻在温度测量的期间,作用基本相同,然而原理、特点和适用环境不同。

此次研究主要是探讨分析仪表中热电偶与热电阻的作用和区别。

关键词:仪表;热电偶;热电阻;作用;区别热电偶和热电阻在工业温度测控中属于最常见的接触式测温,然而两者在工作原理、接线方式与测温范围中均存在显著差别,具体分析如下:1、热电偶与热电阻的区别与特点1.1热电偶与热电阻的区别第一,工作原理区别:热电偶测温原理为热电效应,将两种不同导体和半导体连接为闭合回路。

两个接端位置温度不同,回路中会产生热电势,又被称为“seeback”效应。

回路中产生的热电势包含接触电势和温差电势。

其中,接触电势是两种不同的导体接触时,由于电子密度不同,会产生电子扩散现象,当达到平衡后形成建立电势,接触电势大小取决于不同导体的材料性质与接触点温度。

测温原理是基于导体或半导体的电阻而言,随着温度的持续变化,实现温度测量。

第二,热电偶与热电阻结构区别:普通型热电偶组成包括电偶保护套管、绝缘材料、热电极与接线盒。

热电偶多采用带孔、耐高温陶瓷管为绝缘材料,从耐高温陶瓷管孔内引出热电极。

保护套管的材料应当具备气密性良好、机械强度高、耐高温、耐腐蚀与热导率高性能,主要涉及到金属、非金属与金属陶瓷。

当前常用的保护套管为不锈钢,可以应用于900℃以下工况。

热电阻部分主要为电阻体、绝缘套管、保护套管与接线盒,在石英、陶瓷和塑料等绝缘骨架上,缠绕电阻丝,之后套上保护套管,将导热材料填充在套管和热电阻丝之间。

第三,材料区别。

热电阻为金属材质,温度敏感变化比较明显。

热电偶为双金属材料,采用不同的金属材料。

因受到材料温度变化影响,因此不同金属丝两端会产生电势差。

第四,两种传感器检测的温度范围不同,热电阻多应用于0-400℃温度范围内测定;热电偶可以应用到0-1000℃温度范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热电偶与热电阻的区别
热电偶与热电阻均属于温度测量中的接触式测温,尽管其作用相同都是测量物体的温度,但是他们的原理与特点却不尽相同。

.
热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测量范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。

热电偶的测温原理是基于热电效应。

将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。

闭合回路中产生的热电势有两种电势组成:温差电势和接触电势。

温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。

目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。

热电偶的结构有两种,普通型和铠装型。

普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。

热电偶的电信号需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。

不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。

补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。

补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。

一般的补偿导线的材质大部分都采用铜镍合金。

热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。

其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。

工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。

热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热点偶便宜。

相关文档
最新文档