复变函数与解析函数

合集下载

§5.9复变函数的导数与解析函数

§5.9复变函数的导数与解析函数

(1) e z e x , Arge z y 2k
(2) (3)
e e z1 z2 e z1 z2 , e z1 e z1 z2 e z2
周期性:e z2ki e z
(4) 处处解析,且有 (e z ) e z
注:(1)y 0 w ex (实指数函数)
x 0 w eiy cos y i sin y (Euler公式)
证:f (z) Re z Im z xy ,
u(x, y) xy , v(x, y) 0
ux (0,0)
lim
x0
u ( x,0)
u(0,0) x
0
vy (0,0)
uy
(0,0)
lim
y0
u(0,
y)
y
u(0,0)
0
vx (0,0)
满足C R条件.
但当z沿 y kx(x 0)趋于零时,有
例1. 求 f z z n (n 为正整数 ) 的导数.
解: f z lim f z z f z
z 0
z
lim z z n z n
z 0
z
lim
z 0
nz n1
C
2 n
z
n2
z
z n1
nz n1
z n nz n1
例2 讨论 f (z) z 的连续性与可导性。 解 f (z) z x iy 在复平面处处连续
如 ln( 1) ln 1 i arg(1) i Ln(1) ln( 1) 2ki (2k 1)i
x0
lim f z z f z lim x iy
z 0
z
(x,y)(0,0) x iy
不存在,因而f z z在复平面上处处不可导

复变函数与解析函数

复变函数与解析函数

复变函数与解析函数复变函数是数学中的一个重要概念,它涉及到复数的运算和函数的性质。

解析函数则是复变函数中的一种特殊情况,具有更加丰富的性质和应用。

本文将介绍复变函数和解析函数的概念、性质以及它们在数学和科学领域的应用。

一、复变函数的概念与性质复变函数是将复数集合映射到自身的函数,即函数的自变量和因变量都是复数。

通常用f(z)表示复变函数,其中z为复数。

复变函数可以通过实部和虚部进行表示,即f(z) = u(x, y) + iv(x, y),其中u(x, y)和v(x, y)分别为实部和虚部,而x和y分别为实部和虚部的变量。

复变函数的性质与实数函数类似,包括函数的连续性、可导性、积分等。

然而,复变函数有些独特的性质,比如解析性。

二、解析函数的概念与性质解析函数是复变函数的一种特殊情况,它在其定义域内处处可导,即在定义域内的任意一点,函数都存在导数。

解析函数的导数可以通过常规的求导法则得到,与实数函数类似。

解析函数具有一系列重要的性质,包括解析函数的导数仍然是解析函数,解析函数的导数序列收敛于该函数在某一点的幂级数展开式,以及柯西—黎曼方程等。

这些性质为解析函数的研究和应用提供了坚实的数学基础。

三、复变函数与解析函数的应用复变函数和解析函数在数学和科学领域有广泛的应用。

首先,它们在复数的运算和分析中起着重要的作用,比如复数的加减乘除、复数的共轭和模等运算。

复变函数和解析函数还可以用于解决一些实变函数无法解决的问题,比如研究复变函数的奇点和留数等。

此外,复变函数和解析函数在物理学、工程学和金融学等领域也有广泛的应用。

在物理学中,它们可以用于描述电磁场、量子力学和热力学等现象。

在工程学中,它们可以应用于信号处理、电路分析和控制系统等。

在金融学中,它们可以用于描述金融市场的变动和风险评估等。

总结起来,复变函数和解析函数是数学中的重要概念,具有丰富的性质和应用。

它们不仅仅是理论研究的基础,还在实际问题的解决中发挥着关键作用。

§5.8复变函数的导数与解析函数

§5.8复变函数的导数与解析函数

(2)u( x, y),v( x, y)在点 ( x0, y0 ) 处满足C R条件:
u
v ,v
u .
x y x y
则f (z)在点z0 x0 iy0 D处可导.
二、解析函数
定义2 若函数f (z)在点z0及z0的某邻域内可导, 则称f (z)在点z0解析。若函数f (z)在区域D内的 任一点处解析,则称f (z)在D内解析或f (z)为D 内的解析函数。
p Lnz
p ln z2k pi
z e q e q q , 取k 0,1,2, q 1时的q个值
特别,当 1 (n为正整数)时,即为z的n次方根
n
• 对其他的, z 有无穷多值
(2) Lnz取主值ln z时,相应的 z e ln z称为z的主值
(3) 解析性:
对应于Lnz的各个单值分支,z的各个单值分支在除原
如例2 中 的 f (z) z 处处不可导,因而处处不解析。
例3 中 的 f (z) Re z Im z 在 z 0处不可导,因而 在 z 0处不解析。
f (z)在z0解析 f (z)在z0可导
f (z)在区域D内解析 f (z)在区域D内可导
由定理2即得:
定理3 : 函数f (z) u( x, y) iv( x, y)在区域D内解析 (1)二元函数 u( x, y),v( x, y)在D内任一点 处可微; (2)u( x, y),v( x, y)在D内任一点 处满足C R条件:
(2) ez e x 0,(ez ) ez 0 复变函数中无中值定理
2. 对数函数
w Lnz ln z iArgz ln z i(arg z 2k ).
(对数函数为指数函数 的 反函数. 设 z e w , w u iv, z rei, 则 euiv rei

复变函数解析函数例子

复变函数解析函数例子

复变函数解析函数例子1. 什么是复变函数复变函数,即复数域上的函数,它将一个复数映射到另一个复数。

复变函数是数学中重要的概念,它在物理、工程等领域都有广泛的应用。

复变函数的解析函数是其中一个重要的概念,在本文中将详细介绍解析函数的例子及其应用。

2. 解析函数的定义解析函数,也称为全纯函数或可导函数,是指在某个区域内可导的复变函数。

具体而言,如果一个复变函数在某个区域内处处可导,则称该函数在该区域内是解析的。

解析函数具有一些重要的性质,主要包括:连续性、解析性、无奇点、全局可导等。

这些性质使得解析函数在许多领域都有广泛的应用。

3. 解析函数的例子3.1. 多项式函数多项式函数是最简单的解析函数之一。

对于一个具有形如f(z)=a n z n+a n−1z n−1+...+a1z+a0的多项式函数,它在整个复平面上都是解析的。

多项式函数的导数可以通过逐项求导得到,因此它是解析函数。

多项式函数的例子包括:f(z)=z2+2z+1、f(z)=z3−3iz2+z−i等。

这些函数在整个复平面上都是连续且解析的。

3.2. 指数函数指数函数是另一个常见的解析函数。

对于形如f(z)=e z的指数函数,它在整个复平面上都是解析的。

指数函数具有许多重要的性质,比如e z1+z2=e z1e z2和e iθ= cos(θ)+isin(θ)。

指数函数在数学、物理、工程等领域都有广泛的应用,比如在电路分析、量子力学等方面。

它可以表示增长速度、周期性等问题。

3.3. 三角函数三角函数也是常见的解析函数。

对于形如f(z)=sin(z)和f(z)=cos(z)的三角函数,它们在整个复平面上都是解析的。

三角函数具有许多重要的性质,比如sin(z)=12i (e iz−e−iz)和cos(z)=1 2(e iz+e−iz)。

它们在数学、物理、工程等领域中广泛应用,比如在波动、振动等问题中。

4. 解析函数的应用解析函数的应用非常广泛,下面列举其中一些常见的应用:4.1. 数学领域在数学领域中,解析函数被广泛应用于复分析、调和分析等方面。

复变函数2-1解析函数的概念

复变函数2-1解析函数的概念

n1 ( 2) ( z ) nz , 其中n为正整数.
n
19
( 3) (4)
f ( z ) g( z ) f ( z ) g( z )


f ( z ) g( z ).

f ( z ) g( z ) f ( z ) g( z ).
f ( z ) g( z ) f ( z ) g( z ) f ( z ) ( 5) . ( g ( z ) 0) 2 g (z) g( z )
x 2yi lim z 0 x yi
z
o

y 0
x
设z z沿着平行于 x 轴的直线趋向于z,
x x 2yi lim 1, lim x 0 x z 0 x yi
设z z沿着平行于 y 轴的直线趋向于z,
x 2yi 2yi lim lim 2, z 0 x yi y 0 yi
u v u v , . x y y x
23
证明:必要性
设f ( z )在z x iy处可导,记作 f ( z ) a ib,
'
则由定义有f ( z 源自 ) f ( z ) (a ib)z ( z )
(a ib)(x iy) ( z )
所以f ( z ) x 2 yi的导数 不存在.
o
x 0
y
z

y 0
x
9
二、解析函数的概念与求导法则
1. 解析函数的定义
如果函数 f ( z ) 在 z0 及 z0 的邻域内处处可 导,那末称 f ( z ) 在 z0 解析.
如果函数 f ( z )在 区域 D内每一点解析, 则称 f ( z )在 区域 D内解析. 或称 f ( z )是 区域 D 内的一 个解析函数(全纯函数或正则函数).

复变函数、解析函数

复变函数、解析函数

(2) f ( z ) x y ixy
解 f ( z)在 z 1 i 处 可 导 , 在 复 平 面 上 处
处不 解 析.
( 3 ) f ( z ) x 2 iy
1 解 f ( z )在 直 线 x 上可 导 , 在 复 平 面 上 处 处 2 不 解 析.
例5 证明:如果w u ( x, y ) iv( x, y )为解析函数,
1 2 1 2 f ( z ) u iv x y xy i (2 xy y x C ) 2 2 i 2 i 2 2 (令x z , y 0) z z Ci (1 ) z Ci, 2 2 1 i 2 i f (i ) 1 i, c f ( z ) (1 ) z 2 2 2
复变函数、解析函数
复数域与复数的表示法
复数集: C z x iy x, y R x Re z, y Im z , i
复 数 z x iy 有 序 数 组 ( x, y ) 注 意 : 复 数 不 能 比 较 小


1
复数的表示法:
1. z x iy 2. 复平面上的点P ( x, y )或向量OP 3. z r (cos i sin ) (三角表示法) 4. z rei (指数表示法)
一个复变函数 例如:
二个二元实函数
w f ( z ) z 2 ( x iy) 2 x 2 y 2 2ixy, u ( x, y ) x 2 y 2 , v( x, y ) 2 xy
可以利用二元实函数的极限,连续等概念来定义复变 函数的极限,连续。
极限 lim f ( z ) w0 ( w0 u0 iv0 )

复变函数课件:2_2解析函数

复变函数课件:2_2解析函数

存在,则称 f ( z ) 在 z0 处可导或可微,并称这个极限为 f ( z ) 在 z0 的导数,记作 f ' ( z0 ), 即 f ( z0 )= lim
' z → z0 , z∈D
f ( z ) − f ( z0 ) z − z0
f ( z 0 + ∆z ) − f ( z 0 ) ' lim 或 f ( z0 )= ∆z →0, z0 +∆z∈D . ∆z
所以
f ( z + ∆z ) − f ( z ) f ( z ) = lim ∆z → 0 ∆z
'
1 2 n = lim (Cn z n −1 + Cn z n − 2 ∆z + ⋯ + Cn (∆z ) n −1 ) = nz n −1.
∆z → 0
例2 解
讨论 f ( z ) = Im z的可导性 .
f ( z + ∆z ) − f ( z ) Im( z + ∆z ) − Im z ∆f = = ∆z ∆z ∆z
Im z + Im ∆z − Im z Im ∆z = = ∆z ∆z
∆y Im( ∆x + i∆y ) , = = ∆ x + i∆ y ∆ x + i∆ y
当点沿平行于实轴的方 向( ∆y = 0)而使 ∆z → 0时,
第二节 解析函数
• 一、复函数的导数 • 二、解析函数的概念 • 三、复函数可导与解导的概念 定义2.2.1设复函数 w = f ( z ) 是定义在区域 D上单值 定义
函数, z0 ∈ D. 如果极限
z → z0 , z∈D
lim
f ( z ) − f ( z0 ) f ( z 0 + ∆z ) − f ( z 0 ) lim 或 ∆z →0, z0 +∆z∈D z − z0 ∆z

复变函数第二章 解析函数

复变函数第二章 解析函数

第 一 节 解 析 函 数 的 概 念
( 5)
f ( z ) ′ g ( z ) f ′ ( z ) − f ( z ) g ′ ( z ) , g (z) ≠ 0 = 2 g ( z) g ( z)
( 6)
{
f g ( z )
}

= f ′ ( w ) g ′ ( z ) , 其中w = g ( z )
dw 可见:可导 ⇔ 可微, f ′ ( z0 ) = 且 dz
z = z0
如果f ( z ) 在区域D内每一点可微,
则称f ( z ) 在D内可微.
记作 dw = f ′ ( z ) dz
第 一 节 解 析 函 数 的 概 念
二、解析函数 定义 1o 如果f ( z ) 在z0 及z0的某邻域内处处可导,
设w = f ( z ) 定义于区域D, z0 ∈ D , z0 + ∆ z ∈ D
f ( z0 + ∆ z ) − f ( z0 ) 如果 lim 存在 ∆ z →0 ∆z 则 称 f ( z ) 在 z0点 可 导 , 而 极 限 值 为 f ( z ) 在 z0点 dw 的导数,记作 f ′ ( z0 ) 或 dz z = z0
∴ ∆ u = a ∆ x − b ∆ y + o1 ∆ v = b∆ x + a ∆ y + o2
反之,不成立。
( 2)
( 3)
f ( z ) 在区域D内解析
⇔ f ( z ) 在 区 域 D内 可 导 。
f ( z ) 在 z0 解析 ⇔
f ( z ) 在 z0的某邻域 N δ ( z0 )内解析。
第 一 节 解 析 函 数 的 概 念

复变函数与解析函数

复变函数与解析函数

复变函数与解析函数复变函数是数学中一个非常重要的分支,也是其它自然科学中涉及到复数的问题所必须掌握的基础知识。

它的研究对象是由复变量组成的函数,在复平面上有非常丰富的性质和应用。

解析函数是复变函数中的一个重要概念,是指在某个区域内可导的复变函数,它在物理、工程、数学等领域中有着广泛的应用。

一、复变函数基础复数包含实数和虚数两个部分,即 $z=a+b i$,其中 $a$ 和$b$ 是实数,$i$ 是虚数单位,满足 $i^2=-1$。

复平面可使用一个点 $(a,b)$ 表示一个复数 $z=a+b i$,其中向上为正方向,向右为正方向。

我们可以将复平面分为实轴和虚轴两部分,实轴上的点是实数 $a$,虚轴上的点是复数 $b i$。

对于一个复变量 $z=x+y i$,可以分别表示为实部 $x$ 和虚部$y$,即 $x=Re(z), y=Im(z)$。

其中,共轭复数(conjugate complex)的实部不变、虚部相反,即 $z^* = x - yi$。

绝对值定义为模长(modulus)或者复数的模数(magnitude):$|z|=\sqrt{x^2+y^2}$。

表示复数 $z$ 在复平面上到原点的距离。

二、复变函数的概念在实数域上,函数是由一个或多个自变量构成的表达式或规则,对应一个或多个因变量。

像$y=f(x)$ 这样的表达式就是一个函数。

在复数域上,一个函数 $f(z)$ 由一个复变量 $z=x+y i$ 构成,可看作 $(x,y)$ 上的某种标量函数。

即对于 $x,y \in \mathbb{R}$,$z=x+y i \in \mathbb{C}$,$f(z)$ 可以表示为$f(x+yi)=u(x,y)+v(x,y)i$ 的形式,其中 $u(x,y)$ 和 $v(x,y)$ 是实函数。

我们可以把 $\mathbb{C}$ 中的点 $z$ 对应到复平面上,把点$z$ 对应的函数值 $f(z)$,对应到复平面上的另一个点 $w$。

复变函数解析函数

复变函数解析函数

(2)求导公式与法则
----实函数中求导法则的推广
① 常数的导数 c=(a+ib)=0. ② (zn)=nzn-1 (n是自然数). 证明 对于复平面上任意一点z0,有 n z n z0
z lim
z z0
lim
z z0
z z0
n ( z z0 )(z n1 z n 2 z0 z0 1 ) n lim nz0 1 z z0 z z0
与z=(w)互为单值的反函数,且(w)0。

思考题
2
实 函 数 中 f ( x ) x 在( , )内 可 导 , ; 复 函 数 中 f (z) z 的 可 导 性 , ?
2
1 例2 已 知 f ( z ) ( z 5 z ) , 求f ' ( z ) z 1 1 2 解 f ( z ) 2( z 5 z )(2 z 5) ( z 1)2 例3 问:函数f (z)=x+2yi是否可导?
v u x y
称为Cauchy-Riemann方程(简称C-R方程).
定理1 设 f (z) = u (x, y) + iv(x, y)在 D 内有定义, 则 f (z)在点 z=x+iy ∈D处可导的充要条件是
u(x, y) 和 v(x, y) 在点 (x, y ) 可微,且满足
Cauchy-Riemann方程
z 0
lim f ( z0 z ) f ( z0 ), 所 以f ( z )在z0连 续
二. 解析函数的概念
定义 如果函数w=f (z)在z0及z0的某个邻域内处处 可导,则称f (z)在z0解析;
如果f (z)在区域D内每一点都解析,则称

(最新整理)(完整版)复变函数解析函数

(最新整理)(完整版)复变函数解析函数
f(z)Ae
成立, 则称当z趋于z0时, f(z)以A为极限,并记做 limf(z)A 或 f(z) A (z z0 ).
zz0
注意: 定义中zz0的方式是任意的.
几何意义
y
(z)
v
w f(z)
z0 d
o
xo
(w)
e
A
u
几何意义: 当变点z一旦进
入z0 的充分小去 心邻域时,它的象
点f(z)就落入A的
(最新整理)(完整版)复变函数解析函数
2021/7/26
1
第二章 解析函数
2.1 复变函数的概念 2.2 解析函数的概念 2.3 解析的充要条件 2.4 初等函数
2.1 复变函数的概念、极限与连续性
复变函数的概念
1. 复变函数的定义 2. 映射的概念 3. 反函数或逆映射
1. 复变函数的定义—与实变函数定义相类似
0)
A
zz0 g(z) l i mg(z) zz0
B
zz0
以上定理用极限定义证!
例1
证明 wx2yi(xy2)在平面上处处 . x2 y, x y2在平面上处处有极限
例2
求 f(z)zz
z 在 z0时的极 . 限 z
f(z)2(xx22yy22)在(0,0)处极限不 . 存在
例3
证 明 f(z)Rez z在z0时 的 极 限.不 存
y (z)
v (w)
w z2
2
o
x
o
u
y (z)
v (w)
w z2
w z2
o
6
x w z2 o
3
u
x2 y2 4
3. 反函数或逆映射

复变函数-解析函数

复变函数-解析函数

7
定理1 函数的解析点一定是它的可导 点.反之不真;点 z0为函数 的解析点的 充分必要条件是点 为z0其可导点所构成 的集合的内点。
推论2 复变函数不会只在有限个点或者一 条曲线上解析,它的全体解析点的集合 一定是开集。
如果f(z)再z0不解析,那么称z0为的奇点
定 理 3 在区域D内解析的两个函数的和,差,积,商(除 分母为零的点)在D内解析;解析函数的复合函数仍然是解 析函数。
则称 f (z) 在 z0 处解析. 如果函数 f (z)在 区域 D内每一点解析,则称
f (z) 在 区域 D内解析
如果G 是一个区域,若闭区域D G, 且函 数 f (z) 在 区域 G 内解析,则称f (z) 在闭区域 D 上 的 解 析 函 数.
由定义可得:复变函数在一点处的解析与可导
不等价,但在区域内解析与在该区域内可导是等
解 (1) w =| z |,
此时 u = x2 + y2 , v = 0,
u x , u y , v 0, v 0.
x x2 + y2 y x2 + y2 x
y
不满足Cauchy-Riemann方程,
故 w =|z|在复平面内处处不可导, 处处不解析.
15
(2) f (z) ex (cos y i sin y)
27
从而,可知 (1) 所有多项式在复平面内是处处解析的. (2) 任何一个有理分式函数P(z) 在不含分母为
f'(z) = u'x + iv'x = x / ( x2 + y2 ) - iy / ( x2 + y2 )
x - yi 1
= x2 + y2

2-12复变函数的导数和解析函数

2-12复变函数的导数和解析函数
f (z) u i v 1 u v . x x i y y
函数在区域 D内解析的充要条件 定理二 函数 f (z) u( x, y) iv( x, y) 在其定义 域 D内解析的充要条件是: u( x, y)与 v( x, y) 在 D内可微, 并且满足柯西-黎曼方程.
27
解析函数的判定方法: (1) 如果能用求导公式与求导法则证实复变函 数 f (z) 的导数在区域 D内处处存在, 则可根据 解析函数的定义断定 f (z) 在 D内是解析的.
z0
令 f (z z) f (z) u iv,
f (z) a ib, (z) 1 i2 ,
13
所以 u iv
f (z) a ib u i v x x
(a ib) (x iy) (1 i2 ) (x iy) (ax by 1x 2y)
i(bx ay 2x 1y)
u e x cos y, x v e x sin y, x
u e x sin y,
y
四个偏导数
v e x cos y, 均连续 y
即 u v , u v . x y y x
故 f (z) 在复平面内处处可导, 处处解析.
且 f (z) ex (cos y i sin y) ff((zz)).
黎曼介绍
12
证 (1) 必要性. 设 f (z) u( x, y) iv( x, y) 定义在区域 D内, 且 f (z) 在 D内一点 z x yi 可导, 则对于充分小的z x iy 0,
有 f (z z) f (z) f (z)z (z)z, 其中 lim (z) 0,
解 (1) w z, u x, v y,
u 1, u 0, v 0, v 1.
x

复变函数理论与解析函数的性质

复变函数理论与解析函数的性质

复变函数理论与解析函数的性质复变函数理论是数学中的一个重要分支,它研究的是具有复变量的函数。

复变函数与实变函数有着明显的区别,它们的性质和行为也有很大的不同。

本文将探讨复变函数理论的一些基本概念和解析函数的性质。

一、复变函数的定义和基本性质复变函数是指定义在复数域上的函数。

复数可以表示为实部与虚部的和,即z = x + iy,其中x和y分别是实数部分和虚数部分。

一个复变函数可以表示为f(z) = u(x, y) + iv(x, y),其中u和v分别是实部和虚部的函数。

复变函数的定义域是复平面上的一个开集。

复变函数的基本性质包括解析性、连续性和可微性。

解析性是指函数在其定义域内处处可导,即函数的导数存在。

连续性是指函数在其定义域内连续。

可微性是指函数在某一点处可导。

对于复变函数来说,解析性和可微性是等价的,即函数在某一点处可导当且仅当函数在该点处解析。

二、解析函数的性质解析函数是复变函数中的一类特殊函数,它具有许多重要的性质。

首先,解析函数是无穷可微的,即它的导数、二阶导数、三阶导数等都存在。

这个性质使得解析函数在数学和物理中有广泛的应用,例如在电磁场的分析和量子力学中的波函数描述等。

其次,解析函数满足柯西-黎曼方程,即它的实部和虚部满足柯西-黎曼方程的偏导数条件。

这个方程表明解析函数的实部和虚部是相互独立的,它们的变化是相互约束的。

柯西-黎曼方程的满足使得解析函数具有一定的几何性质,例如保角性和共形映射等。

此外,解析函数还具有唯一性定理和辐角原理等重要性质。

唯一性定理指出,如果两个解析函数在某个区域内的实部和虚部都相等,那么它们在该区域内是相等的。

辐角原理是指解析函数的辐角的变化是连续的,且在某个区域内的辐角变化总和为零。

三、解析函数的应用解析函数在数学和物理中有广泛的应用。

在数学中,解析函数常用于复积分、级数和变换等问题的求解。

在物理学中,解析函数常用于电磁场的分析、流体力学中的势函数描述等。

复变函数:第2章 解析函数

复变函数:第2章  解析函数
= 0 ⋅ f ′( z 0 ) = 0
• 知 zlim f ( z ) = f ( z 0 ),故 →z
0
f (z )在点 z 0 处连续.
• 2.1.3 复变函数的微分 • 定义2 称函数 f (z)的改变量 ∆w的线性部分 定义 f ′( z0 )∆z 为函数 f (z)在点 z 0 处的微分,记作
n
k ( z + ∆z ) n = ∑ C n z k ( ∆ z ) n − k = n k =0
1 2 n ( ∆z ) n + C n (∆z ) n −1 z + C n ( ∆z ) n − 2 z 2 + ⋯ + C n ( ∆z ) n − n z n
所以,由导数定义有
n
( z + ∆z ) − z f ′( z ) = ( z )′ = lim ∆z →0 ∆z
n
n
= lim [(∆z )
∆z →0
n −1
+ C (∆z )
1 n
n−2
z +⋯+ C
n −1 n −1 n
z
]
= nz
n −1
• 例2 求 f ( z ) = • 解 由例1
z 的导数.
2
df f ′( z ) = = 2z dz
• 2.1.2 可导与连续的关系 • 若函数 w = f (z )在点 z 0处可导,则 点 z 0 处必连续. • 证 因为
dw 或 dz
,即
z = z0
dw f ′( z0 ) = dz
z = z0
f ( z0 + ∆z ) − f ( z0 ) = lim ∆z →0 ∆z

复变函数与积分变换第一章 复变函数和解析函数

复变函数与积分变换第一章 复变函数和解析函数

|z|=2的内接正方形的四个顶点(如图).
1
一般情况下, n z z n
n个根就是以原点为中心、
y
w1
w0
1
半径为 r n 的圆的内接正多边
o
x
形的n个顶点所表示的复数.
w2
w3
1.1.5 复球面与无穷远点
第一章 复变函数与解析函数
§1.1 复 数
1 复数的概念 2 复数的四则运算 3 复数的表示方法 4 乘幂与方根
1.1.1 复数的概念
由于解代数方程的需要, 人们引进了复数. 例如,简单的代数方程
x2 1 0 在实数范围内无解. 为了建立代数方程的普遍 理论,引入等式
i2 1. 由该等式所定义的数称为虚数单位
cosq i sinq n (cos nq i sin nq )
称为De Moivre公式.
如果定义负整数幂为
zn
1 zn
,
那么
De Moivre公式仍然成立. 设
z1 r1(cosq1 i sinq1 ), z2 r2(cosq2 i sinq2 ),
当 z2 0 (即 r2 0 )时,
y
y
为起点而以点P为终点的向
量表示(如图).
o
Pz x iy
x
x
这时复数加、减法满足向量加、减法中的平
行四边形法则. 用 OP表示复数z时, 这个向量在x轴和y轴上
的投影分别为x和y.
把向量 OP 的长度r 称为复数z的 模 或称为z
的绝对值, 并记做|z|. 显然 z r x2 y2 ,
q r1
o
q1
q2

r2
z2
z2 r2(cosq2 i sinq2).

复变函数第2章解析函数

复变函数第2章解析函数
dw zz0 f (z0 )z
当 f (z) z时,dw= dz ,z 所以 f 在(z)点
z 0处的微分又可记为
dw zz0 f (z0 ) d z
亦即
dw
dz zz0
f (z0 )
由此可知,函数 w f (z)在点 z处0 可导与可微 是等价的.
复变函数的求导法则与高数完全类似:
则称 gx, y为 D内的调和函数
定理2.3 设 f z u i,v 若 f 在z 区域 内D 解
析,则 与u 均v 为 内D的调和函数.
定义2.4 若在区域 D内, u与 v均为调和函数
且满足C-R条件
ux vy , uy vx 则称 u 为 v的共轭调和函数
定理2.4 设 ux, y在区域 D内为调和函数,则
z0
)
lim
zz0
f (z) f (z0) z z0
0 f (z0 ) 0

lim
zz0
f (z)
f (z0 ),故
f在(z)点 处z 0连续.
同高数一样,称函数 f (z) 的改变量 w的线性部 分 f (z0 )z为函数 f (z在) 点 z处0 的微分,记作 dw 或 zz0 df(z) z,z0 即
2.1 复变函数的导数
定义2.1 设函数 w f z定义在区域 D
内,z0 D ,(z0 z) D ,若极限
lim f z0 z f z0
z0
z
存在,则称此极限为函数 f z在点 z0处的导数,
记作 f z0 或
df ,即
dz zz0
f
z0
df dz
z z0
lim
z0
f
z0

2-2复变函数及 函数解析的充要条件

2-2复变函数及 函数解析的充要条件

(1) ( 2)
u (4u2 1) 0, 将(2)代入(1)得 x u 2 0, 由 (4u 1) 0 x
12
u 由(2)得 0, y
所以 u c (常数),
2
于是 f ( z ) c ic (常数).
课堂练习
设 my 3 nx 2 y i ( x 3 lxy2 ) 为解析
如果 u y 和 v y 中有一个为零, 则另一个必不为零 , 两族中的曲线在交点处 的切线一条是水平的 另 , 一条是铅直的, 它们仍然相互正交 .
17
例8
证明函数 f ( z ) Im z 2 的实、虚部在点
z 0 满足柯西-黎曼方程 但在点 z 0 不可微. ,

因为 f ( z ) 2 xy , 所以 u 2 xy , v 0,
函数 f ( z ) xy 在点 z 0 不可导.
11
例5 设 f ( z ) u( x , y ) iv( x , y ) 在区域 D 内解
析, 并且 v u , 求 f ( z ).
2

u v u 2u , x y y u v u 2 u , y x x
域 D 内解析的充要条件是: u( x , y )与 v ( x , y ) 在 D 内可微, 并且满足柯西-黎曼方 . 程
3
解析函数的判定方法:
(1) 如果能用求导公式与求 导法则证实复变函 数 f ( z ) 的导数在区域 D 内处处存在, 则可根据 解析函数的定义断定 f ( z ) 在 D 内是解析的.
u(0, y ) u(0,0) 0 v x (0,0), u y (0,0) lim y 0 y0

复变函数解析函数

复变函数解析函数

面积分公式
总结词
面积分公式是复变函数解析函数的另一个重要性质,它描述了函数在一个平面区域上的 积分与边界路径之间的关系。
详细描述
如果一个复函数在一个平面区域D内有定义,且在区域D的边界周围解析,那么该函数 在区域D内的积分可以通过在区域D的边界上的函数值和边界周围的路径上的积分来表
示。
体积分公式
未来研究还可以进一步探索解 析函数在各个领域中的应用, 例如在人工智能、大数据分析 、量子计算等领域的应用。
THANKS
感谢观看
解析函数在其定义域内的任意点都可微,且 其一阶导数不为零。
整体性质
解析函数在其定义域内是单值的,即对于定义域内的 任意两个不同的点z1和z2,f(z1)≠f(z2)。
柯西定理
如果f(z)是单连通域内的解析函数,且z0是域 内任意一点,则对于任意正实数r,有∫(c: z0→z0+r) f'(z) dz = f(z0+r) - f(z0)。
复变函数解析函数
• 引言 • 解析函数的定义与性质 • 解析函数的表示方法 • 解析函数的积分公式 • 解析函数的应用 • 结论
01
引言
复数与复变函数简介
复数
由实数和虚数组成的数,表示为 a+bi, 其中 a 和 b 是实数,i 是虚数单位, 满足 i^2=-1。
复变函数
以复数为自变量的函数,其值也是复 数。
解析函数的重要性
解析函数的性质
在数学分析中,解析函数是一类具有导数的函数,其导数在定义域内连续且具有连续的偏导数。解析函数的性质 包括具有连续的导数、可微性、可积性等。
解析函数的应用
解析函数在数学、物理、工程等领域有广泛的应用。例如,在解决偏微分方程、积分方程、复变积分等数学问题 时,解析函数可以提供有效的解决方案。此外,在信号处理、控制系统等领域,解析函数也具有实际应用价值。

复变函数课件02章 解析函数

复变函数课件02章 解析函数

试求: f (i)
答案:-3
复变函数与积分变换
第2章 解析函数
定理2.3(解析的充要条件)
函数f(z)=u(x,y)+iv(x,y)在区域D内解析的充要条件是: u(x,y)和v(x,y)在D内可微,且满足柯西——黎曼方程。
u v , v u x y x y
复变函数与积分变换
第2章 解析函数
和、差、积、商(除z 去0 分母为0点)仍为解析函数;
由解析函数构成的复合函数也是解析函数。
复变函数与积分变换
第2章 解析函数
§2.2 复变函数可导与 解析的充要条件
定理2.2(可导的充要条件)
函数f(z)=u(x,y)+iv(x,y)在定义域内一点z=x+iy可导的 充要条件是:u(x,y)和v(x,y)在点(x,y)可微,且满足柯 西——黎曼方程。
u v , v u x y x y 则称v(x,y)为u(x,y)的共轭调和函数。
定理2.6
函数f(z)=u(x,y)+iv(x,y)在区域D内是解析的函数的充 要条件为:虚部v(x,y)是实部u(x,y)的共轭调和函数。
复变函数与积分变换
第2章 解析函数
例2.12 试求一解析函数f(z) ,使其实部为 u(x,y)=x2+y2-2xy.
第2章 解析函数
例2.1 求函数 f (z) zn 的导数(n为正
整数)。
f (z) (zn ) lim (z z)n zn nzn1
z 0
z
例2.2 求函数 f (z) z2 的导数(n为正
整数)。
(z2 ) 2z
复变函数与积分变换
第2章 解析函数
某点可导
该点连续
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数与解析函数
专业:工程力学姓名:李小龙学号:10110756在此仅对基础知识加以总结归纳。

1、基本概念
1、复数
指数表示:
宗量:一个函数的自变量是一个复杂的对象,这是通常称为宗量。

若是z的辐角,则也是其辐角,其中是整数集合,若限制,所得的单值分支称为主值分支,记作argz。

做球面与复平面相切于原点O,过O点作直线OZ垂直于复平面,与球面交于N,即球的北极。

设z是任意复数,连接Nz,与复球面交于P,z与P一一对应,故复数也可用球面上的点P表示,该球面称为复球面。

当,作为N的对应点,我们把复平面上无穷远点当做一点,记作,包括的复平面称为扩充复平面。

2、复变函数
领域:由等式所确定的点集,称为的领域,记作,即以为中心,为半径的开圆(不包括圆周)。

区域:非空点集D若满足:一、D是开集,二、D是连通的,即D中任意两点均可以用全属于D的折线连接。

则我们称D为区域。

单通与复通区域:在区域D内画任意简单闭曲线,若其内部全含于D,则D称为单通区域,否则称为复通区域。

复变函数:以复数为自变量的函数。


则:
所以一个复变函数等价于两个二元实变函数。

它给出了z平面到w平面的映射或变换。

复变函数的连续性:
如果
则称在处连续。

3、解析函数
复变函数的导数:
复变函数定义在区域D上,,如果极限
存在且有限,则称在处可导或可微(differentiable),且该极限称为在处的导数或微商(derivative),记作:
解析函数:
若函数f(z)在区域D内可导,则称为区域D内的解析函数,也称全纯函数。

奇点:若函数f(z)在某点不解析,但在的任意领域内都有它的解析点,则称为f(z)的奇点(singular point)。

Cauchy-Riemann条件(CR条件)
此为f(z)在z点可微的必要条件。

充要条件:
(1)二元函数u(x,y),v(x,y)在点(x,y)可微。

(2)u(x,y),v(x,y)在点(x,y)满足CR条件。

另外我们有推论:
若f(z)在D内解析,则f(z)在D内具有任意阶导数。

4、初等单值函数
初等函数(elementary function)是由基本初等函数(通常认为包括常数,幂函数,指数函数,对数函数,三角函数,反三角函数)经过有限次的加减乘除和复合所构成的函数。


称为有理分式,也称有理函数。

除去满足的点外,f(z)在复平面上处处解析,是f(z)的奇点。

复变量的三角函数(trigonometric function)是通过指数函数来定义的:显然都是周期函数,周期为,且他们的绝对值都能大于1.
如:,显然可以大于任意数。

双曲函数:
复变量的双曲函数也是通过指数函数来定义的。

称为双曲余弦函数和双曲正弦函数。

他们在整个复平面上解析。

5、解析函数的物理意义
调和函数:如果二元实变函数在区域D内具有连续的二阶偏导数,且满足二维Laplace方程
则称为区域D内的调和函数。

若是区域D内的解析函数,则、均为D内的调和函数。

由已知函数,则由
积分求出,反之亦然。

正交曲线族
若是区域D内的解析函数,则曲线族相互正交。

二、复变函数的积分
1、复积分的定义和基本性质
曲线的方向:一阶导数连续的曲线称为光滑曲线。

简单曲线:没有重点的曲线。

围线:逐段光滑的简单闭曲线。

复积分的定义及存在性:
定义:
设函数沿曲线C:有定义,在C上沿参数增加的方向从取分点
将C分为n个弧段,在至的弧段上任取一点,作和数

C称为积分路径。

积分存在定理:
2、 Cauchy积分定理
设函数在单通区域D内解析,C为D内的任意围线,则
推论:设函数在单通区域D内解析,,则积分
定理(变上限积分)设函数在单通区域D内解析,是定点,则由定义的函数在D内解析,且。

复通区域的Cauchy积分定理:
设D是由复围线围成的复通区域,函数
或者:
Cauchy积分公式及其推论
设区域D的边界是围线或复围线C,函数在D上解析,则
注意:该公式表明,对于解析函数,只要边界上的函数值给定,则区域内的函数值也就完全确定了。

改写为如下形式可以用于计算某些积分。

解析函数的高阶导数
解析函数一次可微导致任意次可微,而且边界上的函数值不仅确定了所谓区域内的函数值,也确定了其中各阶导数的函数值。

设区域D以围线或复围线C为边界,函数在闭区域上解析,则在D内有各阶导数:
Liouville定理
在整个z平面上解析的函数称为整函数。

有界整函数必为常数。

3、解析函数的幂级数展开
Cauchy收敛原理:
形如的级数,收敛的充要条件是:
作为上式得特列,取,则得到,所以上面的级数收敛的必要条件是:如果级数
收敛,则称上述级数绝对收敛,收敛但不绝对收敛的级数称为条件收敛。

四、解析函数的Laurent展开与孤立奇点
1、解析函数的Laurent展开
考虑两个幂级数:
他们的和为:
称为双边幂级数。

双边幂级数具有如下性质:
a) 在收敛环H内绝对收敛于。

b) 和函数在H内解析。

c) 在H内可以逐项求导和逐项积分。

Laurent定理:设函数在环域H:内解析,则在H内可以展开为双边幂级数:
其中
而是环内包围内圆的任意围线。

且展开式是唯一的。

解析函数的零点与孤立奇点:
定义:若函数在点解析,且
注:
多项式是最简单的解析函数,如果是多项式的重根,则有
,其中是次多项式,且。

容易验证,在点满足以上条件,所以是的阶零点。

一般解析函数的阶零点是多项式重根的推广。

定理(阶零点)若函数。

零点的孤立性:若函数的零点,则必存在领域,在其中只有一个零点。

推论:若函数在区域D内解析,在D内有点列,满足,,。

解析函数的唯一性定理:若函数均在区域D内解析,在D内有点列,满足,,
解析函数的孤立奇点及其分类:
定义:
粗略的说,如果函数,但在的附近没有别的奇点,则就是的孤立奇点。

正则部分和主要部分用于判断奇点奇性的大小:
是内半径为零的环域,在其中解析,则可以展开为Laurent级数:
展开式中的正幂部分,即称为正则部分,负幂部分,即称为主要部分。

孤立奇点的分类:
(1)如果主要部分为零,则称为的可去奇点(removable
singularity).
(2)如果主要部分为,其中,则的阶极点(pole)。

时也称为单极点。

(3)如果主要部分有无穷多项,则的本性奇点(essential
singularity)。

2、各种孤立奇点的判断:
函数的孤立奇点为可去奇点的充要条件是。

为阶极点的充要条件是在的某去心领域内可以表示为:
,其中在点解析,且。

或者是
推论:函数的孤立奇点为极点的充要条件是
本性奇点的判断:
函数的孤立奇点为本性奇点的充要条件是不存在,即不为有限值也不为无穷。

五、留数定理及其应用
1、留数定理
定义:如果函数以为孤立奇点,即在中解析,则积分
称为在点的留数(residue),记作
设在点的Laurent展开为
由此可知,可去奇点处的留数为零。

Cauchy留数定理:
设函数在围线或复围线C所围的区域D中有孤立奇点,此外在D上解析,
则有:
2、留数的算法
极点的留数定理:设是的阶极点,则
于是有下面两个常用的推论:
单极点:
二阶极点:
单极点的留数计算还有另外一个公式:
设是点解析,且
,则
当极点的阶数较高时,常做Laurent展开,求出系数,对于本性奇点,这也是唯一的计算方法。

相关文档
最新文档