第一章 复变函数和解析函数

合集下载

《复变函数》第1章

《复变函数》第1章
2013-7-12 《复变函数》(第四版) 第3页
(3) 除法: z1 x1 iy1 ( x1 iy1 )( x2 iy 2 ) z ( x2 iy 2 )( x2 iy 2 ) z 2 x2 iy2 x1 x2 y1 y 2 x2 y1 x1 y 2 i 2 2 2 2 x2 y 2 x2 y 2 复数的运算满足交换律、结合律和分配律. (4) 共轭复数性质 z1 z1 i) z1 z 2 z1 z 2 , z1 z 2 z1 z 2 , ; z2 z2 ii) z z ; 2 2 iii) z z Re( z ) Im( z ) ; iv) z z 2 Re( z ) , z z 2 i Im( z ) .
3 1 5 . zz 2 2 2
2
2
2013-7-12
《复变函数》(第四版)
第6页
§2 复数的几何意义
1. 复平面, 复数的其它表示法 (1) z = x + iy ↔ 点( x, y ) ( 几何表示法 ) (2) z = x + iy ↔ 向量OP ( 向量表示法 )
2
辐角: Arg z
( z 0 ) 无穷多个, 相差2kπ . y tan( Arg z ) x 辐角主值: 0 arg z 0 k = 0, ±1, ±2, …… Arg z arg z 2k 当z = 0时, | z | = 0 , 而辐角不确定.
2013-7-12 《复变函数》(第四版) 第8页
, y x | z |
y Arg z的主值arg z (z 0)可由Arc tan x 的主值 y arc tan x 来确定: y arctan x x 0, — 在第一、四象限 2 x 0, 0 y arg z y 0 — — 二象限 y arctan x x 0, 0 — — 二象限 x 0, 0 y arctan y 其中 (图示) x 2 2 3 arg z . 例: z = -3 + 3i 2 4 4 (或 arg z arctan( 1) arctan 1 4

(完整版)复变函数知识点梳理解读

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。

一、复数及其表示法介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。

二、复数的运算高中知识,加减乘除,乘方开方等。

主要是用新的表示方法来解释了运算的几何意义。

三、复数形式的代数方程和平面几何图形就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。

四、复数域的几何模型——复球面将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。

五、复变函数不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。

六、复变函数的极限和连续性与实变函数的极限、连续性相同。

第二章:解析函数这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。

一、解析函数的概念介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。

所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。

而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。

二、解析函数和调和函数的关系出现了新的概念:调和函数。

就是对同一个未知数的二阶偏导数互为相反数的实变函数。

而解析函数的实部函数和虚部函数都是调和函数。

而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。

三、初等函数和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。

第三章:复变函数的积分这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。

但是很多知识都和实变函数的知识是类似的。

可以理解为实变函数积分问题的一个兄弟。

第一章复变函数

第一章复变函数
z z 0 r0
为闭区域
(三)复变函数例 1. 多项式
a 0 a1 z a 2 z a n z
2
n
( n 为整数 )
2. 有理分式
a 0 a1 z a 2 z b 0 b1 z b 2 z
2
anz bm z
n m
2
( m 和 n 为整数 )
(e
z
iz
e
z
),
cos z ch z 1 2
1 2
(e
z
iz
e
z
iz
)
(e e
),
(e e
)
ln z ln(| z | e z
s
i Arg z
) ln | z | i Arg z
e
s ln z
( s 为复数 )
sh同sinh,双曲正弦 (hyperbolic sine) ch同cosh, 双曲余弦 (hyperbolic cosine)
全体复数与平面上的点一一对应
y
cos =|z|

z=x+iy (x,y) (,)
/2-
复数平面
sin cos(/2-) x

o
z1=x1+i y1 ,z2=x2+i y2,如z1=z2,则x1=x2, y1 = y2
2) 极坐标表示 利用坐标变换:
y arctan 2 2 x 0 2
例5. 指数函数
2 i sin e
i
sin
e 2i
- i
5
3. 辐角主值: 辐角 = Arg

复变函数的可导与解析

复变函数的可导与解析
复数的方根:
设zrei r(cosis in ),则z的n次 方 根
为n
z
1
rn(c
os2k
is
in2k)
n
n
(k0,1,2,n1)
二. 复变函数
复变函数 :
f :z xiywuiv xy平 面 上 的 点 u集v平 面 上 的 点 集
w f(z)u(x, y)iv(x, y)
一个复变函数
二个二元实函数
y x
z在第四象限
性质:
z1z2z1z2,z1z2z1z2, ( zz1 2) zz1 2 z z z 2 , z 1 z 2 z 1 z 2 , z 1 z 2 z 1 z 2
Arg(z1z2) Arg1zArg2z
Argz1 z2
Arg1zArg2z
复数的乘幂:
设 zre ir(cosisin)则 , z的 n次 为zn(re i)nrn(cn os isin n )
f(z0)limfz0 z0
zfz0
z
fz0zfz0f(z0)zz( lzi m 00) 设f(z0)aib,1i2,zxiy, 则
fz0zfz0uiv
(aib)(xiy)(1i2)(xiy)
axby1x2yi(bxay2x1y)
uaxby1x2y
vbxay2x1y
而lim1x2y 0,lim2x1y 0
处 处不 解.析
例5 证 明 :w如 u(x果 ,y)iv(x,y)为 解 析 函 数
w必 与 z无 关 , 可 以 z表单 示独 。用
例6
已 知f解 (z)的 析 v 虚 函 y 部 ,数 求 f(z)。 x 2y2

uy
vx

第一章 复变函数和解析函数解析

第一章 复变函数和解析函数解析
f (z) u(x, y) iv(x, y) u(,) iv(,) 在z点可导 C-R条件
u x u
v y
v

u
1
u
1
v
v
y x
是可导的必要条件.
2020/10/24
第一章 复变函数和解析函数
16
据导数定义,沿实轴和虚轴的比值极限都存在且相等,即
z x, lim f lim u(x x, y) iv(x x, y) u(x, y) iv(x, y)
z0的邻域: z z0 (是任意小的正数)
内点z0:z0及邻域 E 点集 E外点z0:z0及邻域 E
边界点z0:z0的邻域中z有0 E也有 E的点
2020/10/24
第一章 复变函数和解析函数
10
(开)区域Bba))具全有由连内通点性组成— B内任两点都可由内点组 成的折线连起来
闭区域B :区域B连同其境界线构成的点集
单连通:境线只有一线 区域的连通阶数 多连通:境界线在两条 及以上
境界线正向约定:沿正向前进,区域始终在左手一侧
2020/10/24
第一章 复变函数和解析函数
11
2)复变函数: 存在一个点集E,zE有一个或多个w对应,
则称w为z的函数
w=f(z) (zE),z称为宗量.
2020/10/24
第一章 复变函数和解析函数
❖ z的共轭复数z*或
2020/10/24
第一章 复变函数和解析函数
4
❖ 1.2复平面与复矢量 ❖ 复平面——横轴为实轴,纵轴为虚轴的平面
一个复数复平面上的一个点→复矢量
2020/10/24
第一章 复变函数和解析函数
5
1.3三角及指数式

复变函数习题及答案解释

复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。

复变函数第一章

复变函数第一章
内点: N (z0 ) E
边界点: N (z0 )既有E的点,也有不是E的点,
集E的全部边界点所组成的集合称为E的边界,
记为 E.
3.开集: 所有点为内点的集合;
闭集: 或者没有聚点,或者所有聚点都属于它;
E' E,
有界集:
M 0,z E, z M, 或M 0,使E NM (0)
例 E {z | z 1}
例3: 设 z 1 ,试证 (1 i)z3 iz 3 .
2
4
证明: (1 i)z3 iz z (1 i)z2 i
z (1i z 2 i )
1 (1 2 1) 1 (1 1) 3
24
22
4
例4: 求复数 1 z 的实部,虚部和模.(z 1)
1 z
解:
1 1
z z
(1 z)(1 1 z 2
由几段依次相接的光滑曲线所组成的曲线 称为按段光滑曲线.
注:按段光滑曲线是可求长的,但简单曲线不一定可求长.
5 单连通区域
复平面上的一个区域D, 如果在其中任作 一条简单闭曲线, 而曲线的内部总属于D, 就称 为单连通域. 一个区域如果不是单连通域, 就称 为多连通域.
单连通域
多连通域
例 (1) 满足下列条件的点集是什么, 如果是区 域, 指出是单连通域还是多连通域?
E的每一点及圆周 z 1上点都是E的聚点, 圆周 z 1为E的边界,
E为开集.
4.聚点(极限点)的等价说法
(1) z0 E', (2) N (z0 ) E有无穷多点, (3) N (z0 )存在异于z0属于E的点, (4) N (z0 )含属于E的两个不同的点,
(5)
{zn}
E, lim n

复变函数的基本概念及运算

复变函数的基本概念及运算
定义了一个复变函数实际上定义了二个相关联的实二 元函数,因此复函数将具有独特的性质。
三 邻域、内点、外点、境界点
1 邻域:以 z 0 为中心,任意小正实数 为半径
的圆内所有点的集合,称为 z 0 点的邻域。 2 内点、外点、境界点:若 z 0 及其邻域均属于点
集 E ,则称 z 0 为 E 的内点;若 z 0 及其邻域均不属于 E ,则称 z 0 为 E 的外点;若 z 0 的每个邻域内,既有 属于 E 的点,也有不属于 E 的点,则称 z 0 为 E 的境
一 解析函数的定义
若函数 f (z) 在 z0 点及其邻域上处处可导,则称 f (z) 在 z0 解析,在区域 B 上每一点都解析,则称 f (z) 是区域
上的解析函数。
二 解析函数的性质
1 解析函数的实部与虚部通过C — R 方程互相联系,知
其中一个函数,可求另一个函数。
例:已知解析函数 f (z) 的虚部 v(x, y) x x2 y 2
2k
i( )
方根: n z n e n n , k 0,1,, n 1, n ∈N
五 共轭复数
若 z x iy ei , 则 z 的 共 轭 复 数 定 义 z* x iy ei 为复数 z 的共轭复数, z 2 zz * 。
欧拉公式 ei cos i sin 的证明
lim
z 0
w z

lim
0
u(

, )

iv(
,) ( )e i

u(,)

iv( , )

lim
u(

x0

,)

u(,)

复变函数论第1章

复变函数论第1章
实轴:x 轴 虚轴:y 轴 实轴上的点表示实数; 虚轴上的点表示纯虚数(除了原点外)
向量表示: Oz (由原点引向点z的向量)
向量表示方式建立了复数集C与平面向量 Oz 所成的集合的一一对应
复数z的模:向量 Oz 的长度,记为 |z| 或r .
2 2 r a b 0 z
Re z z ,
z1z2 r1ei1 r2ei2 r1r2ei (1 2 ) .
z1z2 rr 1 2 z1 z2
Arg( z1z2 ) Argz1 Argz2 .
复数相乘:模相乘,辐角相加 .
17
z1 w z1 wz2 z2
z1 w z2
z1 z1 | w | z2 z2
§1.2 复平面点集
1. 平面点集的几个概念 z0的邻域: D(z0, δ)={z: |z-z0|<δ}
z0的去心邻域: D(z0, δ)\{z0}={z: 0<|z-z0|<δ}
z0为点集E的内点:存在z0的邻域 D( z0 , ) E E为开集:如果点集E中的点全为内点. z0为E的边界点:z0的任意邻域内,既有 属于E中的点,
10
极坐标:(r, ) a = rcos, b = rsin, r = |z| 复数z的辐角:正实轴与从原点O到z 的射线的夹角,记为 Argz
主辐角(或辐角主值):满足 π π 的辐角, 记为 = argz, 于是有Argz = argz+2k, k=0,±1,±2,…
2) ( z w) z w,
3) zw z w .
zw z w,
z z ( ) ( w 0). w w
4)
z z . w w

第一章第二节复变函数

第一章第二节复变函数
b0 b1z b2 z2 ... bm zm
根式: z a
可以证明:
cos(iy) = chy;i.shy = sh(iy)
❖ 几个初等函数的定义式
Sh or sinh: hyperbolic sine Ch or cosh: hyperbolic cosine
ez exiy ex cos y i sin y
sin z 1 eiz eiz 2i
cos z 1 eiz eiz 2
注意:
1、sinz 和cosz有实周期 2
2、sin z 和 cosz 完全可以大于1 (p8)
验 证
3、ez, shz, chz具有纯虚数周期 2i
4、lnz有无限多个值,因为Argz不能被唯一确定
5、负数的对数
5、区域:区域就是宗量z在复数平面上的取值范围,严 格地说,区域是指满足下列两个条件的点集:
(1) 全由内点组成;
(2) 具有连通性,即点集中任意两点都可以用一条折 线连接起来,且折线上的点全都属于该点集。
6、闭区域:
如静电场中的导体
单连通区域
单连通闭区域 复连通区域
区域常用不等式表示。例如,
z r 表示以原点为圆心,r为半径的圆内区域; 0 arg z 2 表示第一象限;
§1.2 复变函数
(一) 复变函数的定义 (二) 区域的概念 (三) 复变函数例 (四) 复变函数可以归结为一对二元实变函数。
(一) 复变函数的定义
若在复数平面(或球面)上存在一个点集E(复数的集合), 对于E的每一个点(每一个z值),按照一定的规律,有一 个或多个复数值w与之相对应,则称w为z的函数—复变 函数。z称为w的宗量,定义域为E,记作
sin z 1 eiz eiz , 2i

数学物理方法第一章-复变函数导论

数学物理方法第一章-复变函数导论
24
1. 多项式:
f ( z ) = c0 + c1 z + c2 z 2 + …… + cn z n = ∑ ck z k
k =0
n
Ck: 复 常 数
n:正整数 2. 有理函数:
P( z ) f ( z ) = b +b z +b z 2 +……+b z n = 0 1 2 n Q( z ) n:正整数,且分母 Q(z)不为 0 ak,bk 为复常数
(2) 周期:2πi (3) chz:偶函数 shz:奇函数
(4) 实变函数有关公式可推广:
Z = Z1 ×Z2 = x1+iy) x2+iy) 1 2-yy2)+i(xy2+x2y1) ( ⋅ 1( 2 =(xx 1 1
Z1 × Z 2 = ρ1eiϕ1 ρ 2 eiϕ2 = ρ1 ρ 2 ei (ϕ1 +ϕ2 )
(模相乘, 辐角相加)
12
4.除法:
Z= Z1 x1 +iy1 (x1 +iy1) 2 -iy2) (x1x2 +y1y2 ) (x ⋅ x y1 -x y = = = + +i 2 2 1 2 2 Z 2 x2 +iy2 (x2 +iy2) 2 -iy2) x22 +y22 (x x2 +y2 ⋅
8
(2)极坐标表示:
复平面上的点用极坐标 ( ρ , ϕ ) 表示 ⎧ x = ρ cos ϕ ⇒ z = ρ (cos ϕ + i sin ϕ ) ⎨ y = ρ sin ϕ ⎩ ( ρ :z的模, ϕ :z的辐角) 注:用极坐标表示一个复数z时,辐角Argz的值不唯一:

复变函数

复变函数

导数
定义:设函数w=f(z)是在区域B上定义的单值函数,即对于B上的每一点z, 有且只有一个w值与之相对应。若在B上的某点z,极限
存在,并且与Δz→0的方式无关,则称函数w=f(z)在z点可导,此极限称 之为函数f(z)在z点的导数,记为f’(z)或df/dz。
注意! 1. w为单值函数; 2. 极限的存在与逼近方式无关。
柯西—黎曼条件
设复变函数 f(z)=u(z)+iv(z), z=x+iy. 现在讨论Δz分别沿平行实轴和平 行虚轴方向逼近0的时候,f(z)的导数形式。
I.Δz沿平行实轴方向逼近0的情形
这时Δy=0, Δz=Δx→0,则f(z)的导数:
柯西—黎曼条件
II.Δz沿平行虚轴方向逼近0的情形
这时Δx=0, Δz=iΔy→0,则f(z)的导数:
开区域:不包括境界线的区域叫开区域。
内点 边界点
区域
边界线
区域B
外点
z0
邻域
区域
内点 区域B
边界点 闭区域
边界线
外点
z0
邻域
区域
内点 区域B
边界点 闭区域
边界线
开区域 外点
z0
邻域
复变函数举例
指数函数 ez exiy exeiy ex (cos y i sin y)
复变函数举例
我们熟悉的实数的对数函数曲线的图像.
以z轴作虚部 ,颜色作实部 这个图像很 像一个螺旋 和上一个图 像完全不同.
复变函数举例
(3)双曲函数: sin h(z) 1 (ez ez ) 2 cos h(z) 1 (ez ez ) 2
第一章 复变函数
1.1 复数与复数运算 1.2 复变函数 1.3 导数 1.4 解析函数 1.5 平面标量场 1.6 多值函数

数学物理方法-复变函数与解析函数

数学物理方法-复变函数与解析函数
上篇 复变函数论
2
数学物理方法 课程说明
数学物理方法为2013学年第二学期理工学院12级光信息专业所 开设, 72学时。 本课程在高等数学(一元和多元微积分、幂级数和Fourier级数、 微分方程、线性代数和概率论)和普通物理(力学、热学、电学和 光学)的基础上,以讲授古典数学物理中的常用方法为主,适当 介绍近年来的新发展,为光信息专业后继的基础课程和专业课 程研究有关的数学物理问题作准备,也为今后工作学习中遇到 的数学物理问题的求解提供基础。
R 0 0 0
第一章 复变函数和解析函数
21
y
(z )
z1
z2
o
x
第一章 复变函数和解析函数
22
第一章 复变函数和解析函数
23
例1:用复数方程表示: (1)过两点 z j = x j + i y j (j = 1 , 2 )的直线; (2)中心在点( 0 , - 1 ) 点的表示:z = x + i y <=> 复平面上的点 P ( x , y )
第一章 复变函数和解析函数
19
向量表示法
第一章 复变函数和解析函数
20
计算 arg z (z ≠ 0) 的公式
y arctan x 0, y x π x 0, y argz 2 y arctan π x 0, y x π x 0, y
2
G : w 4, 0 argw π
函数 w = z2(D) 的几何表示
第一章 复变函数和解析函数
34
常见的复变函数
w = z 2 ; u = x 2- y 2, v = 2 x y
第一章 复变函数和解析函数

第一章 复变函数解析

第一章 复变函数解析

lim lim f (z)
f (z z) f (z)
z0 z
z0
z
df 或f ' (z)
dz
由于复变函数中导数定义与实变函数的导数定
义相同,故实变函数中导数公式可应用到复变函数
情况.例如: d z n nz n1 , d e z e z ,
dz
dz
d sin z cos z, d cos z sin z
dz
dz
复合函数 d F () dF d
dz
d dz
1.复变函数可导的充要条件:
当f(z)满足(ⅰ).函数f(z)的实部u(x,y)和虚部v(x,y)的
偏导数
u , u , v , v x y x y
存在且连续.
(ⅱ)满足C-R 条件
u v x y u v (1) y x
(1)式为直角坐标形式. 极坐标形式:
由上式可看出加法满足交换律与结合律.
当定义了 –z 时,减法也自然有了.
(b)乘法 :z1z2=(x1x2-y1y2)+i( x1y2+x2y1) (4)
(c)除法:
z1 x1x2 y1 y2 i x2 y1 x1 y2
z2
x22
y
2 2
对乘除法用指数形式运算方便.
z1z2=ρ1ρ
2e
n z n e n
其中k=0,1,2…..n-1
共有n个根,为z*=x-iy=ρe –iφ .. zz*= ρ2
(三)无限远点: 对复变数z=x+iy, 当ρ→∞时就是z趋于无 穷运点.引入复数球,使复数球的s极与复数平面的原点 相切,这时对于复数平面上的任意一点A,它与复数球的 N极以直线相联与复数球面交于面上一点A′ ,这样就建 立了复数平面上的点与复数球面上点之间的一一对应 关系.当A不管以什么方式趋于无穷大时,其对应的A′都 趋于N极,因此可把平面上无限远看成一点.

复变函数

复变函数

§ 1.1 复数及其运算
2
复数的几何表示 复数的几何表示对于了解复变函数理论中的 一些概念,例如多值函数、解析延拓等,很有帮助,其中一个 重要应用时——保角变换。 复数z=x+iy可以用平面上的点表示。在平上作一个直角坐标系, 取横轴OX为实轴,单位为1,纵轴OY为虚轴,单位为i。复数 全体与平面上的点都是一一对应的关系,这样的平面称为复平 面。 若引入极坐标变量(ρ,φ )则 x= ρ cosφ y= ρsinφ 于是 z= ρcosφ +i ρsinφ (1) z=ρρeiφ (2) (1)、(2)式分别称为复数z的三角表示式和指数表示式。式中ρ 为复数z的模或绝对值。记作 ∣z∣=ρ=√(x² 实数(x,y)定义 为复数,通常表示为z=x+iy。式中i满足i2=1, 称为虚单位;而x和y都是实数,分别称为复 数z的实部和虚部,常记为: x=Rez;y=Im z。 虚部为零的复数就可以看做是实数,即 x+i0=x.实部为零的复数称为纯虚数。 两个复数相等指的是实部虚部分别相等, 即x1+iy1=x2+iy2必须且只需x1=x2;y1=y2. 复数x+iy和x-iy互称为共轭复数。
• §1.2 复变函数 • 1. 复变函数的概念 设E为复数平面的 一点集(复数的集合),若按一定的规 律,使E内每一个复数z都有一个或者多 个的w=u+iv(u,v为实数)与之对应,则称 w为z的复变函数,定义域为E,记作: w=f(z),
• • • • • • • • • • • •
而φ为向量oz与x轴的夹角,称为复数z的辅角,记作 Arg z=φ; tanφ =y/x 任一复数z不等于零都有无穷多个辅角。以arg z表示其中在2ππ 范围内 变化的一个特定值,称之为辅角的主值,通常取 -π <arg z≦ π 于是 Arg z=arg z+2kπ(k=0; ±1; ±2…) 3 复数的运算法则 (1)两复数z1=x1+iy1及z2=x2+iy2相加(减),可将他们的实部与实部,虚部 与虚部分别相加(减),即 z1±z2=(x1±x2)+i(y1±y2) (2)两复数z1=x1+iy1及z2=x2+iy2相乘可按多项式乘法法则进行,只需将 结果中的i2换成-1,即 z1.z2=(x1x2-y1y2)+i(x1y2+x2y1) (3)两复数z1=x1+iy1及z2=x2+iy2相除,先写成分式形式,然后分子分母 同乘以分母的共轭复数,化简级 z1÷z2= (x1x2+y1y2)/(x22+y22)+i(y1x2-x1y2)/(x22+y22)

复变函数理论与解析函数的性质

复变函数理论与解析函数的性质

复变函数理论与解析函数的性质复变函数理论是数学中的一个重要分支,它研究的是具有复变量的函数。

复变函数与实变函数有着明显的区别,它们的性质和行为也有很大的不同。

本文将探讨复变函数理论的一些基本概念和解析函数的性质。

一、复变函数的定义和基本性质复变函数是指定义在复数域上的函数。

复数可以表示为实部与虚部的和,即z = x + iy,其中x和y分别是实数部分和虚数部分。

一个复变函数可以表示为f(z) = u(x, y) + iv(x, y),其中u和v分别是实部和虚部的函数。

复变函数的定义域是复平面上的一个开集。

复变函数的基本性质包括解析性、连续性和可微性。

解析性是指函数在其定义域内处处可导,即函数的导数存在。

连续性是指函数在其定义域内连续。

可微性是指函数在某一点处可导。

对于复变函数来说,解析性和可微性是等价的,即函数在某一点处可导当且仅当函数在该点处解析。

二、解析函数的性质解析函数是复变函数中的一类特殊函数,它具有许多重要的性质。

首先,解析函数是无穷可微的,即它的导数、二阶导数、三阶导数等都存在。

这个性质使得解析函数在数学和物理中有广泛的应用,例如在电磁场的分析和量子力学中的波函数描述等。

其次,解析函数满足柯西-黎曼方程,即它的实部和虚部满足柯西-黎曼方程的偏导数条件。

这个方程表明解析函数的实部和虚部是相互独立的,它们的变化是相互约束的。

柯西-黎曼方程的满足使得解析函数具有一定的几何性质,例如保角性和共形映射等。

此外,解析函数还具有唯一性定理和辐角原理等重要性质。

唯一性定理指出,如果两个解析函数在某个区域内的实部和虚部都相等,那么它们在该区域内是相等的。

辐角原理是指解析函数的辐角的变化是连续的,且在某个区域内的辐角变化总和为零。

三、解析函数的应用解析函数在数学和物理中有广泛的应用。

在数学中,解析函数常用于复积分、级数和变换等问题的求解。

在物理学中,解析函数常用于电磁场的分析、流体力学中的势函数描述等。

复变函数与积分变换第一章 复变函数和解析函数

复变函数与积分变换第一章 复变函数和解析函数

|z|=2的内接正方形的四个顶点(如图).
1
一般情况下, n z z n
n个根就是以原点为中心、
y
w1
w0
1
半径为 r n 的圆的内接正多边
o
x
形的n个顶点所表示的复数.
w2
w3
1.1.5 复球面与无穷远点
第一章 复变函数与解析函数
§1.1 复 数
1 复数的概念 2 复数的四则运算 3 复数的表示方法 4 乘幂与方根
1.1.1 复数的概念
由于解代数方程的需要, 人们引进了复数. 例如,简单的代数方程
x2 1 0 在实数范围内无解. 为了建立代数方程的普遍 理论,引入等式
i2 1. 由该等式所定义的数称为虚数单位
cosq i sinq n (cos nq i sin nq )
称为De Moivre公式.
如果定义负整数幂为
zn
1 zn
,
那么
De Moivre公式仍然成立. 设
z1 r1(cosq1 i sinq1 ), z2 r2(cosq2 i sinq2 ),
当 z2 0 (即 r2 0 )时,
y
y
为起点而以点P为终点的向
量表示(如图).
o
Pz x iy
x
x
这时复数加、减法满足向量加、减法中的平
行四边形法则. 用 OP表示复数z时, 这个向量在x轴和y轴上
的投影分别为x和y.
把向量 OP 的长度r 称为复数z的 模 或称为z
的绝对值, 并记做|z|. 显然 z r x2 y2 ,
q r1
o
q1
q2

r2
z2
z2 r2(cosq2 i sinq2).

第一章复变函数和解析函数

第一章复变函数和解析函数

7
2020/4/7
• 莱昂哈德·保罗·欧拉(Leonhard Paul Euler,1707年4月15日- 1783年9月18日)是一位瑞士数 学家和物理学家,近代数学先驱 之一,他一生大部分时间在俄罗 斯帝国和普鲁士度过。
• 欧拉在数学的多个领域,包括 微积分和图论都做出过重大发现。 他引进的许多数学术语和书写格 式,例如函数的记法"f(x)",一直 沿用至今。此外,他还在力学、 光学和天文学等学科有突出的贡 献。
ln x
ln xei 2k
2020/4/7
ln x ln ei i2k ln x i 2ik
16
(4)复数的运算规则 (注:运用到实数特例时,能够与实数的运算规则相符)
设z1=x1+iy1和 z2=x2+iy2是两个复数
加减 z1 ± z2 =(x1+iy1) ± (x2 +i y2 )
所以可以用平面上的一个点(x,y)或一个矢量
表示,通常把横轴叫实轴,纵轴叫虚轴,而把这种
用来表示复数的平面叫复平面。 复数的矢量表示法
由图:
y
x cos
y
sin
x2 y2
arctan
y x
y
z
P(x,y)
那么复数(复矢量)可以表示为 o
xx
z = x iy = cos isin .
2020/4/7
5
2020/4/7
6
学习要求与内容提要
目的与要求:掌握复变函数的基本概念和复函数可导 必要条件、掌握解析函数的概念、函数 解析的充要条件、复势的概念。
教学重点: 柯西-黎曼条件、复变函数解析的充要条件;
教学难点: 柯西-黎曼条件与复变函数可导充要条件、 复变函数解析的充要条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

07.06.2020
.
5
07.06.2020
.
6
学习要求与内容提要
目的与要求:掌握复变函数的基本概念和复函数可导 必要条件、掌握解析函数的概念、函数 解析的充要条件、复势的概念。
教学重点: 柯西-黎曼条件、复变函数解析的充要条件;
教学难点: 柯西-黎曼条件与复变函数可导充要条件、 复变函数解析的充要条件
07.06.2020
.
7
07.06.2020
• 莱昂哈德·保罗·欧拉(Leonhard Paul Euler,1707年4月15日- 1783年9月18日)是一位瑞士数 学家和物理学家,近代数学先驱 之一,他一生大部分时间在俄罗 斯帝国和普鲁士度过。
• 欧拉在数学的多个领域,包括 微积分和图论都做出过重大发现。 他引进的许多数学术语和书写格 式,例如函数的记法"f(x)",一直 沿用至今。此外,他还在力学、 光学和天文学等学科有突出的贡 献。
.
实部 记做:Rez=x 说明:
虚部 记做:Imz=y
当 x 0, y 0 时, z iy 称为纯虚数;
当 y 0 时, z x 0i, 我们把它看作实数 x.
C {z | z x iy, x, y R}称为为复数集
07.06.2020
.
11
两复数相等当且仅当它们的实部和虚部分 别相等.
.
复数的三角表示式
13
y
如图:
y
P(x,y)
复矢量的长度OP称为复数的模 或绝对值
z
z =ρ= x2 +y2 .
o
xx
显然由复数的复平面表示,有下列各式成立
x z, y z, z x y .
在 z 0的情况下, 以正实轴为始边 , 以表示
z 的向量oP 为终边的角的弧度数 称为 z 的幅角, 记作 arg z .
07.06.2020
.
1
教材及指导书
一、教材: 胡嗣柱等 编著,《数学物理方法》,第二版, 北京
大学出版社,2002年7月
二、主要的参考书: 于涛等 编 《数学物理方法知识要点与习题解析》,
哈尔滨工程大学出版社,2007年6月
成绩测定:作业20%+上课出席参与10% +考试70%
联系方式:zyx@
设:z1=x1+i·y1 z2=x2+i·y2
z1= z2 x 1x2,y1y2
复数 z 等于0当且仅当它的实部和虚部同时 等于0.
说明 两个数如果都是实数,可以比较它们的大 小, 如果不全是实数, 就不能比较大小, 也就 是说:
复数不能比较大小!!!
07.06.2020
.
12
(2)复平面表示与复数三角式 复数z=x+iy由一对有序实数(x,y)唯一确定。
所以可以用平面上的一个点(x,y)或一个矢量
表示,通常把横轴叫实轴,纵轴叫虚轴,而把这种
用来表示复数的平面叫复平面。 复数的矢量表示法
由图: y2
arctan
y
x
y
z
P(x,y)
那么复数(复矢量)可以表示为 o
xx
z= x iy=c o s isin.
07.06.2020
x x
Leibniz :不可能有负数的对数
dx d ln x x
只对正数成立
ln(-x)与ln(x)间存在联系吗?
Euler: 在1747年指出
ln(x), lnx 差一特殊的数
1740年,Euler 给Bernoulli的信中说: y2cosx 和 ye 1x e 1x 是同一个微分方程的解,因此应该相等
1743年,发表了Euler公式 cos x 1 e 1x e 1x
Euler把 1 作为特
殊的数 07.06.2020
.
2 sin x 1 e 1x e 1x
2 1
9
1.1 复数的基本概念
1 复数及其代数运算
(1). 复数的代数形式
考虑解方程: x2 1。 显然,此方程在实数集中是无解的。
07.06.2020
.
3
复变函数论(theory of complex functions)的目的: 把微积分延伸到复域。使微分和积分获得新的深度和意
义。
07.06.2020
.
4
主要内容:
1 复变函数和解析函数 2 复变函数积分 柯西定理和柯西公式 3 复变函数级数 泰勒级数和洛朗级数等 4 解析函数(自学) 5 定积分的计算 6 δ函数 其余拉普拉斯变换的内容(自学) 7 傅立叶变换和色散 8 线性常微分方程的级数解法和某些特殊函数
答疑教室:钱伟长楼220室
07.06.2020
.
2
课程讲授计划
• 第一章 复变函数和解析函数(4) • 第二章 复变函数积分 柯西定理和柯西公式(4) • 第三章 复变函数级数 泰勒维数和洛朗级数(6) • 第五章 定积分的计算(2) • 第七章 傅里叶变换(6) • 第八章 线性常微分方程的级数解法和某些特殊函数(8) • 第九章 数学物理方程的定解问题(4) • 第十章 行波法和分离变量法 本征值问题(8) • 第十一章 积分变换法(4) • 第十二章 球坐标下的分离变量法(6) • 第十三章 柱坐标下的分离变量法 Bessel函数(4)
07.06.2020
.
14
y
说明
y
z
P(x,y)
任何一个复数 z 0有无穷多个幅角,
0
o
x
x
如果 0 是其中一个幅角, 那么 z 的全部幅角为
arg z 0 2kπ (k为任意整数).
特殊地, 当 z 0时, z 0, 幅角不确定. 幅角主值的定义:
在z(≠0)的幅角中,把位于0< <2π的 称 0 为arg z 的主值。而复数的辐角与幅角主值间有关系
为了求出方程的解,引入一个新数i,称为虚数单位.
对虚数单位的规定:
欧拉公式
i 1 i2=–1
方程的解: 07.06.2020 x11i1= . i
cos x 1 e ix e ix 2
sin x 1 eix e ix
2i
10
定义
i-虚数单位 满足:i2=-1
对于" x, y R, 称 z x iy 为复数
• 欧拉是18世纪杰出的数学家, 同时也是有史以来最伟大的数学 家之一。他也是一位多产作者, 其文学著作约有60-80册。法国 数学家皮埃尔-西蒙·拉普拉斯曾 这样评价欧拉对于数学的贡献: “读欧拉的著作吧,在任何意义 .上,他都是我们的大师” 8
1.0问题的提出
负数有对数吗?
Bernoulli:负数的对数是实数 d(x)dx ln(x)lnx
相关文档
最新文档