数列全部PPT课件
合集下载
数列数列的概念ppt课件
当n=1时,a1=4符合上式,所以an=2n(n+1)(n∈N*). (3)由an+1=2an+1,得an+1+1=2(an+1). 令bn=an+1,所以{bn}是以2为公比的等比数列. 所以bn=b1·2n-1=(a1+1)·2n-1=2n+1, 所以an=bn-1=2n+1-1(n∈N*).
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
(3)∵an+1-an=3n+2,∴an-an-1=3n-1(n≥2), ∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =n3n2+1(n≥2). 当n=1时,a1=12×(3×1+1)=2符合公式, ∴an=32n2+n2.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
第1讲 数列的概念
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
探究二:由 Sn 求 an
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
(3)∵an+1-an=3n+2,∴an-an-1=3n-1(n≥2), ∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =n3n2+1(n≥2). 当n=1时,a1=12×(3×1+1)=2符合公式, ∴an=32n2+n2.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
第1讲 数列的概念
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
探究二:由 Sn 求 an
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
数列ppt课件
判断一个数列是否为混合数列;
详细描述 利用混合数列的性质进行计算; 求混合数列的前n项和。
05
数列的发展历史与未来展望
数列的发展历史
中世纪数列
随着欧洲中世纪的数学发展,数 列研究逐渐丰富,如斐机技术的发展,数列的 应用领域不断扩大,如组合数学 、概率论和统计学等。
递推公式的求解方法
可以通过迭代法、特征根法、归纳法等方法求解递推公式。
03
数列的应用
数列在数学分析中的应用
数学分析基础
数列是数学分析中的基本概念, 是研究连续函数的基础。通过数 列,可以理解函数的极限、连续 性和可微性等基本性质。
级数理论
数列在级数理论中有着重要的应 用。通过数列的收敛性,可以研 究无穷级数的和,以及其在数学 分析中的各种应用。
在此添加您的文本16字
判断一个数列是否为等差数列。
等比数列习题与解析
总结词:等比数列是数列中的重要类 型,其习题主要考察等比数列的定义
、通项公式和性质等知识点。
详细描述
求等比数列的通项公式;
求等比数列的前n项和; 利用等比数列的性质进行计算;
判断一个数列是否为等比数列。
混合数列习题与解析
总结词:混合数列是由等差数列和等比数列混合而成的 数列,其习题主要考察混合数列的定义、通项公式和性 质等知识点。 求混合数列的通项公式;
数列的习题与解析
等差数列习题与解析
在此添加您的文本17字
总结词:等差数列是数列中的基础类型,其习题主要考察 等差数列的定义、通项公式和性质等知识点。
在此添加您的文本16字
详细描述
在此添加您的文本16字
求等差数列的通项公式;
在此添加您的文本16字
求等差数列的项数;
详细描述 利用混合数列的性质进行计算; 求混合数列的前n项和。
05
数列的发展历史与未来展望
数列的发展历史
中世纪数列
随着欧洲中世纪的数学发展,数 列研究逐渐丰富,如斐机技术的发展,数列的 应用领域不断扩大,如组合数学 、概率论和统计学等。
递推公式的求解方法
可以通过迭代法、特征根法、归纳法等方法求解递推公式。
03
数列的应用
数列在数学分析中的应用
数学分析基础
数列是数学分析中的基本概念, 是研究连续函数的基础。通过数 列,可以理解函数的极限、连续 性和可微性等基本性质。
级数理论
数列在级数理论中有着重要的应 用。通过数列的收敛性,可以研 究无穷级数的和,以及其在数学 分析中的各种应用。
在此添加您的文本16字
判断一个数列是否为等差数列。
等比数列习题与解析
总结词:等比数列是数列中的重要类 型,其习题主要考察等比数列的定义
、通项公式和性质等知识点。
详细描述
求等比数列的通项公式;
求等比数列的前n项和; 利用等比数列的性质进行计算;
判断一个数列是否为等比数列。
混合数列习题与解析
总结词:混合数列是由等差数列和等比数列混合而成的 数列,其习题主要考察混合数列的定义、通项公式和性 质等知识点。 求混合数列的通项公式;
数列的习题与解析
等差数列习题与解析
在此添加您的文本17字
总结词:等差数列是数列中的基础类型,其习题主要考察 等差数列的定义、通项公式和性质等知识点。
在此添加您的文本16字
详细描述
在此添加您的文本16字
求等差数列的通项公式;
在此添加您的文本16字
求等差数列的项数;
数列ppt课件
等差数列的求和公式
总结词
等差数列的求和公式是用来计算数列 中所有项的和的数学公式。
详细描述
等差数列的求和公式是 S_n = n/2 * (2a_1 + (n - 1)d),其中 S_n 表示前 n 项的和,a_1 表示首项,d 表示公差, n 表示项数。这个公式可以帮助我们快 速计算出等差数列中所有项的和。
03 等比数列
等比数列的定义
总结词
等比数列是一种特殊的数列,其中任意项与它的前一项的比值都相等。
详细描述
等比数列是一种有序的数字排列,其中任意一项与它的前一项的比值都等于同一个常数。这个常数被称为公比, 通常用字母q表示。
等比数列的通项公式
总结词
等比数列的通项公式是用来表示数列中每一项的数学表达式。
04 数列的极限与收敛
数列的极限定义
极限的定义
对于数列${ a_{n}}$,如果当$n$ 趋于无穷大时,$a_{n}$趋于某个
常数$a$,则称$a$为数列${ a_{n}}$的极限。
极限的性质
极限具有唯一性、有界性、保序性 等性质。
极限的运算性质
极限具有可加性、可乘性、可分离 性等运算性质。
收敛数列的性质
在经济学中的应用
在经济学中,很多问题也可以转化为求和问题,例如计算总收益、总成本等。而求和问题 同样可以转化为数列的极限问题。因此,数列的极限和收敛的概念在经济学中也有着广泛 的应用。
05 数列的级数
级数的定义与分类
要点一
定义
级数是无穷数列的和,可分为数项级数和函数项级数。
要点二
分类
根据项的正负和收敛性,级数可分为正项级数、负项级数 、交错级数等。
正项级数的审敛法
《数学必修⑤《数列》课件
数学必修⑤《数列》PPT 课件
本PPT共计312个token,通过本课件学习你可以全面掌握数列的相关知识,帮 助学生更好地应对数学考试。
引入
定义数列和通项公式
数列是按照一定规律排列的一列数字,通项公 式是一种规律性的表达式,可以用来求出数列 中的任意一项。
举例介绍数列
斐波那契数列、等差数列、等比数列等各种数 列可应用于金融、工程等领域,具有广泛的使 用价值。
3 求等比数列通项公式
的系数
通过已知的首项a1和比值 q,可得到等比数列的通 项公式为an = a1 × q^(n1)。
特殊数列
斐波那契数列
斐波那契数列中的每一项都为前两项的和,该 数列常在金融领域中应用。
阶乘数列
阶乘数列中的每一项都为前一项与当前项的乘 积,可用于计算排列组合问题。
数列的求和
1
等差数列
定义等差数列和通项公式
等差数列是指一个数列中,从第二项开始,每一项 与前一项的差相等的数列。其通项公式为an = a1 + (n-1)d。
求等差数列前n项和
等差数列前n项和的通项公式为Sn = n(a1 + an) / 2, 其中n表示项数,a1表示首项,an表示末项。
求等差数列通项公式的系数
等差数列求和公式推导
根据等差数列的性质,可以推导出等差数列的求和公式Sn = n(a1+an)/2。
2
等比数列求和公式推导
根据等比数列的性质,可以推导出等比数列的求和公式Sn = a(1-q^n)/(1-q)。
3
数列求和实例分析
通过实例分析掌握不同数列求和方法的应用场景以及注意事项。
数列的应用
应用场景介绍
数列在金融领域中被广泛应用,如复利计算、收益 分析等。
本PPT共计312个token,通过本课件学习你可以全面掌握数列的相关知识,帮 助学生更好地应对数学考试。
引入
定义数列和通项公式
数列是按照一定规律排列的一列数字,通项公 式是一种规律性的表达式,可以用来求出数列 中的任意一项。
举例介绍数列
斐波那契数列、等差数列、等比数列等各种数 列可应用于金融、工程等领域,具有广泛的使 用价值。
3 求等比数列通项公式
的系数
通过已知的首项a1和比值 q,可得到等比数列的通 项公式为an = a1 × q^(n1)。
特殊数列
斐波那契数列
斐波那契数列中的每一项都为前两项的和,该 数列常在金融领域中应用。
阶乘数列
阶乘数列中的每一项都为前一项与当前项的乘 积,可用于计算排列组合问题。
数列的求和
1
等差数列
定义等差数列和通项公式
等差数列是指一个数列中,从第二项开始,每一项 与前一项的差相等的数列。其通项公式为an = a1 + (n-1)d。
求等差数列前n项和
等差数列前n项和的通项公式为Sn = n(a1 + an) / 2, 其中n表示项数,a1表示首项,an表示末项。
求等差数列通项公式的系数
等差数列求和公式推导
根据等差数列的性质,可以推导出等差数列的求和公式Sn = n(a1+an)/2。
2
等比数列求和公式推导
根据等比数列的性质,可以推导出等比数列的求和公式Sn = a(1-q^n)/(1-q)。
3
数列求和实例分析
通过实例分析掌握不同数列求和方法的应用场景以及注意事项。
数列的应用
应用场景介绍
数列在金融领域中被广泛应用,如复利计算、收益 分析等。
北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
数列(共84张PPT)
Leabharlann 3.2等差数列及其通项公式
观察
在自然数集N中,能被2整除的数称为偶数.按照从小到大的次序写出偶数:
0,2,4,6,8,10,12,16, ⋯ .
偶数数列的第1项是0,从第2项起,每一项减去它前面一项所得的差都等于2.
3.2
等差数列及其通项公式
抽象
定义
如果一个数列从第2项起,每一项减去它前面一项所得的差都等
由已知,4 = 7,9 = 22,根据通项公式得
1 + 4 − 1 = 7,
ቊ
1 + 9 − 1 = 22.
整理,得
1 + 3 = 7,
ቊ
1 + 8 = 22.
解得
1 = −2, = 3.
因此
20 = −2 + 20 − 1 × 3 = 55.
即第20项是55.
1.2
如果一个数列的第项能用它前面若干项的表达式来表示,那么把
这个表达式称为这个数列的递推公式.
公式(2)是斐波那契数列的递推公式,1 ,2 称为初始项.
3.1
例 1
数列的概念
己知下述数列的通项公式,分别求出它们的前4项:
(1) = 3 + 1;
(2) =
1
;
(3) =
1
;
2
(4) = −1
= 1 + ,
⋯,
−2 + 3 = 1 + − 2 − 1 + 1 + − 2 − 1 −
= 1 + ,
−1 + 2 = 1 + − 1 − 1 + + − 1 − 1 −
观察
在自然数集N中,能被2整除的数称为偶数.按照从小到大的次序写出偶数:
0,2,4,6,8,10,12,16, ⋯ .
偶数数列的第1项是0,从第2项起,每一项减去它前面一项所得的差都等于2.
3.2
等差数列及其通项公式
抽象
定义
如果一个数列从第2项起,每一项减去它前面一项所得的差都等
由已知,4 = 7,9 = 22,根据通项公式得
1 + 4 − 1 = 7,
ቊ
1 + 9 − 1 = 22.
整理,得
1 + 3 = 7,
ቊ
1 + 8 = 22.
解得
1 = −2, = 3.
因此
20 = −2 + 20 − 1 × 3 = 55.
即第20项是55.
1.2
如果一个数列的第项能用它前面若干项的表达式来表示,那么把
这个表达式称为这个数列的递推公式.
公式(2)是斐波那契数列的递推公式,1 ,2 称为初始项.
3.1
例 1
数列的概念
己知下述数列的通项公式,分别求出它们的前4项:
(1) = 3 + 1;
(2) =
1
;
(3) =
1
;
2
(4) = −1
= 1 + ,
⋯,
−2 + 3 = 1 + − 2 − 1 + 1 + − 2 − 1 −
= 1 + ,
−1 + 2 = 1 + − 1 − 1 + + − 1 − 1 −
数列ppt课件
数列的分类
有穷数列和无穷数列
• 有穷数列的项数是有限的,无穷数列的项数是无限的 。
等差数列和等比数列
• 等差数列的相邻两项之差是一个常数,等比数列的相 邻两项之比是一个常数。
有序数列和无序数列
• 有序数列是指各项按照一定的顺序排列的数列,无序 数列是指各项没有固定的顺序排列的数列。
数列的应用
在数学领域的应用
数列极限的性质
唯一性
如果数列$\{ a_n \}$收敛于$A$ ,则其极限是唯一的。
有界性
如果数列$\{ a_n \}$收敛于$A$ ,则存在正数$M$,使得当$n$
充分大时,有$|a_n| < M$。
保号性
如果数列$\{ a_n \}$收敛于$A$ ,且当$n$充分大时,有$a_n > 0$(或$a_n < 0$),则有$A >
数学分析
收敛数列在数学分析中有 着广泛的应用,如泰勒级 数、洛朗兹级数等。
THANKS
感谢观看
公式
03
an=a1+(n-1)d
等差数列的通项公式
通项公式的推导
由等差数列的定义可知,an=a1+(n-1)d,当n=1时,a1=a1+(1-1)d,即 a1=a1+0d=a1,当n=2时,a2=a1+d=(a1+d),当n=3时, a3=a1+2d=(a1+d)+d=a2+d,依次类推,得出通项公式an=a1+(n-1)d。
减法
如果$\lim_{n \rightarrow \infty} a_n = A$且$\lim_{n \rightarrow \infty} b_n = B$, 则有$\lim_{n \rightarrow \infty}(a_n - b_n) = A - B$。
数列复习专题精选完整版ppt课件
数列与函数问题:化归思想,函数与方程思想
恒成立问题: 论证推理
探索性问题--恒成立问题
恒成立问题: 论证推理
探索性问题--存在性问题
注:(1)不等式恒成立与最值问题相关联:确定变量最大或最小(2)数列最值问题关联:单调数列特征,或数列取值正负变化特征,或数列二次函数特征(3)恒成立问题:推理论证(4)存在性问题:寻找,特值法、代入验证法等
二、数列基本方法
1、方程(组)思想、函数思想2、代入法,因式分解降次法3、待定系数法4、分类讨论思想5、化归转换思想★6、不等式放缩应用
数列问题探究-典型例举
数列问题探究-典型例举
数列问题:
2、一般数列通项递推的应用(关于Sn--an)
递推式运用原则:减元原则、降次原则、目标趋近原则
知识拓展与方法应用:
数 列
1.知识
2. 问题
3. 方法
一、数列基础知识
一般数列:
特殊数列:等差数列
特殊数列:等差数列性质 足码和特征、和项特征、奇偶项和特征
特殊数列:等比数列
特殊数列:等比数列性质 足码和特征、和项特征、奇偶项和特征
二、数列基本问题
公式变式\性质应用
题例
基本关系式应用:正用代入--逆用作差
一般数列通项递推的应用
数列求和:数列递推问题:数列与不等式问题:数列与函数:探索性问题:成立与存在性问题预测方向
数列递推问题
数列递推问题
数列递推问题---化归转换为运用待定系数法、累加或累乘型
数列递推问题---化归转换为运用待定系数法、累加或累乘型
小结:(1)高考卷选择填空题型:等差等比比重大,一般数列通项或和,新定义与创新型问题(2)高考数列解答题:通项、前n项和,★递推问题,不等式证明(3)含参数问题:取值或范围,最值问题(4)重点问题:特殊数列、递推问题等
第四节 数列求和 课件(共48张PPT)
-
1 n+3
)=
1 2
56-n+1 2-n+1 3. 答案:1256-n+1 2-n+1 3
考点1 分组转化法求和 [例1] (2020·焦作模拟)已知{an}为等差数列,且 a2=3,{an}前4项的和为16,数列{bn}满足b1=4,b4= 88,且数列{bn-an}为等比数列. (1)求数列{an}和{bn-an}的通项公式; (2
an=n(n1+k)型
[例2] (2020·中山七校联考)已知数列{an}为公差 不为0的等差数列,满足a1=5,且a2,a9,a30成等比数列.
(1)求{an}的通项公式; (2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=
3,求数列b1n的前n项和Tn.
1.裂项时常用的三种变形.
(1)n(n1+1)=n1-n+1 1.
(2)n(n1+2)=12n1-n+1 2.
(3)(2n-1)1(2n+1)=122n1-1-2n1+1.
(4)
1 n+
n+1=
n+1-
n.
2.应用裂项相消法时,应注意消项的规律具有对称 性,即前面剩第几项则后面剩倒数第几项.
3.在应用错位相减法求和时,若等比数列的公比为 参数,应分公比等于1和不等于1两种情况求解.
) B. 2 020-1
C. 2 021-1 D. 2 021+1
解析:由f(4)=2,可得4α=2,解得α=12,
则f(x)= x.
所以an=
1 f(n+1)+f(n)
=
1 n+1+
= n
n+1 -
n,
所以S2 020=a1+a2+a3+…+a2 020=( 2 - 1 )+ ( 3- 2)+( 4- 3)+…+( 2 021- 2 020)=
数列-ppt课件
概念巩固
例1:分别根据下列条件,写出数列{ }的前5项:
(1)1 = 1,2 = 2,+2 = +1 + 2 ,其中 ∈
��∗ ;
1
∗
(2)
=
2,
=
2
−
,其中
∈
1
+1
解:(1)因为1 = 1,2= 2,+2 = . +1
其中 ∈ ∗ ;
+ 2 ,
1
,其中 ∈ ∗ .
1
解:(2)因为1 = 2,+1 = 2 − ,其中 ∈ ∗
1
2
4
1
1
3
=
2
−
=
2
−
=
,
所以 2 = 2 − = 2 − 2 = 2, 3
3
3
2
1
(2)1 = 2,+1 = 2 −
4 = 2
1
−
3
=2
3
−
4
=
5
,5
4
=2−
因此,数列{ }的前5项依次为2,
1
4
=2
4
−
5
3
4
5
6
, , , .
2
3
4
5
=
6
,
5
概念巩固
例2:你能根据数列的前4项,写出数列的一个通项公式吗?
1
1
1
1
,, ,−
,…
1×2
2×3 3×4
4×5
(1)
(2)0,2,0,2,…
1
1
4.1数列的概念课件(人教版)
2n2
30n
2(n2
15n)
2 n
15 2
2
225 2
,
因为 n N* ,所以当 n 7 或 n 8 时, Sn 取最小值.
(2)当 n 1 时, a1 S1 2 30 28 .
当 n 2 时, an Sn Sn1 2n2 30n [2(n 1)230(n 1)] 4n 32 .
, Sn1
n ,n
1 2
.
例 6 已知数列an 的前 n 项和公式为 Sn n2 n ,求an 的通项公式.
解:因为 a1 S1 2 , an Sn Sn1 n2 n [(n 1)2 (n 1)] 2n(n 2) , 并且当 n 1 时, a1 21 2 依然成立.
所以an 的通项公式是 an 2n .
特别地,各项都相等的数列叫做常数列.
如果数列{an} 的第 n 项 an 与它的序号 n 之间的对应关系可以用一个式子来 表示,那么这个式子叫做这个数列的通项公式.
通项公式就是数列的函数解析式,根据通项公式可以写出数列的各项.
例 l 根据下列数列{an} 的通项公式,写出数列的前 5 项,并画出它们的图象.
解析:因为 Sn 3n 2 ,所以 Sn1 3n1 2(n 1) ,则 an 3n 3n1 23n1 . 1,n 1
当 n 1 时, a1 S1 3 2 1,不符合上式,所以 an 2 3n1 ,n 2 .
-4 7.数列an 中, a1 1, a2 5 , an2 an1 an (nN*) ,则a2022 __________.
验证得当 n 1 时, a1 28 满足上式,所以 an 4n 32 .
1.数列的相关概念及分类 2.数列的符号表示 3.从函数角度看数列 4.数列的通项公式 5.数列的递推公式 6.数列的前n项和
《数列的概念》课件
奇偶性是指数列中奇数项和偶数项分别具有不同的性质或规律。例如,奇数项都是正数, 而偶数项都是负数;或者奇数项和偶数项分别构成等差数列或等比数列等。
数学表达
如果对于任意的正整数n,都有an=(-1)^n*b(n),其中b(n)是另一个数列,则称数列{an} 具有奇偶性。
03
数列的应用
在数学中的应用
性质
递推数列的每一项都可以通过前一项或前几项计 算得出,具有很强的规律性。
THANK YOU
公式
通项公式为 $a_n = a_1 times r^{(n-1)}$,其 中 $a_1$ 是首项,$r$ 是公比。
3
性质
等比数列的任意一项都可以通过首项和公比计算 出来,且任意两项之间的比值都是固定的。
递推数列
定义
递推数列是一种通过递推关系式来定义数列的数 列。
公式
递推数列的通项公式通常不能直接求解,需要通 过递推关系式逐步计算得出。
《数列的概念》ppt课件
• 数列的定义 • 数列的性质 • 数列的应用 • 数列的运算 • 数列的拓展
01
数列的定义
数列的描述
总结词
数列是一种特殊的函数,它按照一定的次序排列。
详细描述
数列是一种有序的数字排列,每个数字都有其对应的位置,并且每个位置上的 数字都是唯一的。数列可以看作是函数的特例,其中自变量是自然数或整数, 因变量是实数或复数。
02 03
详细描述
有界性是数列的一个重要性质,它保证了数列不会发散到无穷大或无穷 小。具体来说,如果存在正数M,使得对于所有n,数列的第n项an都 满足|an|≤M,则称数列有界。
数学表达
如果存在正数M,使得对于所有n,都有|an|≤M,则称数列{an}有界。
数学表达
如果对于任意的正整数n,都有an=(-1)^n*b(n),其中b(n)是另一个数列,则称数列{an} 具有奇偶性。
03
数列的应用
在数学中的应用
性质
递推数列的每一项都可以通过前一项或前几项计 算得出,具有很强的规律性。
THANK YOU
公式
通项公式为 $a_n = a_1 times r^{(n-1)}$,其 中 $a_1$ 是首项,$r$ 是公比。
3
性质
等比数列的任意一项都可以通过首项和公比计算 出来,且任意两项之间的比值都是固定的。
递推数列
定义
递推数列是一种通过递推关系式来定义数列的数 列。
公式
递推数列的通项公式通常不能直接求解,需要通 过递推关系式逐步计算得出。
《数列的概念》ppt课件
• 数列的定义 • 数列的性质 • 数列的应用 • 数列的运算 • 数列的拓展
01
数列的定义
数列的描述
总结词
数列是一种特殊的函数,它按照一定的次序排列。
详细描述
数列是一种有序的数字排列,每个数字都有其对应的位置,并且每个位置上的 数字都是唯一的。数列可以看作是函数的特例,其中自变量是自然数或整数, 因变量是实数或复数。
02 03
详细描述
有界性是数列的一个重要性质,它保证了数列不会发散到无穷大或无穷 小。具体来说,如果存在正数M,使得对于所有n,数列的第n项an都 满足|an|≤M,则称数列有界。
数学表达
如果存在正数M,使得对于所有n,都有|an|≤M,则称数列{an}有界。
数列的概念与表示ppt课件
(2)已知数列{an}中,a1=-1,an+1=2an+4·3n-1,则 通项公式 an=________. an=4·3n-1-5·2n-1
(3)已知数列{an}中,a1=-1,a2=2,当 n∈N*, an+2=5an+1-6an,求 an.
27
解析:(1)递推公式 an+1=2an+3 可以转化为 an+1-t =2(an-t),即 an+1=2an-t⇒t=-3.故递推公式为 an+1 +3=2(an+3),令 bn=an+3,则 b1=a1+3=4,且bbn+n 1 =aan+n+1+33=2.所以{bn}是以 b1=4 为首项,2 为公比的 等比数列,则 bn=4×2n-1=2n+1,所以 an=2n+1-3.
an =
1,n是奇数,等. 0,n是偶数
10
写出下列数列的一个通项公式: (1)-1,12,-13,14,-15,…; (2)3,5,9,17,33,…; (3)0.8,0.88,0.888,…; (4)23,-1,170,-197,2116,…. (5)1,0,13,0,15,0,17,0,… (6)32,1,170,197,….
(5) 奇数项为负,偶数项为正,故通项公式中含因式(-1)n;各 项绝对值的分母组成数列 1,2,3,4,…;而各项绝对值的分子组 成的数列中,奇数项为 1,偶数项为 3,即奇数项为 2-1,偶数项 为 2+1,所以 an=(-1)n·2+(n-1)n.
-n1,n为正奇数, 也可写为 an= 3n,n为正偶数.
7
解:(1)偶数项为正,奇数项为负,故通项公式正负性可用 (-1)n 调节,观察各项的绝对值,后一项的绝对值总比它前一 项的绝对值大 6,故数列的一个通项公式为 an=(-1)n(6n-5).
(2)这是一个分数数列,其分子构成偶数数列,而分母可分 解为 1×3,3×5,5×7,7×9,9×11,…,每一项都是两个 相 邻 奇 数 的 乘 积 . 故 数 列 的 一 个 通 项 公 式 为 an =
(3)已知数列{an}中,a1=-1,a2=2,当 n∈N*, an+2=5an+1-6an,求 an.
27
解析:(1)递推公式 an+1=2an+3 可以转化为 an+1-t =2(an-t),即 an+1=2an-t⇒t=-3.故递推公式为 an+1 +3=2(an+3),令 bn=an+3,则 b1=a1+3=4,且bbn+n 1 =aan+n+1+33=2.所以{bn}是以 b1=4 为首项,2 为公比的 等比数列,则 bn=4×2n-1=2n+1,所以 an=2n+1-3.
an =
1,n是奇数,等. 0,n是偶数
10
写出下列数列的一个通项公式: (1)-1,12,-13,14,-15,…; (2)3,5,9,17,33,…; (3)0.8,0.88,0.888,…; (4)23,-1,170,-197,2116,…. (5)1,0,13,0,15,0,17,0,… (6)32,1,170,197,….
(5) 奇数项为负,偶数项为正,故通项公式中含因式(-1)n;各 项绝对值的分母组成数列 1,2,3,4,…;而各项绝对值的分子组 成的数列中,奇数项为 1,偶数项为 3,即奇数项为 2-1,偶数项 为 2+1,所以 an=(-1)n·2+(n-1)n.
-n1,n为正奇数, 也可写为 an= 3n,n为正偶数.
7
解:(1)偶数项为正,奇数项为负,故通项公式正负性可用 (-1)n 调节,观察各项的绝对值,后一项的绝对值总比它前一 项的绝对值大 6,故数列的一个通项公式为 an=(-1)n(6n-5).
(2)这是一个分数数列,其分子构成偶数数列,而分母可分 解为 1×3,3×5,5×7,7×9,9×11,…,每一项都是两个 相 邻 奇 数 的 乘 积 . 故 数 列 的 一 个 通 项 公 式 为 an =
中职数学数列PPT课件
解答
根据等差数列的求和公式$S_n = na_1 + frac{n(n1)}{2}d$,代入$n = 10$,$a_1 = 1$,$d = 2$, 得到$S_{10} = 10 times 1 + frac{10 times 9}{2} times 2 = 100$。
解答
根据等差数列的性质一,有$a_3 + a_8 = a_1 + a_{10} = 2a_6$,代入已知条件$a_3 + a_8 = 10$, 得到$2a_6 = 10$,解得$a_6 = 5$。
3
等差数列与等比数列的通项公式 an=a1+(n-1)d(等差数列),an=a1*q^(n-1) (等比数列)。
其他类型数列简介
递推数列
由递推公式确定的数列,如斐波那契 数列。
复合数列
由两种或两种以上类型数列组合而成 的数列。
周期数列
具有周期性规律的数列,如三角函数 值数列。
数列在实际问题中应用
等差数列性质探讨
性质一
等差数列中任意两项之和等于它们前后两项之和,即$a_i + a_j = a_{i+1} + a_{ j-1}$($i,j$为正整数,且$i neq j$)。
性质二
等差数列中任意一项的值都等于其前后两项值的平均数,即$a_i = frac{a_{i-1} + a_{i+1}}{2}$($i$为正整数,且$i neq 1, n$)。
查找等问题。
数列在生物学中的应用,如利 用数列的模型描述生物种群的
增长、衰减等问题。
THANKS
感谢观看
实际问题中的数列模型
01
将实际问题抽象为数列模型,如人口增长模型、贷款还款模型
数列 完整版课件PPT
第七层 第六层 第五层 第四层 第三层 第二层
第一层
4 5 6
7 8 9
10
从1984到2008年金牌数
15, 5, 16, 16, 28,31,51
奥运 之光
认真观察,寻找规律
某种放射性物质不断变为其他物质,每经过一年, 剩留的这种物质是原来的84%,设这种物质最初的质量 是1,则这种物质各年开始时的剩留量排成一列数:
设问:同学们,31天你们一共收入了多少?付 出了多少呢?
收入了310万元的同时,共付出: 1+2+22+23+……+230 =?
在学习了数列的相关知识后你们会 发现,31天你们一共需要付出 2147483647分,即2000多万元。
第三章 数列 3.1 数列
何曼妮
毕节六中
从上往下钢管的根数依次为多少? 从下 往上钢管的根数依次为多少?
单调递增数列 ( an+1>an)
单调递减数列 ( an+1<an)
摆动数列 ( an+1与an的大小关系不定)
常数列 ( an为一个常数)
2、根据数列的项数可分为:
有穷数列、无穷数列
例1、根据下面数列{an}的通项公式写出它的前5项:
(1)
an
n 2n 1
(2)
an
(1)n
•
n
变式:
数列{an}中,
1,0.84,0.842, 0.843, ......
探究一: 以下五列数有什么共同特点?
一、二、 1,2, 22,23,24,…,230
①
均有 是一
4, 5, 6, 7, 8, 9, 10 ②
一定
10, 9, 8, 7, 6, 5, 4
中职数学数列的基本知识ppt课件
如果两个数列的极限存在 且相等,那么这两个数列 之间的任意数列的极限也 存在且等于这两个数列的 极限。
如果数列单调增加(或减 少)且有上(下)界,那 么该数列的极限存在。
利用无穷小与无穷大的性 质求解数列的极限,如无 穷小与有界函数的乘积仍 为无穷小等。
THANKS
感谢观看
递推数列周期性判断
周期性的定义
递推数列中,如果存在某个正整 数p,使得数列中任意一项与它 前面第p项相等,则称该数列具 有周期性,p为该数列的周期。
周期性判断方法
通过观察、分析数列中各项之间 的变化规律,找出可能存在的周 期p,再验证数列中任意一项是
否与它前面第p项相等。
周期性应用
利用数列的周期性,可以简化数 列的求解过程,如求数列中某项
数列表示方法
数列可以用通项公式或递推公式表示,其中通项公式表示数列中任意一项与项 数n的关系,而递推公式表示数列中相邻项之间的关系。
数列分类及特点
有穷数列和无穷数列
根据项数是否有限,数列可分为有穷 数列和无穷数列。有穷数列项数有限, 无穷数列项数无限。
单调数列和摆动数列
根据数列的增减性,数列可分为单调 数列和摆动数列。单调数列单调递增 或递减,摆动数列则不具备单调性。
性质
等比数列中,任意两项的比值相等,且等于公比;等比数列的 每一项都不为零;等比数列的公比可以是正数、负数或零(除 数列首项外)。
等比数列通项公式推导
公式形式
an=a1×qn-1,其中an表示第n项, a1表示首项,q表示公比,n表示 项数。
推导过程
根据等比数列的定义,可以得到 an/a(n-1)=q,通过递推关系,可 以得到an=a1×q×q×...×q(n-1个 q)=a1×qn-1。
数列的概念(中职数学)ppt课件
通过通项公式可以快速求出等差数列 中任意一项的值。
等差数列的求和公式
公式
Sn=n/2*[2a1+(n-1)d],其中Sn为前n项和,a1为首项,d为 公差,n为项数。
应用
通过求和公式可以快速求出等差数列前n项的和,解决与等差 数列和相关的问题。
03
等比数列
等比数列的定义与性质
定义
等比数列是指从第二项起,每一项与它 的前一项的比值等于同一个常数的一种 数列。
数列的极限与收敛性
数列极限的定义与性质
数列极限的定义
对于数列{an},如果存在 常数A,对于任意给定的 正数ε(不论它多么小) ,总存在正整数N,使得 当n>N时,不等式|anA|<ε都成立,那么称常数 A是数列{an}的极限。
唯一性
如果数列{an}收敛,那么 它的极限唯一。
有界性
如果数列{an}收敛,那么 数列{an}一定有界。
等比数列的求和公式
求和公式
Sₙ=a₁(1-q^n)/(1-q)(q≠1),其中Sₙ是前n项和,a₁是首项,q是公比,n是项数。
推导过程
根据等比数列的通项公式,可以得到Sₙ=a₁+a₁×q+a₁×q²+...+a₁×q^(n-1),通过错位相减法可以得到求和公式 。当q=1时,Sₙ=n×a₁。
04
极限的加法运算法则
lim(an+bn)=lim an+lim bn。
极限的减法运算法则
lim(an-bn)=lim an-lim bn。
极限的乘法运算法则
lim(an×bn)=lim an×lim bn。
极限的除法运算法则
lim(an/bn)=lim an/lim bn( bn的极限不等于0)。
等差数列的求和公式
公式
Sn=n/2*[2a1+(n-1)d],其中Sn为前n项和,a1为首项,d为 公差,n为项数。
应用
通过求和公式可以快速求出等差数列前n项的和,解决与等差 数列和相关的问题。
03
等比数列
等比数列的定义与性质
定义
等比数列是指从第二项起,每一项与它 的前一项的比值等于同一个常数的一种 数列。
数列的极限与收敛性
数列极限的定义与性质
数列极限的定义
对于数列{an},如果存在 常数A,对于任意给定的 正数ε(不论它多么小) ,总存在正整数N,使得 当n>N时,不等式|anA|<ε都成立,那么称常数 A是数列{an}的极限。
唯一性
如果数列{an}收敛,那么 它的极限唯一。
有界性
如果数列{an}收敛,那么 数列{an}一定有界。
等比数列的求和公式
求和公式
Sₙ=a₁(1-q^n)/(1-q)(q≠1),其中Sₙ是前n项和,a₁是首项,q是公比,n是项数。
推导过程
根据等比数列的通项公式,可以得到Sₙ=a₁+a₁×q+a₁×q²+...+a₁×q^(n-1),通过错位相减法可以得到求和公式 。当q=1时,Sₙ=n×a₁。
04
极限的加法运算法则
lim(an+bn)=lim an+lim bn。
极限的减法运算法则
lim(an-bn)=lim an-lim bn。
极限的乘法运算法则
lim(an×bn)=lim an×lim bn。
极限的除法运算法则
lim(an/bn)=lim an/lim bn( bn的极限不等于0)。
4.1.2数列的概念(2)课件(共18张PPT)--数学人教A版(2019)选择性必修第二册
1
A.
−1
C.
2−1
B.
√
1
D.
2
新课讲授
解析:方法一
1 1
,
+1
(累加法) an+1-an= -
a1=1,
1
a2-a1=1-2,
1 1
a3-a2=2-3,
1 1 1
1 1
以上各项相加得an=1+1- + - +…+ - .
2 2 3
−1
1 1
a4-a3=3-4,
2−1
所以an=
例4:图中的一系列三角形图案称为谢尔宾斯基三角形.在图中4各大三角形中,
着色的三角形的个数依次构成一个数列的前4项,写出这个数列的通项
公式.
1
3
通项公式
9
an=3n-1
27
探究新知
追问:你能用数学语言归纳出后一项与前一项的关系吗?
×3
×3
×3
a1=1
27
9
3
1
a2=3a1
a3=3a2
an=3an-1(n≥2)
(n≥2).
…
1 1
an-an-1=−1-(n≥2),
因为a1=1也适合上式,
2−1
所以an=
(n∈N*).
新课讲授
方法二 (归纳法) 数列的前5项分别为
1
1 3
a1=1,a2=1+1-2=2-2=2,
3 1 1
1 5
a3=2+2-3=2-3=3,
5 1 1
1 7
a4=3+3-4=2-4=4,
A.
−1
C.
2−1
B.
√
1
D.
2
新课讲授
解析:方法一
1 1
,
+1
(累加法) an+1-an= -
a1=1,
1
a2-a1=1-2,
1 1
a3-a2=2-3,
1 1 1
1 1
以上各项相加得an=1+1- + - +…+ - .
2 2 3
−1
1 1
a4-a3=3-4,
2−1
所以an=
例4:图中的一系列三角形图案称为谢尔宾斯基三角形.在图中4各大三角形中,
着色的三角形的个数依次构成一个数列的前4项,写出这个数列的通项
公式.
1
3
通项公式
9
an=3n-1
27
探究新知
追问:你能用数学语言归纳出后一项与前一项的关系吗?
×3
×3
×3
a1=1
27
9
3
1
a2=3a1
a3=3a2
an=3an-1(n≥2)
(n≥2).
…
1 1
an-an-1=−1-(n≥2),
因为a1=1也适合上式,
2−1
所以an=
(n∈N*).
新课讲授
方法二 (归纳法) 数列的前5项分别为
1
1 3
a1=1,a2=1+1-2=2-2=2,
3 1 1
1 5
a3=2+2-3=2-3=3,
5 1 1
1 7
a4=3+3-4=2-4=4,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/7ຫໍສະໝຸດ CHENLI返回目录4
3.课时安排 本单元共5讲,每讲1个课时,一个45分钟三维滚动复 习卷,一个突破高考解答题专项训练,建议7课时完成复习 任务.
2021/3/7
CHENLI
返回目录5
课 前 双 基 巩 固
课 堂
第27讲 数列的概念与简单表
考
点 探
示法
究
学
科
能 力
2021/3/7
会涉及裂项相消、错位相减等求和方法,在本单元的编写
中专门设置一讲重点复习数列求和.
(4)综合应用:考虑到高考对数列的考查具有交汇性的
特点,编写中适度加入了数列和函数、数列和不等式的交
汇题目,渗透数列推理题(开放性、探索性试题)、新定义
题的复习.等差数列和等比数列的实际应用是考试说明中
明确要求的,在第31讲设置了数列的实际应用的探究点.
固 都叫作这个数列的 项 .
2.数列的表示法
(1) 列举法 :a1,a2,a3,…,an…. (2)图像法 :数列可用一群孤立的点表示.
(3) 解析法 (公式法):通项公式或递推公式.
3.数列的通项公式
如果数列{an}的第 n 项 an 与项数 n 之间的函数关系可以 用一个公式来表示,那么这个公式就叫作数列的 通项公式 ,
2021/3/7
CHENLI
返回目录3
2.教学建议
根据近几年高考对数列的考查要求,在指导学生复习
该单元时要注意以下两点:
(1)重视基础知识、基本方法的复习,加强基本技能的
训练.数列中的基础知识就是数列的概念、等差数列(概念、
中项、通项、前n项和)、等比数列(概念、中项、通项、前
n项和).基本方法主要是基本量法、错位相减求和法、裂
摆动数列 它的前一项,有些项小于
它的前一项的数列
周期性
周期数列
an+k=an(∀n∈N*,k 为常数,k∈N*)
2021/3/7
CHENLI
返回目录12
第27讲 数列的概念与简单表示法
课
—— 正本清源 ——
前
双
基 巩
► 链接教材
固
1.[教材改编]数列-1,23,-35,47,…的一个通项公
式是 an=
CHENLI
返回目录6
考试说明
1.了解数列的概念和几种简单的表示方法(列表、图 像、通项公式).
2.了解数列是自变量为正整数的一类特殊函数.
2021/3/7
CHENLI
返回目录7
考情分析
1.了解数列的概念和几种简单的表示方法(列表、图像、 通项公式).
2.了解数列是自变量为正整数的一类特殊函数.
第五单元 数列
第27讲 数列的概念与简单表示法 第28讲 等差数列及其前n项和 第29讲 等比数列及其前n项和 第30讲 数列求和 第31讲 数列的综合问题
2021/3/7
CHENLI
1
使用建议
1.编写意图 近年来高考对数列问题的考查,突出了数列与函数的 内在联系,删减烦琐的计算、人为技巧化的难题,注重应 用,关注学生对数列模型的本质的理解,因此,在编写本 单元时注意到了以下几个方面: (1)注重双基:降低难度,强化对等差、等比数列的定 义、性质、通项公式与前n项和等基础知识和通性通法的训 练,注重等差数列、等比数列的性质的应用,应用性质解 题往往可以回避求首项和公差(或公比),能够减少运算量, 使学生通过本单元的复习能够熟练运用数列的基本知识和 基本方法解决问题.
考点
数列的通项 公式
数列的递推 公式
an 与 Sn 的关 系
考查方向 根据数列的前 几项确定通项
公式
求数列的项
确定数列的通 项公式
考例
2014·新课标全国卷 Ⅱ16
考查热度 ★☆☆ ★★☆ ★☆☆
2021/3/7
CHENLI
返回目录8
真题再现
——[2015-2011]课标全国真题在线
[2014·新课标全国卷Ⅱ]数列{an}满足 an+1=1-1an,a8=2, 则 a1=________.
可以记为 an=f(n)(n∈N*).
2021/3/7
CHENLI
返回目录11
第27讲 数列的概念与简单表示法
课 前 双
4.数列的通项公式与前 n 项和的关系 S1(n=1)
基
巩 固
an= Sn-Sn-1(n≥2) . 5.数列的一般性质
单调性
递增数列 递减数列 常数列
an+1>an,∀n∈N* an+1<an,∀n∈N* an+1=an,∀n∈N* 从第 2 项起,有些项大于
[答案]
1 2
[解析]由题易知 a8=1-1a7=2,得 a7=12;a7=1-1a6=12, 得 a6=-1;a6=1-1a5=-1,得 a5=2,于是可知数列{an}
具有周期性,且周期为 3,所以 a1=a7=12.
2021/3/7
CHENLI
返回目录9
--2015 年其他省份类似高考真题
[2015·安徽卷]已知数列{an}中,a1=1,an=an-1+12(n≥2), 则数列{an}的前 9 项和等于________.
.
[答案] (-1)n2nn-1
[解析] -1=-11,易知该数列的前 4 项的分子与序 号相同,分母为连续奇数,又奇数项为负,偶数项为正, 则该数列的一个通项公式是 an=(-1)n2nn-1.
2021/3/7
CHENLI
返回目录13
第27讲 数列的概念与简单表示法
课 前 双 基
2021/3/7
CHENLI
返回目录2
(2)淡化递推数列:考试说明虽然未提及递推数列,但
近两年也进行了适当的考查,课标区高考对递推数列的考
查难度相对降低,因此,把简单的递推数列问题在各讲中
适当呈现,但严格控制难度.
(3)强化数列求和:数列求和在高考数列的解答题中占
有突出位置,除了等差数列、等比数列的求和公式外,还
项相消求和法、等价转化法等.基本技能主要是运算求解
的技能、推理论证的技能等.
(2)突出数学思想方法在解题中的指导作用.数列问题
中蕴含着极为丰富的数学思想方法,如数列问题可以通过
函数方法求解的函数思想,等差数列和等比数列问题中求
解基本量的方程思想,把一般的数列转化为等差数列或者
等比数列的等价转化思想等.
[答案] 27 [解析]由 an=an-1+12(n≥2)得,数列{an}是以 1 为首项, 以12为公差的等差数列,因此 S9=9×1+9×28×12=27.
2021/3/7
CHENLI
返回目录10
第27讲 数列的概念与简单表示法
课
—— 知识聚焦 ——
前
双 基
1.数列的定义
巩
按照一定顺序排列的一列数称为数列.数列中的每一个数