等差数列课件资料

合集下载

等差数列(优秀课件)

等差数列(优秀课件)

全国统一鞋号中成年男鞋的各种尺码
(表示鞋底长,单位:cm)分别是:
ห้องสมุดไป่ตู้
23
1 2
,24,24
1 2
,25,25
1 2
,26,26
1 2
,27,27
1 2
,28,28
1 2
,29,29
1 2
,30.
某此系统抽样所抽取的样本号分别是: 7,19,31,43,55,67,79,91,103,115.
交流
这三个数列有何共同特征 从第2项起,每一项与其前一项之差等 于同一个常数。
故 a12= 0, a 3n = 12 – 3 n.
1.等差数列{an}中,a1+a5=10,a4=7, 求数列{an}的公差
2.
2. 在数列{an}中a1=1,an= an+1+4,则a10=
.
3.等差数列{an}的前三项依次为 a-6,-3a-5,-10a-1, 则 a 等于( )
A. 1
B. -1
由此得到an a1 (n 1)d (n 2)
当n 1时,上面等式两边均为a1,即等式也成立
等差数列的通项公式为an a1 (n 1)d
2、等差数列的通项公式
思考:已知等差数列{an }的首项为a1,公差为d,求an .
} a2 a1 d,
a3 a2 d,
结论
1、已知等差数列的首项与公差,可求得 其任何一项;
2、在等差数列的通项公式中,a1,d,n, an四个量中知三求一.
3.等差中项
如果 a, A, b 成等差数列,那么 A 叫做 a 与 b 的 等差中项 .
由等差中项的定义可知, a, A, b 满足关系:

等差数列_PPT课件

等差数列_PPT课件

已知正数数列{an}和{bn}满足:对任意 n(n∈N+),an, bn,an+1 成等差数列,且 an+1= bn·bn+1. (1)求证:数列{ bn}是等差数列. (2)设 a1=1,a2=2,求{an}和{bn}的通项公式.
第(1)问可利用等式 2bn=an+an+1,把 an,an+1 用 bn-1, bn,bn+1 代换,然后整理.再进行判断;解答本题第(2)问, 可利用第(1)问的结论,先求 bn,再求 bn 和 an.
等差数列的性质
1.进一步了解等差数列的项与序号之间的规 律.
2.理解等差数列的性质. 3.掌握等差数列的性质及其应用. 4.掌握等差中项的概念与应用.
1.灵活应用等差数列的性质,求数列中的项 (或通项)(重点,难点)
2.利用等差中项及性质设元或列方程解题(重 点)
3.常与函数、方程结合命题,三种题型均可 出现,多为中低档题.
[策略点睛]
[规范作答] (1)方法一:设等差数列的等差中项为a,公差为d, 则这三个数分别为a-d,a,a+d,
依题意,3a=6且a(a-d)(a+d)=-24, 所以a=2,代入a(a-d)(a+d)=-24, 化6,2,-2. 方法二:设首项为a,公差为d,这三个数分别为a,a+d,a
事实上,am+(n-m)d=a1+(m-1)d+(n-m)d =a1+(n-1)d=an.
2.等差数列的公差与斜率的关系 (1)一次函数 f(x)=kx+b(k≠0)的图像是一条直线,斜率 k=fxx22--xf1x1(x1≠x2). 当 k=0 时,对于常数函数 f(x)=b,上式仍然成立. (2)等差数列{an}的公差本质上是相应直线的斜率. d=amm--ann其实就是斜率公式,并且当{an}是常数列时, d=0,公式也仍然成立.

《等差数列的概念》课件

《等差数列的概念》课件

等差数列在实际问题中的应用
物理学中的周期问题
在物理学中,很多周期性问题可以用等差数 列来表示和解决。例如,摆动问题、振动问 题、波动问题等。
统计学中的数据分组
在统计学中,数据分组是常见的数据处理方 法。而等差数列可以用来表示数据的组距和 分组范围。例如,将一组数据分成若干组, 每组的组距相等,就可以用等差数列来表示 各组的范围。
题目二
等差数列的通项公式是什么? 如何推导?
题目三
等差数列的前n项和公式是什 么?如何推导?
题目四
等差数列的性质有哪些?请举 例说明。
习题答案与解析
答案一
等差数列是指每一项与它前一项的差等于同一个常数的数列。例如:1, 4, 7, 10, 13...,其 中每一项与前一项的差为3。
解析一
通过举例说明等差数列的定义,帮助学生理解等差数列的基本概念。
总结词:严谨规范
详细描述:等差数列的一般形式是 a_n=a_1+(n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公 差,n 是项数。
等差数列的图像表示
总结词:直观形象
详细描述:等差数列的图像是一条直线,任意两个相邻的点在这条直线上等距。首项 a_1 是图像在 y 轴上的截距,公差 d 控 制着直线的斜率。
答案二
等差数列的通项公式为$a_n=a_1+(n-1)d$,其中$a_1$是首项,$d$是公差,$n$是项 数。推导过程如下:$a_n=a_1+(n-1)d=a_1+a_2+(n-2)d=...=a_1+a_2+...+a_{n1}+nd=S_n+nd$,其中$S_n$为前n项和。
习题答案与解析

等差数列课件ppt课件

等差数列课件ppt课件
等差数列课件 ppt
contents
目录
• 等差数列的定义 • 等差数列的性质 • 等差数列的通项公式 • 等差数列的求和公式 • 等差数列的应用 • 等差数列的习题与解析
01
CATALOGUE
等差数列的定义
等差数列的文字定义
总结词
等差数列是一种特殊的数列,其中任意两个相邻项的差是一 个常数。
详细描述
等差数列是一种有序的数字排列,其中任意两个相邻项之间 的差是一个固定的值,这个值被称为公差。在等差数列中, 首项和末项是固定的,而其他项则可以通过首项、末项和公 差进行计算。
等差数列的数学公式定义
总结词
等差数列的数学公式可以用来表 示任意一项的值。
详细描述
等差数列的数学公式是 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公差 ,n 是项数。这个公式可以帮助 我们快速计算出等差数列中的任 意一项。
04
CATALOGUE
等差数列的求和公式
公式推导
公式推导方法一
利用等差数列的性质,通过累加法推 导得出求和公式。
公式推导方法二
利用等差数列的通项公式,通过代数 运算推导得出求和公式。
公式应用
应用场景一
计算等差数列的和,例如计算 1+2+3+...+n的和。
应用场景二
解决与等差数列相关的实际问题,例 如计算存款的本金和利息之和。
,公差是多少?
进阶习题
进阶习题1
进阶习题2
题目:已知一个等差数列的前三项依次为 a-d, a, a+d,如果该数列的第2008项为 2008,那么它的第10项是什么?

等差数列公式ppt课件

等差数列公式ppt课件

下节课预告
• 下节课我们将学习等差数列在实际生活中的应用,以及如何利 用等差数列解决实际问题。同时,我们还将学习等差数列的性 质,进一步加深对等差数列的理解。
感谢观看
THANKS
一般形式
等差数列的通项公式可以 表示为an=kn+b,其中k 和b是常数,n是项数。
特殊形式
当k=0时,等差数列变为 常数列;当b=0时,等差 数列变为等差序列。
扩展形式
通过变换通项公式,我们 可以得到其他形式的等差 数列。
等差数列通项公式的应用
数学问题求解
数学建模
利用通项公式可以求解等差数列中的 未知数。
日常计数
在日常生活中,我们经常使用等差 数列来计数物品,例如按顺序排列 的电话号码、门牌号等。
等差数列在数学领域中的应用
数学分析
在数学分析中,等差数列是研究 函数和级数的重要工具,可以用
于证明一些数学定理和性质。
几何学
在几何学中,等差数列可以用于 计算一些几何形状的周长、面积
和体积等。
组合数学
在组合数学中,等差数列可以用 于计算组合数的公式和性质。
通过建立数学模型,我们可以利用通 项公式解决实际问题。
实际应用
等差数列在日常生活和科学研究中有 着广泛的应用,例如在统计学、物理 学等领域。
03
等差数列的求和公式
等差数列求和公式的推导
01
通过对等差数列的性质进行归纳 和演绎,利用倒序相加法推导出 等差数列的求和公式。
02
倒序相加法的原理是将等差数列 的前n项和与后n项和相加,再除 以2得到n项和的公式。
等差数列求和公式还可以用于解决一 些实际问题,例如计算存款的本金和 利息、计算工资等。

等差数列 完整ppt课件

等差数列 完整ppt课件

a 3 -a 2 = d a 2 -a 1 = d 以上各式左右两边分别相加得
a n -a 1 = ( n -1 ) d a n = a 1 + ( n -1 ) d
最新课件
5
等差数列的通项公式
如果等差数列 { a n } 的首项是 a 1 ,公差是d,
则等差数列的通项公式为
an=a1+(n-1)d
a1=11 d=-1
所以:a12=a1+11d=11+11×(-1)=0
最新课件
11
古题今解
我国古代算书《孙子算经》卷中第25题记有:“今有五等 诸侯,共分橘子六十颗。人分加三颗。问:五人各得几 何?”
分析: 此题已知a1+a2+a3+a4+a5=60,d=3, ∴ a1+(a1+d)+(a1+2d)+(a1+3d)+(a1+4d)=60, ∴ a1=6, a2=9, a3=12, a4=15, a5=18
最新课件
Hale Waihona Puke 6例题讲解例1 (1)求等差数列8,5,2,…的第20项 (2)-401是不是等差数列-5,-9,-13,…
的项?如果是,是第几项?
最新课件
7
解: (1)由a1=8, d=5-8=-3,n=20 得到这个数列的通项公式为
an83(n1)
a20= 8 + (20-1)×(-3)=-49
(2) 由a1=8, d=-9-(-5)=-4,
2.2 等差数列(第一课时)
主讲人:叶爽
最新课件
1
观察下列数列的特点,归纳规律:
•0,5,10,15,… •奥运会女子举重级别48,53,58,63. •3,0,—3,—6,… •10072,10144,10216,10288,10306.

《等差数列课》课件

《等差数列课》课件
等差为负数的等差数列
当公差d<0时,数列为递减数列,通项公式为 $a_n = a_1 + (n1)d$。
特殊情况
当 $a_1 = 0$ 时,无论公差d取何值,数列均为非负数列。
03
等差数列的求和公式
等差数列求和公式的推导
公式推导
通过等差数列的性质,将等差数列的项进行分组求和,再利用等差 数列的性质简化求和过程,推导出等差数列的求和公式。
实例演示
以数列 3, 7, 11, 15, ... 为例,第 一项 $a_1 = 3$,公差 $d = 4$ ,代入公式得到通项 $a_n = 3 + (n-1) times 4 = 4n - 1$。
等差数列通项公式的应用
求任意项的值
根据通项公式,我们可以求出任意一 项的值,例如第10项 $a_{10} = a_1 + 9d$。
等差数列与函数
等差数列可以看作一种特殊的函数,其图像为直线。理解等差数 列与函数的关系有助于加深对两者概念的理解。
等差数列与几何
在几何学中,等差数列的概念可以应用于图形构造,如等分线段、 等分面积等。
等差数列与三角函数
等差数列的项可以表示为三角函数的值,这为解决一些数学问题提 供了新的思路。
等差数列在实际生活中的应用
等差为0的等差数列
01
对于公差为0的等差数列,其求和公式为Sn = n * a1。
等差为常数的等差数列
02
对于公差为常数的等差数列,可以利用等差数列求和公式进行
求解。
等差数列的变种
03
对于一些特殊的等差数列,如等比数列、等积数列等,需要采
用其他方法进行求解。
04
等差数列的综合应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列课件资料等差数列课件资料纵观近几年江苏的高考试题,《数列》部分的命题都是以考查等差数,分享了等差数列的课件给你们,希望对你们有帮助!教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标:知识目标:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

能力目标:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

情感目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

2、教学重点和难点根据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的通项公式是这节课的一个难点。

同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

3、教法针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

4、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

5、教学程序(一) 创设情景,引入新课(借助多媒体)给出一张王小丫的图片(学生情绪高涨),大家都知道王小丫是cctv-2“开心词典”的栏目主持人,下面王小丫给大家出题啦!观察下列各数列,并填空,然后总结它们有什么共同的特点?具有什么性质?你能给它们起个名字吗?①1,2,3,4,5,6,7,8,,…②3,6,9,12,15,,21,24,…③-1,-3,-5,-7,-9,-11,,-15,…④2,2,2,2,2,2,,2,2,…设计思路:1.通过几个具体的等差数列,为学习新知识创设问题情境,激发学生的求知欲。

2.由学生观察数列特点,初步认识等差数列的特征,为后面引出等差数列的概念学习建立基础。

3.学生已具备一定的观察能力和抽象概括能力,完全有条件、有可能发现它们的共同特点和性质。

4.对问题的总结可以培养学生由具体到抽象、由特殊到一般的认知能力。

5.按照“观察--猜想--证明”的思维模式设计问题,符合学生的认知规律,更培养学生完整地认识数学体系。

(二) 启发诱导、探求新知1、由学生的总结自然的给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。

思考并交流对概念的理解,并总结:①“从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:(n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1). 9 ,8,7,6,5,4,……;√ d=-12).0.70,0.71,0.72,0.73,0.74……;√ d=0.013). 0,0,0,0,0,0,…….; √ d=04). 1,2,3,2,3,4,……;×5). 1,0,1,0,1,……×其中第一个数列公差d<0, d="">0,第三个数列公差d=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式(1)若一等差数列{an}的首项是,公差是d,则据其定义可得:a2-a1=d 即:a2=a1+da3-a2=d 即:a3=a2+d……猜想:a40= a1+39d进而归纳出等差数列的通项公式:an=a1+(n-1)d设计思路:在归纳等差数列通项公式中,我采用讨论式的教学方法。

给出等差数列的首项,公差d,由学生研究分组讨论的通项公式。

通过总结的通项公式由学生猜想的通项公式,进而归纳的通项公式。

整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识,又化解了教学难点。

(2)此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——迭加法:a2-a1=da3=a2+d……an-an-1=d将这n-1个等式左右两边分别相加,就可以得到an–a1= (n-1) d即an=a1+(n-1) d ,当n=1时,此式也成立,所以对一切n∈N﹡,上面的.公式都成立,因此它就是等差数列{an}的通项公式。

在迭加法的证明过程中,我采用启发式教学方法。

利用等差数列概念启发学生写出n-1个等式。

将n-1个等式相加,证出通项公式。

在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求。

(三)巩固新知应用例解例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?例2 在等差数列{an}中,已知a5=10,a20=31,求首项与公差d。

这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。

通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。

当其中的三个量已知时,可根据该公式求出第四个量。

例3 梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。

计算中间各级的宽度。

设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法。

(四)反馈练习1、课后的练习中的第1题和第2题(要求学生在规定时间内完成)。

目的:使学生熟悉通项公式,对学生进行基本技能训练。

2、课后习题第3题和第4题。

目的:对学生加强建模思想训练。

(五)归纳小结、深化目标1.等差数列的概念及数学表达式an-an-1=d(n≥1)。

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。

2.等差数列的通项公式会知三求一。

3.用“数学建模”思想方法解决实际问题。

(六)布置作业必做题:课本习题第2,6 题选做题:已知等差数列{an}的首项= -24,从第10项开始为正数,求公差d的取值范围。

(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)教学总结:第一,本节课我充分地考虑到学生的现状,学生学习兴趣不高,基础不好。

所以,我在设计的时候,首先考虑的是如何来吸引学生。

所以,在导入上花了一些心思。

从我们生活中最常见的东西入手,而且也是最简单的东西入手。

这样,学生愿意参与进来。

这是开展好课堂教学的第一步,也是最关键的一步。

从课堂上的效果来看,确实也达到了个目标。

学生一开始,就积极参与进来。

因为,这些问题,学生熟悉,而且也有能力解决。

第二,我很少讲知识本身,我整堂课都非常注重生活实例的引入。

努力把知识点融入到实例的解决当中去。

这样,学生在学习时,就不感觉到枯燥。

整堂课都能保持较高的热情。

再加上,采用小组竞争的方法,学生更有兴趣来解决这些问题。

第三,我采用了目标教学方法。

每次,我都设定了一个目标,然后带领学生应用自己得出来的知识来解决这些目标。

学生每解决一个目标,就感觉到自己成功了一次。

这样,他们愿意去解决更多的目标。

应该说,通过上面三个方法,我较好地完成了本堂课的预设任务。

而且充分地调动了学生的积极性。

我相信,只要学生愿意积极参与进来,他们的学习成绩就会提高。

当然,在这堂课中也存在一些问题,没有很好地去解决。

一、对少数几个同学关注不够。

因为,只想着在一节课时间内把预设的任务解决。

当一小部分同学还没有明白过来的时候,我已经带领其他学生去解决新问题了。

最后,导致这一部分学生,最后的问题也没办法解决。

二、层次性不强。

虽然大多数学生的基础不怎么好,但还是有少数几个学生反映很快,接受能力也不错。

他们解决这些问题太简单了,最后,他们就再像以面那样积极了,因为,他们觉得这些问题不值得他们花时间。

这反映出,我在设计问题时,层次感不好。

没有考虑到这一部分学生的利益。

应该设计一些有些难度的目标,让他们也感觉到自己的优性存在,这样有利于保证这部分学生的求知热情。

这堂课总体上来说,还是比较成功的。

如果在今后的教学中,能把一些出现的问题解决好,那么我们的数学课会更精彩,会让更多的学生在课堂上有收获。

好的学生能进一步提高自己的学习能力,基础差的学生也能学到一些数学知识。

中间部分的学生也能有更大的提升空间。

相关文档
最新文档