新版人教版初一上册数学全册导学案(全册)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新版人教版初一上册数学全册导学案(全册精品)
4.3.2角的比较与运算
【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系;
2、理解角平分线的概念,会画角平分线。
【重点难点】:角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。
【导学指导】
一、知识链接
回顾线段大小的比较,,怎样比较图中线段AB、BC、CA的长短?
(8)度量法;(2)叠合法。
AB<AC<BC
那么怎样比较∠A、∠B、∠C的大小呢?
二、自主学习
1、比较角的大小
(1)度量法:用量角器量出角的度数,然后比较它们的大小。(2)叠合法:把两个角叠合在一起比较大小。
教师演示:
(1)∠AOB<∠AOB′;(2)∠AOB=∠AOB′;(3)∠AOB >∠AOB′。
2、认识角的和差
思考:如图,图中共有几个角?
它们之间有什么关系?
图中共有3个角:∠AOB、∠AOC、∠BOC。它们的关系是:∠AOC=∠AOB+∠BOC;
∠BOC=∠AOC-∠AOB;
∠AOB=∠AOC-∠BOC
3、用三角板拼角
探究:借助三角尺画出150,750的角。
一副三角板的各个角分别是多少度?_________
学生尝试画角。
你还能画出哪些角?有什么规律吗?
还能画出________________________
规律是:凡是的倍数的角都能画出。
4、角平分线
在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?
如图(1)
角的平分线:从一个角的_____出发,把这个角分成_______的两个角的射线,叫做这个角的平分线。类似地,还有角的三等分线等。如图(2)中的OB、OC。
OB是∠AOC的一平分线,可以记作:
∠AOC=2∠AOB=2∠BOC或∠AOB=∠BOC= 。
5、例题学习
例1 如图,O是直线AB上一点,∠AOC=53017′,求∠BOC 的度数。
例2 把一个周角7等分,每一份是多少度的角(精确到分) 【课堂练习】:
课本140-141页1、2、3。
【要点归纳】:
1、角的大小比较的方法和角的和差关系;
2、用一副三角板画角;
3、角的平分线及表示。
【拓展训练】:
1、如图,O为直线AB上一点,射线OD、OE分别平分∠AOC、∠BOC,求∠DOE的度数。
【总结反思】:
课题:余角和补角(1)
【学习目标】在具体的现实情境中,认识一个角的余角和补角;【重点难点】正确求出一个角的余角和补角。
【导学指导】
一、知识链接
思考:
(3)在一副三角板中同一块三角板的两个锐角和等于多少度?
(4)如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。
(5)如图2,已知点A、O、B在一直线上,∠COD=90°,那么∠1+∠2= 。
二、自主探究
1.互为余角的定义:
思考:
(12)如图3,已知∠1=62°,∠2=118°,那么∠1+∠2=(13)如图4,A、O、B在同一直线上,∠1+∠2=
2.互为补角的定义:
问题1:以上定义中的“互为”是什么意思?
问题2:若∠1+∠2 +∠3 =180°,那么∠1、∠2、∠3互为补角吗?
3.新知应用:
例1:若一个角的补角等于它的余角4倍,求这个角的度数。
例2:如图,∠AOC=∠COB=90°,∠DOE=90°,A、O、B三点在一直线上
(1)写出∠COE的余角,∠AOE的补角;
(2)找出图中一对相等的角,并说明理由;
【课堂练习】:
课本141页练习1、2、3;
【要点归纳】:
【拓展训练】:
1、一个角的余角比它的补角的还少,求这个角的度数。
2、若和互余,且:=7:2,求、的度数。
【总结反思】:
课题:余角和补角(2)
【学习目标】:1、掌握余角和补角的性质。
2、了解方位角,能确定具体物体的方位。
【重点难点】掌握余角和补角的性质;方位角的应用;
【导学指导】一、知识链接
1.70°的余角是,补角是;
2.∠a(∠a <90°)的它的余角是,它的补角是;
二、自主学习
1.探究补角的性质:
例3、如图,∠1与∠2互补,∠3与∠4互补,∠1= ∠3,那么∠2与∠4相等吗?为什么?
分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800 - ,∠3与∠4互补,∠4等于什么?∠4=1800 - 。
(2)当∠1= ∠3时,∠2与∠4有什么关系?为什么?
∠2=∠4(等量减等量,差相等)
上面的结论,用文字怎么叙述?
补角的性质:等角的相等。
2.探究余角的性质:
如图∠1 与∠2互余,∠3与∠4互余,如果∠1=∠3,那么∠2与∠4相等吗?为什么?
余角性质:等角的相等
3.方位角:\
(1)认识方位:
正东、正南、正西、正北、
东南、西南、西北、东北。
(2)找方位角:
乙地对甲地的方位角;甲地对乙地的方位角
例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线。(师生共同完成)