第五讲等差数列通项公式的应用
等差数列的通项公式推导与应用练习
等差数列的通项公式推导与应用练习等差数列是数学中常见的一种数列,它的每一项与前一项之间的差固定。
等差数列在实际问题中有广泛的应用,如财务分析、物理学、统计学等。
本文将介绍等差数列的通项公式推导,并通过实例演示其应用。
一、等差数列通项公式的推导假设等差数列的首项为a₁,公差为d,第n项为an。
根据等差数列的定义可知,an=a₁+(n-1)d。
因此,我们可以通过推导得出等差数列的通项公式。
首先,我们将等差数列的前n项和Sₙ表示为:Sₙ=a₁+a₂+a₃+⋯+aₙ由于等差数列的对称性,我们可以将Sₙ按从两端向中间进行相加的方式分组,如下所示:Sₙ=(a₁+ aₙ)+(a₂+aₙ₋₁)+⋯+(aₙ+a₁)根据等差数列的定义,我们可以将每一对括号中的两项相加整理得到:Sₙ=(a₁+aₙ)+(a₁+d+aₙ₋₁−d)+⋯+(aₙ−₁+d+a₂−d)+a₁+aₙ将等差数列的前n项和Sₙ代入上述等式中可得:Sₙ=(n/2)×(a₁+aₙ)然后,我们将等差数列的前n项和Sn减去公差d的n-1项得到:Sₙ-d(n-1)=a₁+(a₁+d)+(a₁+2d)+⋯+(a₁+(n-2)d)+(a₁+(n-1)d)=(n/2)×(a₁+aₙ)即:Sₙ-d(n-1)=Sₙ将等差数列的前n项和Sn-d(n-1)代入等式Sₙ=(n/2)×(a₁+aₙ)中可得:Sn=(n/2)×(a₁+aₙ)+d(n-1)通过移项整理,我们可以得到等差数列的通项公式:an=a₁+(n-1)d二、等差数列的应用练习下面通过一些实例,来练习应用等差数列的概念和通项公式。
例题一:某公交车每隔15分钟经过一站,首班车是6:00,末班车是22:00。
某乘客在8:20从首站上车,请问他在第几站下车?解答:首先,我们需要确定等差数列的首项a₁和公差d。
由于首班车是6:00,末班车是22:00,所以两个时间之间相差的分钟数为16 × 60 =960分钟。
数列的通项公式与部分和公式
数列的通项公式与部分和公式数列的通项公式是指能够表示数列中第n个数与n的关系的公式,而部分和公式则是指数列的前n项和能够表示成与n的关系的公式。
本文将分别介绍数列的通项公式和部分和公式,以及应用举例。
一、数列的通项公式数列是指按照一定规律排列的一组数,通项公式是能够表示数列中第n个数与n的关系的公式。
1. 等差数列的通项公式等差数列是指数列中相邻两项之差都相等的数列。
设等差数列的首项为a₁,公差为d,则该等差数列的通项公式为:an = a₁ + (n-1)d其中,an表示数列的第n个数。
例如,对于等差数列1,4,7,10,13,……,其首项a₁为1,公差d为3,根据通项公式可得:an = 1 + (n-1)3 = 3n - 2因此,该等差数列的通项公式为3n - 2。
2. 等比数列的通项公式等比数列是指数列中相邻两项之比都相等的数列。
设等比数列的首项为a₁,公比为q,则该等比数列的通项公式为:an = a₁ * q^(n-1)其中,an表示数列的第n个数。
例如,对于等比数列2,6,18,54,……,其首项a₁为2,公比q 为3,根据通项公式可得:an = 2 * 3^(n-1)因此,该等比数列的通项公式为2 * 3^(n-1)。
二、数列的部分和公式数列的部分和是指数列前n个数的和,部分和公式是能够表示数列前n项和与n的关系的公式。
1. 等差数列的部分和公式对于等差数列,前n项和(部分和)Sn可以表示为:Sn = (a₁ + an) * n / 2其中,a₁表示数列的首项,an表示数列的第n个数。
以等差数列1,4,7,10,13,……为例,根据通项公式3n - 2,部分和公式可表示为:Sn = (1 + (3n - 2)) * n / 2 = (3n + 1) * n / 22. 等比数列的部分和公式对于等比数列,前n项和(部分和)Sn可以表示为:Sn = a₁ * (1 - q^n) / (1 - q)其中,a₁表示数列的首项,q表示数列的公比。
等差数列通项公式和前n项和公式的变形及应用
{ = T + 7[] T 7 i; l
i T > = M / ) r k f( 2 be ; a }
i= i+ 1:
3 应 用
上述 数学模 型 可 以看 成 直线 上 的场 地设 置问题 : 条直 线 上有 A。A:… A 一 , , 个 工 厂 。 个 工 厂 分 别 生 产 。/:… 每 。/。 7
6 M = 0 2 S = A( ) X = B( ) ; 1; 1
等 差 数 列 通 项 公 式 和 前 项 和 公 式 的变 形 及 应 用
山 东东营职业 学院计 算机 系 山 东烟 台大 学数 学与信 息科 学 学院
众 所 周 知 , 差 数 列 { }的通 项 公 式 等 口
1 0 NEXT 0 K 1 0 PRI 1 NT“ = ” X X : 1 0 D T 2 A
口H,
fr i= 0 i t i++ 0( ;< ; )
{ =M + M
T : 0;
i; ]}
l 2 … , 。
, 。 , , 口l 口2 …
fr( o i: 0 i t i++ ;< ; )
2, 1前六 项 的和 为 2 , 其首 项 . 4求 ( 用前 项 和公 式也 很容 易求得 口 利 ,=
9) .
c 8口 ) ( ,。 三点共线 , 所以
(,5 1 口 一n )= ( , ) 1 一4 ,
=
/ /
=
= ( , 8 5 3 口 一a )
( , 8—6 , 以 1×( 8—6 3口 )所 口 )= 3× ( 一
S6 S3
d, :
d, 由题 意 知 , : S m即
d : ,+ d,
推导等差数列与等比数列的递推公式与通项公式的推广应用与等差数列与等比数列的综合应用
推导等差数列与等比数列的递推公式与通项公式的推广应用与等差数列与等比数列的综合应用等差数列和等比数列是数学中常见的数列形式,它们在各个领域的应用非常广泛。
在本文中,我将介绍推导等差数列和等比数列的递推公式和通项公式的方法,并探讨它们在实际问题中的推广应用以及与等差数列和等比数列的综合应用。
1. 推导等差数列的递推公式和通项公式如果一个数列满足某个数减去它的前一个数的差是一个固定的常数,那么这个数列就是等差数列。
等差数列的递推公式和通项公式可以通过以下的推导得到。
首先假设等差数列的首项是a,公差是d。
根据等差数列的定义,我们可以得到数列的递推公式:a2 = a1 + da3 = a2 + d = a1 + 2da4 = a3 + d = a1 + 3d...an = a1 + (n-1)d然后我们可以尝试找出数列的通项公式。
观察数列的前几项,我们可以发现数列中任意一项与首项之间的差是一个等差数列。
我们可以定义一个新的数列b,其中每个项bi都是等差数列中的一个项,而公差与原数列相同,即bi = a1 + (i-1)d。
那么数列的第n项an可以表示为:an = a1 + (n-1)d= a1 + (n-1)(a2 - a1)= a1 + (n-1)(a1 + d - a1)= a1 + (n-1)a1 + (n-1)d= na1 + (n-1)d因此,等差数列的通项公式为an = na1 + (n-1)d。
2. 推导等比数列的递推公式和通项公式与等差数列类似,等比数列也可以推导出递推公式和通项公式。
如果一个数列满足某个数除以它的前一个数的商是一个固定的常数,那么这个数列就是等比数列。
等比数列的递推公式和通项公式可以通过以下的推导得到。
假设等比数列的首项是a,公比是r。
根据等比数列的定义,我们可以得到数列的递推公式:a2 = a1 * ra3 = a2 * r = a1 * r^2a4 = a3 * r = a1 * r^3...an = a1 * r^(n-1)然后我们可以尝试找出数列的通项公式。
等差数列及性质
等差数列及性质一、知识梳理:1.等差数列的定义(1)前提条件:①从第2项起.②每一项与它的前一项的差等于同一个常数.(2)结论:这个数列是等差数列.(3)相关概念:这个常数叫做等差数列的公差,常用字母d表示.2.等差中项(1)前提:三个数a,A,b成等差数列.(2)结论:A叫做a,b的等差中项.(3)满足的关系式:2A=a+b.34.等差数列通项公式的推广5.等差数列的性质(1){a n}是公差为d的等差数列,若正整数m,n,p,q满足m+n=p+q,则:a m+a n=a p+a q.特别地,当m+n=2k(m,n,k∈N*)时,a m+a n=2a k.(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a1+a n =a2+a n-1=…=a k+a n-k+1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.(5).等差数列的图象由a n=d n+(a1-d),可知其图像是直线上的一些等间隔的点,其中是该直线的斜率.(6).等差数列的单调性:对于a n=d n+(a1-d),(1)当d>0时,{a n}为;(2)当d<0时,{a n}为;(3)当d=0时,{a n}为.二、题型探究:探究一:等差数列的通项公式及其应用例1.(1)已知等差数列{a n}:3,7,11,15,….①135,4m+19(m∈N*)是{a n}中的项吗?试说明理由.②若a p,a q(p,q∈N*)是数列{a n}中的项,则2a p+3a q是数列{a n}中的项吗?并说明你的理由.(2)在等差数列{a n}中,已知a5=10,a12=31,则首项a1=________,公差d=________.1.(1)若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q =________.(2)已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?探究二:等差数列的判定例2.(1)已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2且x ∈N *)确定.①求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列;②当x 1=12时,求x 2 015.(2)已知1b +c ,1c +a ,1a +b 成等差数列,证明:a 2,b 2,c 2也成等差数列.等差数列的判定方法有以下三种:(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }为等差数列; (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }为等差数列;(3)通项公式法:a n =an +b (a ,b 是常数,n ∈N *)⇔{a n }为等差数列. 但如果要证明一个数列是等差数列,则必须用定义法或等差中项法.2.(1)判断下列数列是否为等差数列:①在数列{a n }中a n =3n +2; ②在数列{a n }中a n =n 2+n .(2)已知c n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2,则数列{c n }________等差数列(填“是”或“不是”).(3)已知数列{a n }满足a 1=2,a n +1=2a n a n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.探究三:等差中项的应用例3.一个等差数列由三个数组成,三个数的和为9,三个数的平方和为35,求这三个数.[互动探究]若将题中的三个数改为四个数成等差数列,且四个数之和为26,第二个数与第三个数之积为40,求这四个数.三个数或四个数成等差数列的设法当三个数或四个数成等差数列且和为定值时,方法一:可设出首项a1和公差d,列方程组求解.方法二:采用对称的设法,三个数时,设为a-d,a,a+d;四个数时,可设为a-3d,a-d,a+d,a+3d.3.(1)方程x2-6x+1=0的两根的等差中项为()A.1 B.2C.3 D.4(2)已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式.探究四:等差数列性质的应用例4.在等差数列{a n}中:(1)若a5=a,a10=b,求a15;(2)若a3+a8=m,求a5+a6.(3)若a1+a2+…+a5=30,a6+a7+…+a10=80,求a11+a12+…+a15.(1)利用等差数列的通项公式列关于a1和d的方程组,求出a1和d,进而解决问题是处理等差数列问题的最基本方法.(2)巧妙地利用等差数列的性质,可以大大简化解题过程.4.(1)已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A .a 1+a 101>0 B .a 2+a 101<0 C .a 3+a 99=0 D .a 51=51(2)若x ≠y ,且两个数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么a 1-a 2b 1-b 2等于( )A .1 B.23C.34D.43探究五:等差数列的综合问题例5.在公差不为零的等差数列{a n }中,a 1,a 2为方程x 2-a 3x +a 4=0的根,求数列{a n }的通项公式.例6.在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2,n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列{a n }的通项公式;(3)若λa n +1a n +1≥λ对任意n ≥2的整数恒成立,求实数λ的取值范围.5.(1)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n ,则a n =________.(2)已知数列{a n }满足(a n +1-a n )(a n +1+a n )=16,且a 1=1,a n >0.①求证:数列{a 2n }为等差数列; ②求a n .例7.已知等差数列{a n }的首项为a 1,公差为d ,且a 11=-26,a 51=54,求a 14的值.你能判断该数列从第几项开始为正数吗?[解] 由等差数列通项公式a n =a 1+(n -1)d ,列方程组⎩⎪⎨⎪⎧a 1+10d =-26,a 1+50d =54,解得⎩⎪⎨⎪⎧a 1=-46,d =2.∴a 14=-46+13×2=-20.∴a n =-46+(n -1)×2=2n -48. 令a n ≥0,得2n -48≥0⇒n ≥24, ∴从第25项开始,各项为正数.[错因与防范] (1)忽略了对“从第几项开始为正数”的理解,误认为n =24也满足条件.(2)由通项公式计算时,易把公式写成a n =a 1+nd ,导致结果错误.(3)等差数列通项公式中有a 1,a n ,n ,d 四个量,知三求一,一定要准确应用公式.7.(1)首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是________. (2)一个等差数列的首项为125,公差d >0,从第10项起每一项都大于1,求公差d 的范围.例8.(本题满分12分)两个等差数列5,8,11,…和3,7,11,…都有100项,那么它们共有多少相同的项?[解] 设已知的两数列的所有相同的项构成的新数列为{c n },c 1=11.2分 又等差数列5,8,11,…的通项公式为a n =3n +2,4分 等差数列3,7,11,…的通项公式为b n =4n -1.6分 所以数列{c n }为等差数列,且公差d =12,①8分 所以c n =11+(n -1)×12=12n -1.10分又a 100=302,b 100=399,c n =12n -1≤302,②得n ≤2514,可见已知两数列共有25个相同的项.12分[规范与警示] (1)解题过程中①处易出现令3n +2=4n -1,解得n =3的错误,这实际上是混淆了两个n 的取值而导致的错误,也是常犯错误,解题过程中②处易出现c n =12n -1≤399,导致错误.这是对题意不理解造成的,两个数列的公共项应以较小的为基准求解.(2)在解决数列的问题时弄清公式中各量的含义,不同的数列中同一量的意义是相同的,但是并不一定对应.如本例中项数n 在数列{a n }和数列{b n }中的意义,当项相同时,对应的序号n 不一定相同.巩固练习:1.(2015·汉口高二检测)下列说法中正确的是( )A .若a ,b ,c 成等差数列,则a 2,b 2,c 2成等差数列B .若a ,b ,c 成等差数列,则log 2a ,log 2b ,log 2c 成等差数列C .若a ,b ,c 成等差数列,则a +2,b +2,c +2成等差数列D .若a ,b ,c 成等差数列,则2a ,2b ,2c 成等差数列2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +13.(2014·高考重庆卷)在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8C .10 D .144.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37C .100 D .-37 5.(2014·高考辽宁卷)设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d <0B .d >0C .a 1d <0 D .a 1d >0 6.(2015·泰安高二检测)在等差数列{a n }中,a 3,a 10是方程x 2-3x -5=0的根,则a 5+a 8=________.7.(2015·河北省石家庄市月考)在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为________.8.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.9.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为________.10.在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9.11.数列{a n }为等差数列,b n =⎝⎛⎭⎫12a n,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求{a n }的通项公式.12.已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.(1)求证:数列{b n }是等差数列;(2)求数列{a n }的通项公式.备选:《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共为4升,则第5节的容积为________升.巩固练习答案:1.解析:选C.因为a ,b ,c 成等差数列,则2b =a +c , 所以2b +4=a +c +4,即2(b +2)=(a +2)+(c +2), 所以a +2,b +2,c +2成等差数列.2.解析:选D.设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.解析:选B.法一:设等差数列的公差为d ,则a 3+a 5=2a 1+6d =4+6d =10,所以d =1,a 7=a 1+6d =2+6=8.法二:由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 4.解析:选C.设c n =a n +b n ,由于{a n },{b n }都是等差数列,则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100,c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0.∴c 37=100,即a 37+b 37=100.5.解析:选C.设b n =2a 1a n ,则b n +1=2a 1a n +1,由于{2a 1a n }是递减数列,则b n >b n +1,即2a 1a n >2a 1a n +1.∵y =2x 是单调增函数,∴a 1a n >a 1a n +1,∴a 1a n -a 1(a n +d )>0,∴a 1(a n -a n -d )>0,即a 1(-d )>0,∴a 1d <0.6.解析:由已知得a 3+a 10=3.又数列{a n }为等差数列,∴a 5+a 8=a 3+a 10=3. 答案:37.解析:由等差数列的性质可知,a 3+a 5+a 7+a 9+a 11=(a 3+a 11)+(a 5+a 9)+a 7=5a 7=100,∴a 7=20.∴3a 9-a 13=2a 9+a 9-a 13=(a 5+a 13)+a 9-a 13=a 5+a 9=2a 7=40.答案:408.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn=n ,所以a n =n 2.答案:n 29.解析:由于三边长构成公差为4的等差数列,故可设三边长分别为x -4,x ,x +4. 由一个内角为120°,知其必是最长边x +4所对的角. 由余弦定理得,(x +4)2=x 2+(x -4)2-2x (x -4)·cos 120°, ∴2x 2-20x =0,∴x =0(舍去)或x =10, ∴S △ABC =12×(10-4)×10×sin 120°=15 3.答案:15 310.解:(1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧a 1+4d =-1a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5d =1. (2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧a 1+a 1+5d =12a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1d =2.∴a n =1+(n -1)×2=2n -1,∴a 9=2×9-1=17.11.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3. ∵a 1,a 2,a 3成等差数列,可设a 1=a 2-d ,a 3=a 2+d ,∴a 2=1. 由⎝⎛⎭⎫121-d+12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2. 当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3;当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5. 12.解:(1)证明:b n +1-b n =1a n +1-2-1a n -2=1(4-4a n)-2-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12.又b 1=1a 1-2=12,∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知b n =12+(n -1)×12=12n .∵b n =1a n -2,∴a n =1b n +2=2n +2.∴数列{a n }的通项公式为a n =2n+2.备选:解析:设自上而下各节的容积构成的等差数列为 a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9.则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=4a 1+6d =3,a 7+a 8+a 9=3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,故a 5=a 1+4d =6766. 答案:67667(1)解析:a n =24+(n -1)d ,由题意知,⎩⎪⎨⎪⎧a 10<0,a 9≥0,即⎩⎪⎨⎪⎧24+9d <0,24+8d ≥0,解得-3≤d <-83.答案:⎣⎡⎭⎫-3,-83 (2)解:设等差数列为{a n },由d >0,知a 1<a 2<…<a 9<a 10<a 11…,依题意,有⎩⎪⎨⎪⎧1<a 10<a 11<…,a 1<a 2<…<a 9≤1,即⎩⎪⎨⎪⎧a 10>1a 9≤1⇔⎩⎨⎧125+(10-1)d >1,125+(9-1)d ≤1,解得875<d ≤325,即公差d 的取值范围是⎝⎛⎦⎤875,325.。
4.2.1.1等差数列得的概念和通项公式(知识梳理+变式+例题))
4.2.1.1等差数列的概念和通项公式要点一 等差数列的概念(1)文字语言:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d_表示. (2)符号语言:a n +1-a n =d (d 为常数,n ∈N *). 【重点概要】(1)“从第2项起”是因为首项没有“前一项”.(2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中强调“同一个常数”,即该常数与n 无关.(3)求公差d 时,可以用d =a n -a n -1来求,也可以用d =a n +1-a n 来求.注意公差是每一项与其前一项的差,且用a n -a n -1求公差时,要求n ≥2,n ∈N *. 要点二 等差中项(1)条件:如果a ,A ,b 成等差数列. (2)结论:那么A 叫做a 与b 的等差中项. (3)满足的关系式是________. 【重点概要】在等差数列{a n }中,任取相邻的三项a n -1,a n ,a n +1(n ≥2,n ∈N *),则a n 是a n -1与a n +1的等差中项. 反之,若a n -1+a n +1=2a n 对任意的n ≥2,n ∈N *均成立,则数列{a n }是等差数列.因此,数列{a n }是等差数列⇔2a n =a n -1+a n +1(n ≥2,n ∈N *).用此结论可判断所给数列是不是等差数列,此方法称为等差中项法.要点三 等差数列的通项公式以a 1为首项,d 为公差的等差数列{a n }的通项公式a n =1(1)a n d +-【重点总结】从函数角度认识等差数列{a n }若数列{a n }是等差数列,首项为a 1,公差为d ,则a n =f(n)=a 1+(n -1)d =nd +(a 1-d). (1)点(n ,a n )落在直线y =dx +(a 1-d)上; (2)这些点的横坐标每增加1,函数值增加d. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( ) (2)等差数列{a n }的单调性与公差d 有关.( )(3)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列.( )(4)一个无穷等差数列{a n }中取出所有偶数项构成一个新数列,公差仍然与原数列相等.( ) 【答案】(1)×(2)√(3)√(4)×2.(多选题)下列数列是等差数列的有( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2 【答案】ABC3.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( )A .2B .3C .-2D .-3 【答案】C【解析】由等差数列的定义,得d =a 2-a 1=-1-1=-2.故选C. 4.在△ABC 中,三内角A 、B 、C 成等差数列,则B 等于________. 【答案】60°【解析】因为三内角A 、B 、C 成等差数列, 所以2B =A +C ,又因为A +B +C =180°, 所以3B =180°,所以B =60°.题型一 等差数列的通项公式 探究1 基本量的计算【例1】(1)在等差数列{a n }中,已知a 6=12,a 18=36,则a n =________. (2)已知数列{a n }为等差数列,a 3=54,a 7=-74,则a 15=________.【答案】(1)2n (2)-314【解析】(1)由题意得⎩⎪⎨⎪⎧ a 1+5d =12a 1+17d =36,⎩⎪⎨⎪⎧解得d =2,a 1=2,∴a n =2+(n -1)×2=2n .(2)法一:(方程组法)由⎩⎨⎧a 3=54,a 7=-74,得⎩⎨⎧a 1+2d =54,a 1+6d =-74,解得⎩⎨⎧a 1=114,d =-34,∴a 15=a 1+(15-1)d =114+14×⎝⎛⎭⎫-34=-314. 法二:(利用a m =a n +(m -n )d 求解)由a 7=a 3+(7-3)d ,即-74=54+4d ,解得d =-34,∴a 15=a 3+(15-3)d =54+12×⎝⎛⎭⎫-34=-314. 探究2 判断数列中的项【例2】100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,说明理由. 【解析】∵a n =2+(n -1)×7=7n -5, 由7n -5=100,得n =15, ∴100是这个数列的第15项.探究3 等差数列中的数学文化 【例3】《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是( )A.116B.103C.56D.53【答案】D【解析】由题意可得中间的那份为20个面包, 设最小的一份为a 1,公差为d ,由题意可得[20+(a 1+3d )+(a 1+4d )]×17=a 1+(a 1+d ),解得a 1=53,故选D.【方法归纳】(1)已知a n ,a 1,n ,d 中的任意三个量,求出第四个量.(2)应用等差数列的通项公式求a 1和d ,运用了方程的思想.一般地,可由a m =a ,a n =b ,得⎩⎪⎨⎪⎧a 1+(m -1)d =aa 1+(n -1)d =b ,求出a 1和d ,从而确定通项公式.(3)若已知等差数列中的任意两项a m ,a n ,求通项公式或其它项时,则运用a m =a n +(m -n )d 较为简捷. 【跟踪训练】(1)等差数列{a n }中,a 1=13,a 2+a 5=4,a n =33,则n 等于( )A .50B .49C .48D .47 【答案】A【解析】由题得2a 1+5d =4,将a 1=13代入得,d =23,则a n =13+23(n -1)=33,故n =50.(2)等差数列{a n }中,已知a 5=10,a 12=31. ①求a 20;②85是不是该数列中的项?若不是,说明原因;若是,是第几项? 【解析】(2)①设数列{a n }的公差为d . 因为a 5=10,a 12=31,由a n =a 1+(n -1)d 得,⎩⎪⎨⎪⎧ a 1+4d =10,a 1+11d =31,解得⎩⎪⎨⎪⎧a 1=-2,d =3. 即a n =-2+3(n -1)=3n -5,则a 20=3×20-5=55. ②令3n -5=85,得n =30,所以85是该数列{a n }的第30项. 题型二 等差数列的判定与证明【例4】已知数列{a n }满足a 1=4且a n =4-4a n -1(n >1),记b n =1a n -2.(1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.【解析】(1)证明:∵b n +1-b n =1a n +1-2-1a n -2=1⎝⎛⎭⎫4-4a n -2-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12又b 1=1a 1-2=12∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知,b n =12+(n -1)×12=12n ∵b n =1a n -2∴a n =1b n +2=2n+2.要证{b n }是等差数列,只需证b n +1-b n =常数或b n -b n -1=常数(n ≥2).【变式探究1】将本例中的条件“a 1=4,a n =4-4a n -1”改为“a 1=2,a n +1=2a na n +2”,求a n .【解析】∵a n +1=2a na n +2∴取倒数得:1a n +1=a n +22a n =12+1a n ∴1a n +1-1a n =12,又1a 1=12,∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公差为12的等差数列, ∴1a n =1a 1+(n -1)×12=12+n 2-12=n 2,∴a n =2n . 【方法归纳】定义法判断或证明数列{a n }是等差数列的步骤: (1)作差a n +1-a n ,将差变形;(2)当a n +1-a n 是一个与n 无关的常数时,数列{a n }是等差数列;当a n +1-a n 不是常数,是与n 有关的代数式时,数列{a n }不是等差数列.【跟踪训练】已知数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n2n -1,证明:数列{b n }是等差数列.(2)求数列{a n }的通项公式.【解析】(1)证明:因为a n +1=2a n +2n ,所以a n +12n =2a n +2n 2n =a n2n -1+1,所以a n +12n -a n2n -1=1,n ∈N *.又b n =a n2n -1,所以b n +1-b n =1.所以数列{b n }是等差数列,其首项b 1=a 1=1,公差为1. (2)由(1)知b n =1+(n -1)×1=n ,所以a n =2n -1b n =n ·2n -1,经检验,n =1时a 1=1也满足上式. 题型三 等差中项【例5】已知三个数成等差数列,其和为15,其平方和为83,则这三个数为________. 【答案】3,5,7或7,5,3【解析】设此三个数分别为x -d ,x ,x +d , 则⎩⎪⎨⎪⎧(x -d )+x +(x +d )=15(x -d )2+x 2+(x +d )2=83 解得x =5,d =±2.∴所求三个数分别为3,5,7或7,5,3.【总结】三个数成等差数列可设为x -d,x,x+d【变式探究2】已知四个数成等差数列,它们的和为26,中间两项的积为40,求这四个数. 【解析】法一:(设四个变量)设这四个数分别为a ,b ,c ,d ,根据题意,得⎩⎪⎨⎪⎧b -a =c -b =d -c ,a +b +c +d =26,bc =40,解得⎩⎪⎨⎪⎧ a =2,b =5,c =8,d =11或⎩⎪⎨⎪⎧a =11,b =8,c =5,d =2,∴这四个数分别为2,5,8,11或11,8,5,2.法二:(设首项与公差)设此等差数列的首项为a 1,公差为d ,根据题意,得 ⎩⎪⎨⎪⎧a 1+(a 1+d )+(a 1+2d )+(a 1+3d )=26,(a 1+d )(a 1+2d )=40,化简,得⎩⎪⎨⎪⎧4a 1+6d =26,a 21+3a 1d +2d 2=40, 解得⎩⎪⎨⎪⎧ a 1=2,d =3,或⎩⎪⎨⎪⎧a 1=11,d =-3,∴这四个数分别为2,5,8,11或11,8,5,2.法三:(灵活设元)设这四个数分别为a -3d ,a -d ,a +d ,a +3d ,根据题意,得⎩⎪⎨⎪⎧ (a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,化简,得⎩⎪⎨⎪⎧4a =26,a 2-d 2=40,解得⎩⎨⎧a =132,d =±32.∴这四个数分别为2,5,8,11或11,8,5,2.【小结】四个数成等差数列可设为a -3d ,a -d ,a +d ,a +3d【变式探究3】已知五个数成等差数列,它们的和为5,平方和为859,求这5个数.【解析】设第三个数为a ,公差为d ,则这5个数分别为a -2d ,a -d ,a ,a +d ,a +2d .由已知有 ⎩⎪⎨⎪⎧(a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 整理得⎩⎪⎨⎪⎧ 5a =5,5a 2+10d 2=859.解得⎩⎪⎨⎪⎧a =1,d =±23. 当d =23时,这5个分数分别是-13,13,1,53,73.当d =-23时,这5个数分别是73,53,1,13,-13.综上,这5个数分别是-13,13,1,53,73或73,53,1,13,-13.【方法归纳】当等差数列{a n }的项数n 为奇数时,可设中间的一项为a ,再以d 为公差向两边分别设项,即设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;当等差数列的项数n 为偶数时,可设中间两项分别为a -d ,a +d ,再以2d 为公差向两边分别设项,即设为…,a -3d ,a -d ,a +d ,a +3d ,….【易错辨析】忽视等差数列中的隐含条件致误【例6】已知{a n }为等差数列,首项为125,它从第10项开始比1大,那么公差d 的取值范围是( )A .d >875B .d <325C.875<d <325D.875<d ≤325 【答案】D【解析】由题意可得a 1=125,且⎩⎪⎨⎪⎧a 10>1a 9≤1即⎩⎨⎧125+9d >1125+8d ≤1解得875<d ≤325,故选D.【易错警示】1. 出错原因(1)错选A ,只看到了a 10>1而忽视了a 9≤1,是审题不仔细而致误; (2)错选C ,误认为a 9<1,是由不会读题,马虎造成错误. 2. 纠错心得认真审题,充分挖掘题目中的隐含条件.一、单选题1.等差数列{}n a 的公差为3,若2a ,4a ,8a 成等比数列,则{}n a 的前2n 项2n S =( ). A .3(21)n n - B .3(21)n n + C .3(1)2n n + D .3(1)2n n - 【答案】B 【分析】根据等差数列与等比数列的性质可得数列的通项公式,进而可得2n S . 【解析】等差数列{}n a 的公差为3,且2a ,4a ,8a 成等比数列,2428a a a ∴=,()()2222618a a a ∴+=+,解得26a =,1233a a ∴=-=,{}∴n a 的前2n 项, 22(21)2332n n n S n -=⋅+⨯ 3(21)n n =+.故选:B .2.已知数列{}n a 满足()()11220n n n n a a a a ++--+=,下列结论正确的是( ) A .当11a =时,10a 的最大值258 B .当11a =时,9a 的最小值384- C .当101a =时,1a 的最小值17- D .当91a =时,1a 的最大值132【答案】C【分析】根据题干中的条件可得:12n n a a +-=或120n n a a ++=,即{}n a 是等差数列或等比数列,A 选项分别把两种情况下的10a 算出来,比较大小,求出10a 的最大值,同样的道理,其他选项也可以判断出来,进而选出正确的选项 【解析】()()11220n n n n a a a a ++--+=则120n n aa +--=或120n n a a ++=A 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,101911819a a d =+=+= 当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()9102512a =-=-,10a 的最大值为19,故A 选项错误;B 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,91811617a a d =+=+=当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()892256a =-=,9a 的最小值为17,故B 选项错误;C 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当101a =时,即1192a +⨯=,解得:117a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当101a =时,即()9112a -=,解得:11512a =-,117512<--,故1a 的最小值为17-,故选项C 正确 D 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当91a =时,1161a += ,解得:115a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当91a =时,即()8112a -=,解得:11256a =,此时1a 的最大值为1256,D 选项错误 故选:C3.记n S 为等差数列{}n a 的前n 项和,若235a a +=,728S =,则数列{}n a 的公差为( ) A .1- B .2-C .1D .2【答案】C 【分析】由等差数列性质,747S a =求得44a =,根据项与项之间的关系代入条件求得公差. 【解析】由题知,74728S a ==,则44a =,设数列公差为d ,则234424435a a a d a d d +=-+-=+-=, 解得1d =, 故选:C4.在等差数列{}n a 中,前9项和918S =,266a a +=,则3n a =( ) A .33-n B .35n + C .73n - D .213n -【答案】C 【分析】根据918S =,266a a +=,可求得公差,再利用等差数列的通项公式即可得解. 【解析】 解:()199599182a a S a ===+,52a ∴=,又26426a a a +==,43a ∴=,∴公差541d a a =-=-,()447n a a n d n =+-⋅=-,373n a n ∴=-.故选:C.5.在ABC ∆中,“π3B =”是“角A ,B ,C 成等差数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】C 【分析】若π3B =,则2π23AC B +==,若A ,B ,C 成等差数列,则π3B =,得到答案. 【解析】在ABC ∆中,若π3B =,则2ππ23A CB B +=-==,所以A ,B ,C 成等差数列,充分性成立. 反之,若A ,B ,C 成等差数列,则2B A C =+,因为3πA B C B ++==,所以π3B =,必要性成立.所以“π3B =”是“角A ,B ,C 成等差数列”的充要条件. 故选:C.6.已知数列{}n a 的前n 项和n S ,且{}n a 满足122n n n a a a ++=+,532a a -=,若424S S =,则9a =( ) A .9 B .172C .10D .192【答案】B 【分析】根据122n n n a a a ++=+判断出{}n a 是等差数列,然后将条件化为基本量,进而解出答案. 【解析】由122n n n a a a ++=+可知,{}n a 是等差数列,设公差为d ,所以53221a a d d -==⇒=, 由()1421114642241S S a a a ⇒+=⨯+⇒==,所以9117822a =+=. 故选:B.7.等差数列{}n a 的前n 项和为n S ,若3724a a +=,840S =,则29a a +等于( ) A .44- B .14C .24D .38【答案】D 【分析】根据条件,列出方程组,求出首项和公差即可求解. 【解析】设等差数列{}n a 的公差为d ,由3724a a +=,840S =得112824,82840,a d a d +=⎧⎨+=⎩ 解得144,14,a d =-⎧⎨=⎩则2912938a a a d +=+= 故选:D8.已知等差数列{}n a 的前n 项和为n S ,43a =,1224S =,若i 0j a a +=(i ,j N *∈,且1i j ≤<),则i 的取值集合是( )A .{}1,2,3B .{}1,2,3,4,5C .{}6,7,8D .{}6,7,8,9,10【答案】B 【分析】设公差为d ,结合等差数列的通项公式和求和公式即可求出首项和公差,即可写出数列中的项,从而可选出正确答案. 【解析】设公差为d ,由4133a a d =+=-及121121112242S a d ⨯=+=,解得19a =-,2d =, 所以数列为9-,7-,5-,3-,1-,1,3,5,7,9,11,…,故i 取值的集合为{}1,2,3,4,5. 故选:B .二、多选题9.将2n 个数排成n 行n 列的一个数阵,如下图: 1112131n a a a a ⋯⋯ 2122232n a a a a ⋯⋯ 3132333n a a a a ⋯⋯ ……123n n n nn a a a a ⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知1113612,1a a a ==+,记这2n 个数的和为S .下列结论正确的有( ) A .3m =B .767173a =⨯C .1()313j ij a i -=⨯-D . (13)131(4)n S n n =-+ 【答案】ACD 【分析】根据题意,利用等差数列和等比数列的通项公式以及求和公式,对各选项进行判断,即可得到结果. 【解析】由11136121a a a ==+,,可得22131161112525a a m m a a m m ===+=+,,所以22251m m =++,解得3m =或12m =- (舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111[()][2]11333()(3)1j j j j ij i a a m a i m m i i ----==+-⋅⋅=+-⨯⨯=-⨯,所以选项C 是正确的;又由这2n 个数的和为S ,则111212122212()()()n n n n nn S a a a a a a a a a =++⋯++++⋯++⋯+++⋯+()()()11211131313...131313n n n n a a a ---=+++--- ()()()()23111 313131224n n n n n n +-=-⨯=+-,所以选项D 是正确的; 故选:ACD.10.设等差数列{a n }的前n 项和为S n .若S 3=0,a 4=8,则( )A .S n =2n 2-6nB .S n =n 2-3nC .a n =4n -8D .a n =2n【答案】AC【分析】根据已知条件求得1,a d ,由此求得,n n a S ,从而确定正确选项,【解析】 依题意3408S a =⎧⎨=⎩, 1113304,438a d a d a d +=⎧⇒=-=⎨+=⎩, 所以2148,262n n n a a a n S n n n +=-=⋅=-. 故选:AC11.已知等差数列{a n }中,a 1=3,公差为d (d ∈N *),若2021是该数列的一项,则公差d 不可能是( ) A .2B .3C .4D .5【答案】BCD【分析】由已知得2021=3+(n -1)d ,即有n =2018d +1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.由此可得选项.【解析】解:由2021是该数列的一项,即2021=3+(n -1)d ,所以n =2018d+1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.故选:BCD.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.设n S 为正项数列{n a }的前n 14n a +,则通项公式n a =___________ 【答案】21()4n n N +-∈ 【分析】当1n =时,求得114a =;当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减得到112n n a a --=,结合等差数列的定义,即可求解其通项公式. 【解析】由n S 为正项数列{n a }的前n 14n a =+,当1n =114a =+,可得2111()4a a =+,解得114a =, 当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减,可得1-11()()02n n n n a a a a -+--=, 因为0n a >,所以112n n a a --=, 所以数列{n a }是以12为公差,以14为首项的等差数列, 所以1121(1)424n n a n -=+-=. 故答案为:21()4n n N +-∈. 13.在等差数列{a n }中,a 3=0.如果a k 是a 6与a k +6的等比中项,那么k =________.【答案】9【分析】根据等比数列的性质以及等差数列的通项公式求解即可.【解析】设等差数列{a n }的公差为d ,由题意得a 3=a 1+2d =0,∈a 1=-2d .又∈a k 是a 6与a k +6的等比中项,266k k a a a +∴=,即[a 1+(k -1)d ]2=(a 1+5d )·[a 1+(k +5)d ],[(k -3)d ]2=3d ·(k +3)d ,解得k =9或k =0(舍去). 故答案为:914.在等差数列{a n }中,a 1+a 5=2,a 3+a 7=8,则a 11+a 15=________.【答案】32【分析】由a 1+a 5=2,a 3+a 7=8,两式相减求得公差即可.【解析】因为a 1+a 5=2,a 3+a 7=8,所以(a 3+a 7)-(a 1+a 5)=4d =6,解得d =32, 所以a 11+a 15=(a 1+a 5)+20d =2+20×32=32. 故答案为:32四、解答题15.已知等差数列{}n a 的前n 项和为n S ,且28S =,9411S a =. (1)求n a ;(2)若3n n S a =+2 ,求n .【答案】(1)21n a n =+(2)4n =【分析】(1)设公差为d ,根据28S =,9411S a =,列出方程组,求得首项跟公差,即可得出答案; (2)利用等差数列前n 项和的公式求得n S ,再根据3n n S a =+2 ,即可的解. (1)解:设公差为d ,由已知294811S S a =⎧⎨=⎩, 得:()11128936113a d a d a d +=⎧⎨+=+⎩,解得:132a d =⎧⎨=⎩, 所以21n a n =+;(2)解:()232122n n n S n n ++==+, 因为3n n S a =+2 ,即()223212n n n +=++,得2450n n --=,解得4n =,或1n =-(舍去), 所以4n =.16.已知等差数列{}n a 的前n 项和为n S ,1646,2a a a +==. (1)求数列{}n a 的通项公式; (2)求n S 的最大值及相应的n 的值.【答案】(1)102n a n =-(2)当4n =或5n =时,n S 有最大值是20【分析】(1)用等差数列的通项公式即可. (2)用等差数列的求和公式即可. (1)在等差数列{}n a 中,∈1646,2a a a +==, ∈1125632a d a d +=⎧⎨+=⎩, 解得182a d =⎧⎨=-⎩, ∈1(1)102n a n d a n ==--+;(2)∈18,2a d ==-,1(1)2n n n S na d -=+ ∈1(1)(1)8(2)22n n n n n S na d n --=+=+-29n n =-+ , ∈当4n =或5n =时,n S 有最大值是20。
必修5课件2.2.2等差数列的通项公式
2在数列 an 中, 如果对于任意的正整数n n 2, 都有
an 1 an 1 an , 那么 an1 an an an1 n 2. 2 这表明, 这个数列从第2 项起 , 后一项减去前一项所 得的差始终相等, 所以数列 an 是等差数列.
an1 an 1 所以有 an . 2
2 . 2 . 2 等 差 数 列的 通 项 公 式
观察等差数列 an : 4 , 7 , 10 , 13 , 16 , ,
如何写出它的第 项呢 ? 100
我们有 a1 4 , a2 7 4 3 , a3 10 4 3 2 ,
a4 13 4 3 3 ,
an a1 n 1 d .
证 因为 an 为等差数列, 所以当n 2时, 有
a2 a1 d , a3 a1 d , an an1 d .
将上面 n 1 个等式的两边分别相加 , 得
an a1 n 1 d , 所以 an a1 n 1 d .
例6 如图, 三个正方形的边 AB, BC , CD的长组成等差数 列, 且AD 21cm, 这三个正方 形的面积之和是179cm 2 C B A D 21cm 1求AB, BC , CD 的长 ; 2以 AB, BC , CD 的长为等差数列的前三 ,以第10 项为边长 项 的正方形的面积是多少 ? 解 1 设公差为d d 0, BC x , 则 AB x d , CD x d . x d x x d 21 , x 7, x 7,舍去. 解得 则 或 2 2 2 x d x x d 179, d 4 d 4 所以 AB 3 cm, BC 7 cm, CD 11 cm.
等差数列的通项公式与求和公式
等差数列的通项公式与求和公式等差数列(Arithmetic Progression,简称AP)是一个常见的数学概念,它指的是一个数列中的每个相邻的元素之间都有相同的差值。
通项公式是求解等差数列中任意一项的公式,而求和公式则是用于计算等差数列中前n项和的公式。
在本文中,我们将详细介绍等差数列的通项公式与求和公式,并提供一些相关的例子和推导过程。
一、等差数列的通项公式等差数列的通项公式可以表示为:An = A1 + (n-1)d其中,An表示等差数列中的第n个数,A1是等差数列的首项,d 是等差数列中的公差,n表示数列中的项数。
利用这个通项公式,我们可以轻松地求解等差数列中任意一项的数值。
下面是一个例子:例子1:求解公差为3,首项为2的等差数列中的第7项。
根据通项公式,我们可以得到An = A1 + (n-1)d。
代入已知的值,即可求解:A7 = 2 + (7-1)3 = 2 + 18 = 20因此,公差为3,首项为2的等差数列中的第7项为20。
二、等差数列的求和公式等差数列的求和公式可以表示为:Sn = (n/2)(A1 + An)其中,Sn表示等差数列前n项和,A1是等差数列的首项,An是等差数列的第n项,n表示数列中的项数。
利用这个求和公式,我们可以迅速地计算等差数列前n项的和。
下面是一个例子:例子2:计算公差为4,首项为3的等差数列的前10项和。
根据求和公式,我们可以得到Sn = (n/2)(A1 + An)。
代入已知的值,即可计算:S10 = (10/2)(3 + A10)为了求解A10,我们需要使用通项公式:A10 = A1 + (10-1)d。
代入公差d=4,首项A1=3,得到:A10 = 3 + (10-1)4 = 3 + 36 = 39将A10的值代入求和公式,即可计算出前10项的和:S10 = (10/2)(3 + 39) = 5(42) = 210因此,公差为4,首项为3的等差数列的前10项和为210。
等差数列的性质及其应用
an-am 类比直线方程的斜率公式得 d= . n-m
课前探究学习
课堂讲练互动
等差数列的“子数列”的性质 2. 若数列{an}是公差为d的等差数列,则 (1){an}去掉前几项后余下的项仍组成公差为d的等差数列; (2)奇数项数列{a2n-1}是公差为2d的等差数列; 偶数项数列{a2n}是公差为2d的等差数列 (3)若{kn}成等差数列,则{akn}也是等差数列;公差为ad (4)从等差数列{an}中等距离抽取项,所得的数列仍为等差数列, 当然公差也随之发生变化.
课前探究学习
课堂讲练互动
解 (1)法一 设等差数列的等差中项为a,公差为d, 则这三个数分别为a-d,a,a+d. 依题意,3a=6且a(a-d)(a+d)=-24, 所以a=2,代入a(a-d)(a+d)=-24, 化简得d2=16,于是d=±4, 故三个数为-2,2,6或6,2,-2. 法二 设首项为a,公差为d,这三个数分别为a,a+d,a+2d, 依题意,3a+3d=6且a(a+d)(a+2d)=-24, 所以a=2-d,代入a(a+d)(a+2d)=-24, 得2(2-d)(2+d)=-24,4-d2=-12, 即d2=16,于是d=±4,三个数为-2,2,6或6,2,-2. (2)法一 设这四个数为a-3d,a-d,a+d,a+3d(公差为2d), 依题意,2a=2,且(a-3d)(a+3d)
公差为cd的等差数列(c为任一常数) 公差为2d的等差数列(k为常数,k∈N*) 公差为pd+qd′的等差数列(p,q为常数)
(3){an}的公差为d,则d>0⇔{an}为递增数列;d<0⇔{an}为 递减数列;d=0⇔{an}为常数列.
课前探究学习 课堂讲练互动
性质分析
课前探究学习 课堂讲练互动
等差数列概念及通项公式PPT课件
首项为a1 ,公差为d的等差数列{an}的通项公式:
an = a1 + (n-1)d.
证:因为{an}为等差数列, 所以当n≥2时,有
3.在等差数列{an}中,a10= 100,
a19=10,
a1+an=0 , 求n的值.
课堂小结
1. 等差数列的概念及通项公式.
(1)数列{an}为等差数列 : an- an-1 = d (n≥2) 或 an+1- an = d
(2)通项公式an = a1 + (n-1)d. an = am + (n-m)d.
n值为( )
A.667 B.668 C.669 D.670
观察上面的数列有什么共同的特点?
一般地,如果一个数列从第二项起, 每一项减去它 的前一项所得的差都等于同一个常数, 那么这个数列就 叫做等差数列,这个常数叫做等差数列的公差,公差通常 用d表示.
数学表达式: an- an-1 = d (n≥2) an+1- an = d
练习: 判断下列数列是否为等差数列.若是,指出首项和公差.
a2-a1=d,
a3-a2=d,
……
叠加法
an-an-1=d,
将上面n-1个等式的两边分别相加,
得an-a1= (n-1)d,
所以, an= a1+(n-1)d, 当n=1时,上面的等式显然成立.
例1.在等差数列{an}中,已知a3=10, a9=28,求a12 .
等差数列的通项公式一般形式: an = am + (n-m)d.
数列与等差数列的通项公式的推导与应用
数列与等差数列的通项公式的推导与应用数列是由一组有序的数按照一定规律排列而成的序列。
而等差数列是一种特殊的数列,其相邻两项之差都相等。
在数学中,数列与等差数列的研究具有重要的理论意义和实际应用。
本文将围绕数列与等差数列的通项公式展开推导,并探究其在实际问题中的应用。
一、等差数列的推导等差数列的通项公式是由数列的前n项和与数列的首项之积,以及数列的公差所组成的公式。
下面我们来推导等差数列的通项公式。
设等差数列的首项为a₁,公差为d,数列的第n项为aₙ。
根据等差数列的定义,可知每一项与前一项的差值都相等,即有:a₂ - a₁ = a₃ - a₂ = … = aₙ - aₙ₋₁由此可得:a₂ = a₁ + da₃ = a₂ + d = a₁ + 2da₄ = a₃ + d = a₁ + 3d...aₙ = aₙ₋₁ + d = a₁ + (n - 1)d通过观察可以发现,等差数列的第n项与首项之间存在关系:aₙ = a₁ + (n - 1)d这就是等差数列的通项公式。
二、等差数列的应用等差数列的通项公式在实际问题中有着广泛的应用。
下面将介绍其中两个重要的应用领域。
1. 等差数列的求和对于前n项等差数列的求和,可以利用等差数列的通项公式进行计算。
设等差数列的前n项和为Sn,首项为a₁,末项为aₙ,则根据等差数列求和公式:Sn = (首项 + 末项) ×项数 ÷ 2将等差数列的通项公式代入,得到:Sn = (a₁ + aₙ) × n ÷ 2通过这一公式,我们可以简便地计算等差数列的前n项和,从而帮助解决实际问题。
2. 等差数列在几何问题中的应用等差数列在几何问题中也有着广泛的应用。
例如,在等差数列的应用中,我们经常会遇到形如“连续整数”的问题。
假设某等差数列的首项为a₁,公差为d,其中有连续的n项,即:a₁, a₂, a₃, ..., aₙ根据等差数列的通项公式,我们可以推导出该等差数列的最末项aₙ与首项a₁之间的关系:aₙ = a₁ + (n - 1)d由此可知,n项连续整数的和可以通过等差数列的求和公式计算得到。
等差数列的通项公式与求和公式
等差数列的通项公式与求和公式等差数列是指数列中相邻两项之差都相等的数列。
它在数学和实际问题中具有重要的应用。
本文将详细介绍等差数列的通项公式与求和公式,帮助读者更好地理解和应用等差数列。
一、等差数列的通项公式等差数列的通项公式是指可以通过已知的数列项数、首项和公差,来确定数列中任意一项的公式。
通项公式对于解决等差数列相关问题非常有用。
假设等差数列的首项为a₁,公差为d,第n项为aₙ。
通项公式可以表示为:aₙ = a₁ + (n-1)d其中,aₙ表示第n项的值,a₁表示首项的值,d表示公差。
通过这个公式,我们可以快速计算出等差数列中的任意一项的值,而无需逐项计算。
举例来说,假设等差数列的首项为3,公差为4,我们要求该数列的第10项的值。
根据通项公式,我们有:a₁ = 3d = 4n = 10代入通项公式得到:a₁₀ = 3 + (10-1)×4 = 3 + 9×4 = 3 + 36 = 39因此,该数列的第10项的值为39。
二、等差数列的求和公式除了求解等差数列中任意一项的值外,我们还常常需要计算等差数列前n项的和。
这时候就需要用到等差数列的求和公式。
假设等差数列的首项为a₁,公差为d,前n项的和为Sₙ。
求和公式可以表示为:Sₙ = n/2 × (a₁ + aₙ)其中,Sₙ表示前n项的和,n表示项数,a₁表示首项,aₙ表示第n 项。
通过这个公式,我们可以快速计算出等差数列前n项的和,并且无需逐项相加。
举例来说,假设等差数列的首项为2,公差为3,我们要求该数列的前6项的和。
根据求和公式,我们有:a₁ = 2d = 3n = 6代入求和公式得到:S₆ = 6/2 × (2 + a₆)根据通项公式,a₆ = 2 + (6-1)×3 = 2 + 5×3 = 2 + 15 = 17代入求和公式得到:S₆ = 6/2 × (2 + 17) = 3 × 19 = 57因此,该数列的前6项的和为57。
等差数列的通项公式及性质ppt课件
4
用一下
等差数列的通项公式:an a1 (n 1)d
例1.(1)求等差数列-1,5,11,17,…的第 50项。
an 3n 11 a20 49
(2)求等差数列 3,7,11,… 的第 15项;
an 4n 1 a4 69
5
例2:在等差数列{an}中: 等差数列的通项公式:
性质1: an am n m d m, n N
分例析1:: 1已在 知任等意一差项数 am及列 公差{da即n可}求中出通:项公式。
21当 若 m 1a时1,0 得an20a,1 dn1 d1. , 求an; 此32公可式变若 实形质为a反5:映an了-a3任m,意dm两项n4之 d,间.求的关a系10。 43可变若形a为3:d =5an,-aam7. 13, 求an
﹢
,
8
性质3:
若数列an 为有穷等差数列,则与首末两项等距离
的两项之和都相等。
即:a1 an a2 an1 a3 an2 ...
1. 在等差数列{an}中,a₁+a10=30,求S10= ———
9
性质4:
当d 0时,{an}是递增数列; 当d 0时,{an}是递减数列; 当d =0时,{an}是常数列;
2
…
知识点1:等差数列的通项公式
若数列{an }为等差数a2列,ad1为公d差,则
a3 a2 d
a4 a3 d
an1 an2 d
an an1 d
累加得: an a1 (n 1)d
等差数列的通项公式: an a1 (n 1)d
3
பைடு நூலகம்
点评: (1)该公式中有四个量: an 、a1、n、 d (2)四个量:an 、a1、n、d 中,任意知道三个量,可 以求出第四个量,即根据已知条件可求项或项数或公差 或首项,简称“知三求一”。 (3)已知首项a1、公差d即可求出通项公式,进而可求 出数列中的每一项。 (4)等差数列的通项公式an=a1+(n-1)d可化为an=kn+b, 即等差数列的通项公式是an关于n的一次函数
等差数列的通项公式PPT教学课件
(4).两条平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0的
距离为: d C1 C2 A2 B2
注意:
1、两直线的位置关系判断时,要注意斜率不存在
的情况
2、注意“到角”与“夹角”的区分。
3、在运用公式求平行直线间的距离 d
C1 C2
等差中项
观察如下的两个数之间,插入一个什么数后者三个数就会成 为一个等差数列:
(1)2 ,3 , 4 (3)-12, -6 ,0
(2)-1,2 ,5 (4)0, 0 ,0
如果在a与b中间插入一个数A,使a,A,b成等差数列, 那么A叫做a与b的等差中项。
A ab 2
等差数列的的例题1-2 an a1 (n 1)d
类型之二 两条直线所成的角及交点
例2、已知直线l经过点P(3,1),且被两平行
直线l1:x+y+1=0和l2:x+y+6=0截得的线段之长
为5。求直线l的方程。
y
解:若直线l的斜率不存在,则
l2 l1 A
P(3,1)
直线l的方程为x=3, 此时与l1、l2的交点分别是 A1(3,-4)和B1(3,-9), 截得的线段AB的长
解得
n 100
答:这个数列的第100项是-401.
等差数列的的例题3
例3 梯子的最高一级宽33cm,最低一级宽110cm,中间还
有10级.计算中间各级的宽.
解: 用 an 表示题中的等差数列,由已知条件,有
a1 33, a12 110 , n 12,
a12 a1 (12 1)d ,
an a1 (n 1)d
等差数列前N项和公式及应用
问题2:
学校为美化校园,决定在道路旁摆放盆景.从校门口 取出花盆到距校门1米处开始摆放,每隔1米摆放一盆,学 生小王每次拿两盆,若要完成摆放30盆的任务,最后返回 校门处,问小王走过的总路程是多少?
4m
8m
12m
60m
化归: 4+8+12+…+60=?
4m 8m
56m
60m
4 + 8 +12 +…+52+56+60=?S15 60+56+52 +…+12+ 8 +4 =?S15
(4 60) 15 2S15 S15 480.
答:小王走过的总路程是 480 米.
1 2 3 98 99 100 ?S100
100 99 98 3 2 1 ?S100
S100
(1 100) 00 2
5050
.
如图,工地有上一堆圆木,从上到下每 层的数目分别为1,2,3,……,10。 问共有多少根圆木?请用简便的方法计 算。
2.3.1 等差数列的前n项和(1)
一、温故知新
等差数列的通项公式:
an a1 (n 1)d (d为常数)
等差数列的性质: 对任意的m, n, p, q N , 且m n p q
则有: am an ap aq
二、新课引入
泰姬陵坐落于印度 距首都新德里200多 公里外的北方邦的阿 格拉市,是十七世纪 莫卧儿帝国皇帝沙杰 罕为纪念其爱妃所建, 她宏伟壮观,纯白大 理石砌建而成的主体 建筑令人心醉神迷, 陵寝以宝石镶嵌,图 案细致,绚丽夺目、美 丽无比,令人叫绝.成 为世界八大奇迹之一.
Sn
n(a1 2
必修五等差数列的通项公式题型总结
§2.2 等差数列§2.2.1 等差数列的概念及通项公式学习目标1. 理解等差数列的定义.2. 会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3. 掌握等差中项的概念.知识点一 等差数列的概念 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,可正可负可为零. 知识点二 等差中项的概念如果三个数a ,A ,b 组成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b 2. 知识点三 等差数列的通项公式若一个等差数列{a n },首项是a 1,公差为d ,则a n =a 1+(n -1)d .此公式可用累加法证明题型分析类型一 等差数列的概念例1 判断下列数列是不是等差数列?(1)9,7,5,3,…,-2n +11,…;(2)-1,11,23,35,…,12n -13,…;(3)1,2,1,2,…;(4)1,2,4,6,8,10,…;(5)a ,a ,a ,a ,a ,….跟踪训练1 数列{a n }的通项公式a n =2n +5,则此数列( )A.是公差为2的等差数列B.是公差为5的等差数列C.是首项为5的等差数列D.是公差为n 的等差数列类型二 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c 使这五个数成等差数列,求此数列.跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项.类型三 等差数列通项公式的求法及应用命题角度1 基本量(a 1,d )的计算例3 在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n .跟踪训练3 (1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?命题角度2 等差数列的实际应用例4 某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4 km(不含4 km)计费10元,如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?跟踪训练4 在通常情况下,从地面到10 km 高空,高度每增加1 km ,气温就下降某一个固定数值.如果1 km 高度的气温是8.5℃,5 km 高度的气温是-17.5℃,求2 km ,4 km,8 km 高度的气温.1. 下列数列不是等差数列的是( )A.1,1,1,1,1B.4,7,10,13,16C.13,23,1,43,53D.-3,-2,-1,1,2 2. 已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( )A.2B.3C.-2D.-33. 已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( )A.30°B.60°C.90°D.120°4. 已知等差数列-5,-2,1,…,则该数列的第20项为( )A.52B.62C.-62D.-525. 已知等差数列1,-1,-3,-5,…,-89,则它的项数是( )A.92B.47C.46D.45课堂练习课堂练习一、选择题1. 若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( )A.公差为1的等差数列B.公差为13的等差数列C.公差为-13的等差数列 D.不是等差数列 2. 在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( )A.52B.51C.50D.493. 若a ≠b ,则等差数列a ,x 1,x 2,b 的公差是( )A.b -aB.b -a 2C.b -a 3D.b -a 44. 已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( )A.15B.22C.7D.295. 等差数列20,17,14,11,…中第一个负数项是( )A.第7项B.第8项C.第9项D.第10项6. 若5,x ,y ,z,21成等差数列,则x +y +z 的值为( )A.26B.29C.39D.527. 一个等差数列的前4项是a ,x ,b,2x ,则a b等于( ) A.14 B.12 C.13 D.238. 已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( )A.15B.30C.31D.64二、填空题9. 若一个等差数列的前三项为a ,2a -1,3-a ,则这个数列的通项公式为________.10. 现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.11. 首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.三、解答题12. 在数列{a n }中,a 1=1,a n +1=2a n +2n ,设b n =a n 2n -1. (1)证明:数列{b n }是等差数列;(2)求数列{a n }的通项公式.13. 已知等差数列{a n }:3,7,11,15,….(1)135,4m +19(m ∈N *)是{a n }中的项吗?试说明理由;(2)若a p ,a q (p ,q ∈N *)是数列{a n }中的项,则2a p +3a q 是数列{a n }中的项吗?并说明你的理由.四、探究与拓展14. 已知数列{a n}中,a1=1,a n-1-a n=a n a n-1(n≥2,n∈N*),则a10=________.15. 已知数列{a n}满足:a1=10,a2=5,a n-a n+2=2(n∈N*),求数列{a n}的通项公式.。
等差数列的通项公式课件
(2)-401是不是等差数列-5,-9, -13,…的项?如果是,是第几项?
解: a1 5, d 9 ( 5) 4 a
a 4n 1 n
n
5 ( n 1) ( 4)
401 4n 1 n 100
401是该数列的第100项
一、教学目标:
1、利用等差数列的定义,证明一个数列 是否为等差数列
2、利用等差数列的通项公式,会求一个
数列的通项
二、教学难点
利用定义证明一个数列是等差数列
三、学情分析:
数列是特殊的函数,学生刚开始学习数列 有点不习惯,故教学过程稍微慢一点,利用 定义证明的步骤在教学过程再细一点。
等差数列
四、教学过程:
如果一个数列从第二项起,每一项与它 的前一项的差等于同一个常数,那么这个数 列就叫做等差数列,常数叫做数列的公差,
用字母d表示:
即:an-an-1=d (n≥2) d为常数
练习:试判定下面给出的数列是否为等 差数列;若是等差数列,求出公差d。
① 3,5,7,9,11,13,… d=2 ② 2,3,5,7,9,11,13,… d=0 ③ 2,2,2,2,2,2,2,…
例2 在等差数列{an}中,已知a5=10,a12=31, 求首项a1 与 公差 d。
an=a1+(n-1)d
解: a5 a1 4d 10 a12 a1 11d 31
a1 2,
d 3
例3 梯子的最高一级宽33cm,最低一级宽 110cm,中间还有10级.各级的宽度为等差数列,计 算中间各级的宽. 解: 用 {an } 表示题中的等差数列,由已 知条件,有 a1 33, a12 110, n 12, a12 a1 (12 1)d ,
等差数列及其通项公式ppt课件
新课探索
一般地,如果一个数列从第 2 项起,每一项与它的 前一项之差都等于同一个常数,那么这个数列称为等差数列, 这个常数叫作等差数列的公差,公差通常用字母 d 表示.
数列①、②、③均为等差数列, 它们的公差分别为-0.5,2%,4.
显然,若数列{an}为等差数列,那么它的递推关系为: an-an-1=d,n≥2 ; an+1-an = an-an-1,n≥2.
1.2.1 等差数列及其通项公式
温故知新
数列的通项公式: 如果数列{an}的第n项an,可以用关于n的一个公式表示,
那么这个公式就称为数列{an}的通项公式.
数列的递推公式: 如果数列{an}的任一项an+1与它的前一项an之间的关系可
用一个公式来表示,即an+1 =f (an),n≥1,那么这个公式就叫作 数列{an}的递推公式;a1称为数列{an}的初始条件.
归纳小结
性质2 如果an,am,ap,aq为等差数列{an}的项,且n+m=p+q, (n,m,p,q∈N+)那么
an+ am = ap+ aq. 特别地,若n+m=2p,那么 an+ am = 2ap. 证明:记等差数列{an}的公差为d,则
an=a1+(n-1)d, am=a1+(m-1)d, ap=a1+(p-1)d,aq=a1+(q-1)d, 所以 an+am =2a1+(n+m-2)d, ap+aq=2a1+(p+q-2)d, 又 n+m=p+q,所以 an+am = ap+aq .
新课探索
当n=1时,等式两边均为a1,这表明该等式对任意n∈N+都成立, 因此等差数列{an}通项公式为:
an=a1+(n-1)d(n∈N+)
新课探索
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=2a1+(p+q-2)d ——②
am+an =ap +aq
情境导入
新知识
知识巩固
第3 页
结论 等差数列的性质
若m+n=p+q ,则am+an=ap+aq
情境导入
新知识
知识巩固
第4 页
若m+n=p+q,则am+an=ap+aq
基础练习 等差数列{an}中
∴a1 =-1
前情回顾
新知识
知识巩固
一题多解
第7 页
an=am + (n-m)d
例题 已知等差数列的第3项是5,第8项是20,求它 的首项与公差.
另解:
a3 =5, a8 =20 a8 = a3 +(8-3)d 20= 5+5d
5d = 15
d= 3
又∵a3=a1 +2d 5=a1 +6
∴a1 =-1
②-① 5d =15
d=3 代入①式
a1=-1
∴首项是-1,公差是3.
前情回顾
新知识
知识巩固
探究 等差数列中任意两项an与am间的关系?
根据等差数列的通项公式:(不妨设n>m)
an= a1+(n-1)d am= a1+(m-1)d
① ②
①-②
an-am= (n-1)d-(m-1)d
=[(n-1)-(m-1)]d
第六章 第6讲
等 差数列通项公式的 应用
前情回顾
新知识
知识巩固
等差数列的通项公式
an a1 (n 1)d
前情回顾
新知识
知识巩固
第3 页
an a1 (n 1)d
例题 已知等差数列的第3项是5,第8项是20,求它 的首项与公差.
解: a3 =5, a8 =20 a1 +2d =5 ① a1 +7d =20 ②
2a6 9
a6
9 2
前情回顾
新知识
知识巩固
第8 页
本讲小结
等差数列通项公式 的推广
an= am+(n-m)d
任意两项之间的关系
等差数列的性质
若m+n=p+q,则am+an=ap+aq
探究
情境导入
新知识
等差数列的性质
知识巩固
等差数列
a1 a2 a3 a4 a5 a6 a7 a8 a9 1 3 5 7 9 11 13 15 17
1+9=10 2+8=10 3+7=10 4+6=10 5+5=10
a1+a9=1+17=18 a2+a8=3+15=18 a3+a7=5+13=18 a4+a6=7+11=18 a5+a5=9+9=18
a8 a9 15 17
情境导入
新知识
知识巩固
等差数列的性质
第2 页
? 探究 m+n=p+q, am+an=ap+aq
解:
am =a1+(m-1)d an =a1+(n-1)d
ap =a1+(p-1)d aq =a1+(q-1)d
am +an =2a1+(m-1)d+(n-1)d =2a1+(m+n-2)d ——①
2. a 7 a34d
前情回顾
新知识
知识巩固
一题多解
第7 页
an=am + (n-m)d
例题 已知等差数列的第3项是5,第8项是20,求它 的首项与公差.
另解:
a3 =5, a8 =20 a8 = a3 +(8-3)d 20= 5+5d
5d = 15
d= 3
又∵a3=a1 +2d 5=a1 +6
(1)a8+a4=a3+ a9 . (2)a5+a3=-2,则a1+a7=-2 .
(3)a1+a9 =8,a3=5,则a7= 3 .
情境导入
新知识
知识巩固
第5 页
例题 等差数列{an}中,
已知 a3 a5 a7 a9 18,求(1)a1 a11
5 a7 a1 a11 又 a3 a5 a7 a9 (a3 a9 ) (a5 a7 )
情境导入
新知识
知识巩固
等差数列的性质
第2 页
? 探究 m+n=p+q, am+an=ap+aq `
等差数列
a1 a2 a3 a4 a5 a6 a7 1 3 5 7 9 11 13
1+9=10 2+8=10 3+7=10 4+6=10 5+5=10
a1+a9=1+17=18 a2+a8=3+15=18 a3+a7=5+13=18 a4+a6=7+11=18 a5+a5=9+9=18
=(n-1-m+1)d
=(n-m)d an-am=(n-m)d
前情回顾
新知识
知识巩固
等差数列通项公式的推广
等差数列中任意两项an与am间的关系:
an=am+(n-m)d
等差数列通项公式的推广
前情回顾
新知识
知识巩固
第6 页
an=am + (n-m)d
基础练习 填上下列各题所缺的项
1. aa11) (2a1 a11)
2(a1 a11) 18
a1 a11 9
情境导入
新知识
知识巩固
第6 页
例题 等差数列{an}中,
已知 a3 a5 a7 a9 18,求(1)a1 a11
解:
(2)a6
a1 a11 a6 a6 2a6
由(1)知 a1 a11 9