基因工程常用工具酶及应用
分子生物学实验常用工具酶总结
现代分子生物学实验手册工具酶基因工程:在人工可以控制条件下,将基因剪切或重新组合,再导入另一生物体内,使这些基因在其中表达并遗传下去的一门技术。
核心:对基因进行人工切割、连接和重新组合,构建重组DNA。
工具酶:在基因工程的重组DNA过程中,所需要用到的酶的统称。
一、限制性内切酶(restriction endonuclease)主要功能:对外源性的双链DNA进行切割、水解,不允许外源性DNA存在于细菌自身细胞内。
(这种酶能对在自身细胞内存在的DNA种类给予限制——限制性内切酶)限制-修饰系统:合成限制性内切酶的细胞,其自身的DNA不受酶的切割,这是因为细菌细胞还会合成一种修饰酶,可以对自身DNA进行修饰,即改变DNA 原来具有的可以被限制性内切酶识别的核酸顺序结构,从而不被限制性内切酶识别及切割、水解。
保护自身遗传物质稳定的机制。
限制性内切酶:从原核生物中发现的,约600种,可识别108种不同的特定DNA顺序。
以内切方式水解核酸链中的磷酸二酯键,产生DNA片段的5’端为P,3’端为- OH。
命名:获得该酶的细菌属名的第一个字母(大写)+该菌种名的前两个字母(小写)+株系的字母(小写)或数字+罗马数字(同一株菌种不同内切酶的编号)例:细菌属名细菌种名菌株名称限制酶名称Arthrobacter luteus Alu I Escherichia coli RY13Eco R IH Ham H IBacillus amyloliquefaciensHaemophilus influenzae Rd Hin d III(一)三种常用内切酶1. I型限制性内切酶同时兼有切割DNA的功能和修饰酶的修饰功能。
在酶的识别位点上,若DNA两条链菌没有发生甲基化,则行使内切酶的功能,对DNA进行切割,同时转变成ATP酶。
若DNA双链中有一条链已发生甲基化,则此类酶显示修饰酶的作用,对另一条DNA进行甲基化修饰,然后在行切割功能。
基因工程常用的工具酶
2024/10/14
.
6
识别序列呈典型的旋转对称型回文结构
EcoR I的切割位点
EcoR I的识别序列
5‘ … G C T G A A T T C G A G … 3’ 3‘ … C G A C T T A A G C T C … 5’
回文结构:两条核苷酸链的核酸序列呈双重旋转对称排列的 DNA双螺旋结构
2024/10/14
.
14
第三节 DNA聚合酶
2024/10/14
.
15
DNA聚合酶:能够催化DNA复制和修复DNA分子损伤 的一类酶
❖作用特点
能够把脱氧核苷酸分子连续的加到DNA分子引物链的3’-OH末端,催 化核苷酸的聚合
❖作用条件
➢ 脱氧核苷酸原料:四种脱氧核苷三磷酸dNTP(dATP、dTTP、 dCTP、dGTP)
属名
种名
株名
Haemophilus influenzae d
HindΙ、 HindⅡ、 Hind Ⅲ
不同限制修饰系统
2024/10/14
.
4
三、Ⅱ型限制酶的特性-识别序列
识别双链DNA分子中特定的4 - 8对核苷酸序列
EcoR I的切割位点
EcoR I的识别序列
5‘ … G C T G A A T T C G A G … 3’ 3‘ … C G A C T T A A G C T C … 5’
5‘ HO 3‘ HO
T4-PNP
5‘ p 3‘ HO
OH 3‘ OH 5‘
Mg2+ pppATP(g-32P-ATP)
OH 3‘
5‘ HO
BAP / CIP
基因工程基因工程工具酶
基因工程工具酶引言基因工程是一门利用重组DNA技术来改变生物体遗传性状的学科。
在基因工程的过程中,基因工程工具酶发挥着关键的作用。
本文将介绍几种常用的基因工程工具酶,包括限制性内切酶、连接酶和修饰酶。
一、限制性内切酶1.1 定义限制性内切酶(Restriction Enzyme)是一类具有特异性切割DNA双链的酶。
它可以识别并切割DNA的特定序列,通常这个序列是对称的,在切割后会产生特定的片段。
1.2 工作原理限制性内切酶能够通过识别和结合DNA的特定序列来进行切割。
它们通常识别的序列是4到8个碱基对长,具有一定的对称性。
一旦内切酶与特定序列结合,它会切断DNA的链,在特定的位置形成断裂,从而将DNA切割成特定的片段。
1.3 应用限制性内切酶在基因工程中有着广泛的应用。
它们可以用于构建基因工程载体、进行DNA片段的精确克隆等。
通过选择适当的限制性内切酶,可以对DNA进行特定的切割和连接,从而实现对目标基因的定向操作。
二、连接酶2.1 定义连接酶(Ligase)是一种酶类,能够将两条DNA片段连接起来。
在基因工程中,连接酶通常被用于连接目标基因和载体。
2.2 工作原理连接酶通过催化两条DNA片段之间的磷酸二酯键的形成来连接DNA。
它可以将两条具有互补末端的DNA片段连接在一起,形成一个新的DNA分子。
2.3 应用连接酶在基因工程中的应用非常广泛。
它们可以用于构建重组DNA分子、进行目标基因的插入等。
通过连接酶的作用,可以将多个DNA片段连接起来,构建出符合需要的重组DNA分子。
三、修饰酶3.1 定义修饰酶是指能够修饰DNA分子的酶类。
在基因工程中,修饰酶通常被用于添加或去除特定的DNA序列。
3.2 工作原理修饰酶可以通过催化酸解或碱解反应来改变DNA分子的结构。
它们可以添加或去除DNA上的甲基基团、酶解酶切位点等。
3.3 应用修饰酶在基因工程中起着重要的作用。
它们可以用于DNA甲基化的分析、目标基因的修饰等。
基因工程-工具酶
基因敲入
2
能。
利用工具酶将外源DNA片段整合到目标基
因中,实现新基因的表达。
3
基因编辑
通过工具酶修饰目标基因的特定碱基, 实现精确的基因改造。
农业、医药和工业领域的应用
农业
利用基因工程和工具酶,开发抗 虫、抗病、耐旱和高产的转基因 作物。
医药
工具酶在基因治疗中起着关键作 用,用于修复人类遗传病和癌症 等疾病的基因。
基因工程-工具酶
基因工程是利用DNA技术对生物体进行改造的科学,工具酶在基因工程中起 着至关重要的作用。
工具酶的作用
工具酶是基因工程中的重要工具,用于切割、连接和修饰DNA分子,使得科 学家能够精确操控基因。
常用的工具酶类型
限制酶
识别和切割DNA序列,用于定位和克隆特定基因。
连接酶
将不同DNA片段连接在一起,构建重组DNA分子。
修饰酶
对DNA分子进行修饰,如甲基化、去甲基化等。
造极酶
用于扩增DNA序列,如聚合酶链反应(PCR)中 的DNA聚合酶。
工具酶的工作原理
工具酶通过与DNA特定序列的互作用,识别并结合到目标序列上,然后以特 定的方式切割、连接或修饰DNA分子。
பைடு நூலகம்
基因修饰的方法
1
基因敲除
通过工具酶切割目标基因,使其失去功
工业
利用工具酶进行工业发酵,生产 各种化学品、药物和生物燃料。
挑战和限制
• 技术限制:某些DNA序列难以切割或修饰。 • 安全问题:基因修饰可能带来意想不到的风险和后果。 • 伦理考虑:对基因工程的道德和伦理问题需引起广泛关注。 • 法律和监管:基因工程面临严格的法律和监管要求。
基因工程常用的工具酶
农作物的产量和质量。
医学领域
基因工程被用于治疗遗传性疾 病、癌症、感染性疾病等,以 及制备疫苗和单克隆抗体。
工业领域
基因工程被用于生产高价值的化 学品、生物燃料和生物材料等, 降低生产成本和提高产品质量。
基础研究
基因工程被用于研究基因的结构 和功能、蛋白质的表达和调控等
常见的限制性核酸内切酶包括EcoRI、BamHI、HindIII等。
DNA聚合酶
DNA聚合酶是催化DNA复制过程中 DNA聚合反应的酶。
常见的DNA聚合酶包括Taq酶和T7噬 菌体DNA聚合酶等。
DNA聚合酶具有合成DNA的功能,可以在 模板DNA的指导下,将脱氧单核苷酸逐个加 到引物RNA的3'-OH末端,形成新的互补链 。
,促进生命科学领域的发展。
02 基因工程常用的工具酶概 述
工具酶的定义与分类
定义
工具酶是指用于基因工程操作的一类 酶,能够催化DNA或RNA的切割、连 接、修饰等反应,是基因工程实验中 必不可少的工具。
分类
根据功能的不同,工具酶可以分为限 制性核酸内切酶、DNA聚合酶、反转 录酶、T4核酸连接酶等。
工具酶在生物制药和农业生产中应用广泛,如基因工程的抗体药物、疫
苗、农作物改良等领域,能够提高产品的产量和质量。
工具酶的来源与生产
来源
工具酶主要来源于微生物、植物和动 物等生物体,其中微生物来源的酶是 最常用的。
生产
工具酶的生产通常采用基因工程技术 ,通过克隆和表达酶的基因来获得相 应的酶蛋白,再经过纯化和复性等步 骤得到高活性的工具酶。
VS
转录激活因子
激活特定基因的表达,实现基因治疗。
试论述基因工程的操作步骤和工具酶
试论述基因工程的操作步骤和工具酶下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!探讨基因工程的操作步骤和工具酶在现代生物技术领域中,基因工程是一项关键的技术,它为我们改变生物体的基因组提供了有力的工具。
基因工程的工具酶
T
T
A
G
C
C
G
怎样切? • 基因的剪刀——限制性内切酶(简称限制酶)
例:大肠杆菌(E.coli)的一种限制酶能识别GAATTC序列,并在G和A之间切开。
限制酶
限制酶
几种II型限制性核酸内切酶的酶切位点
Pst I
Provindencia stuartii 164
Haemophilus influenzae Rd
4363 pBR322物理图谱
练习题
为了绘制长为3.0kb BamH Ⅰ限制性片段的限制性图谱,分别用EcoR Ⅰ、Hpa Ⅱ、 EcoR Ⅰ+Hpa Ⅱ消化这一片段的三个样品,然后通过凝胶电泳分离DNA片段,溴化乙锭染色后观 察DNA带型。请根据这些结果绘制一个限制性图谱,要标明EcoR Ⅰ和Hpa Ⅱ识别位点间的 相对位置,以及它们之间的距离(kb)。
现非特异性的DNA片段的现象。 易产生星活性的内切酶用*标记。如:EcoR I*
造成星活性参数 甘油浓度12-20%,酶与DNA比例,离子强度,45%聚乙二醇(PEG),有机溶剂,8%二甲基
亚枫,二价阳离子,12%
限制性内切酶的应用
1、重组DNA前的切割 2、构建新质粒 3、构建物理图谱 4、DNA分子杂交 5、制备DNA探针 6、亚克隆以用作序列分析 7、基因定位,DNA同源性研究。
A. 连接的两条链必须分别具有 3′端自由羟基(-OH)和5 ′端磷酸基团(-P),而且只有这两 个基团彼此相邻时才能进行连接反应;
B. 在羟基和磷酸基团间形成磷酸二酯键是一种耗能过程,因此连接反应必须有能量分子的参与, 通常有两种能量分子,即ATP和NAD+。
是两条链-因此不能将两条单链连接起来或使单链环化起来。
《基因工程的工具——酶与载体》 知识清单
《基因工程的工具——酶与载体》知识清单基因工程作为现代生物技术的核心领域之一,为人类带来了前所未有的机遇和挑战。
而在基因工程中,酶和载体是至关重要的工具,它们就像是工匠手中的精巧工具,帮助我们实现对基因的精确操作和转移。
一、基因工程中的酶1、限制性内切酶限制性内切酶,也被称为“分子剪刀”,是基因工程中最重要的工具酶之一。
它能够识别特定的核苷酸序列,并在特定的位点将 DNA 分子切断。
这种特性使得我们能够从复杂的 DNA 分子中切取特定的基因片段。
不同的限制性内切酶识别的序列不同,这为基因工程的操作提供了丰富的选择。
限制性内切酶的作用就像是一把精准的剪刀,能够在 DNA 这个长长的“绳子”上剪出我们需要的特定片段。
比如,EcoRI 能识别GAATTC 序列,并在 G 和 A 之间切断 DNA 双链。
2、 DNA 连接酶当我们用限制性内切酶切下所需的基因片段后,需要将它们与其他DNA 片段连接起来,这时候就轮到 DNA 连接酶发挥作用了。
DNA 连接酶能够将两个具有相同黏性末端或平末端的 DNA 片段连接在一起,形成一个完整的 DNA 分子。
想象一下,DNA 连接酶就像是一个“胶水”,把被剪开的 DNA 片段重新粘在一起,使它们成为一个连续的整体。
3、 DNA 聚合酶在基因工程中,DNA 聚合酶常用于 DNA 的复制和扩增。
例如,PCR(聚合酶链式反应)技术就依赖于耐高温的 Taq DNA 聚合酶。
通过 PCR 技术,我们可以在体外大量扩增特定的 DNA 片段,为后续的实验和应用提供足够的材料。
4、反转录酶反转录酶能够以 RNA 为模板合成互补的 DNA(cDNA)。
这在获取真核生物的基因时非常有用,因为真核生物的基因中含有内含子,而通过反转录得到的 cDNA 不含内含子,更便于在原核生物中表达。
二、基因工程中的载体1、质粒质粒是一种存在于细菌细胞质中的小型环状 DNA 分子。
它具有自主复制能力,可以在细菌细胞内独立存在和复制。
第二章基因工程中常用的工具酶
第二章 基因工程中常用的工具酶限制性内切酶—主要用于DNA 分子的特异切割分子的特异切割DNA 甲基化酶—用于DNA 分子的甲基化分子的甲基化 核酸连接酶—用于DNA 和RNA 的连接的连接核酸聚合酶—用于DNA 和RNA 的合成的合成核酸酶—用于DNA 和RNA 的非特异性切割的非特异性切割核酸末端修饰酶—用于DNA 和RNA 的末端修饰的末端修饰其它酶类--用于生物细胞的破壁、转化、核酸纯化、检测等。
用于生物细胞的破壁、转化、核酸纯化、检测等。
§2-1 核酸内切限制酶定义:核酸内切限制酶是一类能够识别双链DNA 分子中的某种特定核苷酸序列,并由此切割DNA 双链结构的核酸内切酶。
双链结构的核酸内切酶。
到目前为止已经从许多种不同的微生物中分离出了2300种以上不同的核酸内切限制酶。
种以上不同的核酸内切限制酶。
核酸内切限制酶的发现及其生物功能(图)一 、限制修饰系统的种类(图)限制修饰系统的种类(图)二、 限制性内切酶的定义、命名1. 定义:广义指上述三个系统中的限制酶;广义指上述三个系统中的限制酶;狭义指II 型限制酶。
型限制酶。
2. 命名:限制酶由三部分构成,即菌种名、菌系编号、分离顺序。
限制酶由三部分构成,即菌种名、菌系编号、分离顺序。
例如:Hin d Ⅲ 前三个字母来自于菌种名称H. influenzae ,“d”表示菌系为d型血清型;“Ⅲ”表示分离到的第三个限制酶。
表示分离到的第三个限制酶。
Eco RI RI——Escherichia coli RI RI Hin d Ⅲ—Haemophilus influensae d ⅢSac I (II)—Streptomyces achromagenes I (Ⅱ)三、Ⅰ型和Ⅲ型核酸内切限制酶的缺点a.Ⅰ型核酸内切限制酶虽然能够识别DNA 分子中的特定序列,但它们的切割作用却是随机的,在距特异性位点至少1000bp 的地方可以随机地切割DNA 分子,因此这类酶在基因克隆中显然是没有用处的。
基因工程制药技术 基因工程常用工具
三、基因载体2、载体选择标准能自主复制具有两个以上的遗传标记物,便于重组体的筛选和鉴定有克隆位点(外源DNA插入点)即多个单一酶切位点分子量小,以容纳较大的外源DNA3、常用载体质粒DNA噬菌体DNA病毒DNA
Part2 基因工程操作工具
三、基因载体(1)质粒DNA存在于细菌染色体外的小型环状DNA分子具有自我复制功能(松弛、严紧)带有抗性基因及表型识别等遗传性标记物。经改造后具有多克隆位点
Part2 基因工程操作工具
二、DNA连接酶2、不同的DNA连接酶对比
连接酶
底物
辅助因子和激活因子
温度
巯基试剂
黏性末端
平末端
DNA-RNA杂合体
RNA-RNA杂合体
大肠杆菌DNA连接酶
可行
可行
不行
不行
NAD+,Mg2+(1~3mmol/L)
黏性末端:10~15 ℃补平缺口:37 ℃
无
T4DNA连接酶
生化制药工艺
项目五 基因工程制药
1
基因工程的概念
2
基因工程操作工具
3
基因工程操作流程
目ቤተ መጻሕፍቲ ባይዱ录
CONTENTS
基因工程常用工具
02
Part2 基因工程操作工具
一、基因工程操作工具1、基因工程操作要求基因的大小以纳米计算,要对它进行剪切、拼接等操作,没有非常精细的工具是无法进行的。2、基因工程操作工具“分子手术刀”----限制性核酸内切酶 “分子缝合针” ---- DNA连接酶 “分子运输车” ----载体
Part2 基因工程操作工具
二、限制性内切酶1、工具酶
工 具 酶
功 能
基因工程3-3基因操作的工具酶
对于限制性核酸内切酶EcoR I切割后形成的5’ 延伸末端可用32PdATP标记:
而BamH I切割后形成的5’延伸末端可用
32PdGTP标记:
3.3.3 T4 DNA聚合酶 是从T4噬菌体感染的大肠杆菌中分离纯化的一
种特殊的DNA聚合酶。
合成的方向移动——缺口平移(Nick
Translation)。
应用缺口平移法制备DNA杂交探针,其典型的 反应体系是:在25 l总体积中含有1 g纯化的特 定的DNA片段,并加入适量的DNase I、pol I、 32PdNTP和未标记的dNTP。
脱氧核糖核苷酸酶 I(DNase I)是一种内切酶, 它能够水解单链或双链DNA,形成带有5’-磷酸 末端的单(寡)核苷酸。
1. T4 DNA聚合酶也是一种多功能酶:
(1) 5’ 3’的聚合酶活性 (2) 3’ 5’的外切酶活性
其外切酶活性比E.coli DNA Pol I 的活性高200倍。
(3) 取代反应活性
如果在反应混合物中仅存在一种dNTP,则此酶的3’ 5’ 外切酶活性将从dsDNA的3’末端降解,直到互补于这个 dNTP的碱基出现为止,然后在这一位置发生取代反应。
A,故加入寡聚dT后,mRNA就可以成为逆转录酶很好的模 板,由此可合成cDNA。
(2) DNA依赖的DNA聚合酶 以ssDNA为模板,以带有3’-OH末端的DNA
片段为引物,沿5’ 3’方向合成DNA链。
可在新合成的DNA链上合成另一条互补DNA。
(3) 外切RNA酶活性 底物是RNA-DNA杂交分子中的RNA链,其水
2. T4 DNA聚合酶在基因工程中的应用
(1) 以填充反应标记带有5’延伸末端的dsDNA片 段
《基因工程的工具——酶与载体》 知识清单
《基因工程的工具——酶与载体》知识清单一、基因工程简介基因工程,又称为重组 DNA 技术,是指按照人们的愿望,进行严格的设计,通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
它是在分子水平上对基因进行操作的复杂技术,而实现这一技术的关键就在于一系列特殊的工具,其中酶和载体起着至关重要的作用。
二、基因工程中的酶1、限制性核酸内切酶(限制酶)限制酶是能够识别双链 DNA 分子的某种特定核苷酸序列,并使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开的酶。
限制酶具有特异性,即一种限制酶只能识别一种特定的核苷酸序列,并在特定的切点上切割 DNA 分子。
例如,EcoRⅠ限制酶只能识别GAATTC 序列,并在 G 和 A 之间切断磷酸二酯键。
限制酶切割DNA 分子产生的末端有两种类型:黏性末端和平末端。
黏性末端是指被限制酶切开的 DNA 双链的切口,带有几个伸出的核苷酸,它们之间正好互补配对;平末端则是指切口平整,不带有伸出的核苷酸。
2、 DNA 连接酶DNA 连接酶的作用是将两个具有相同末端(如黏性末端或平末端)的 DNA 片段连接起来,形成一个完整的 DNA 分子。
DNA 连接酶与限制酶的作用相反,它通过催化磷酸二酯键的形成,将断开的 DNA 片段重新连接起来。
3、 DNA 聚合酶在基因工程中,DNA 聚合酶常用于 DNA 片段的扩增,如 PCR 技术(聚合酶链式反应)。
PCR 技术中使用的热稳定 DNA 聚合酶(Taq 酶)能够在高温环境下保持活性,不断地将脱氧核苷酸加到引物的 3'端,使 DNA 链得以延伸。
4、反转录酶反转录酶能够以 RNA 为模板合成互补的 DNA 链,即 cDNA。
这在获取目的基因时非常有用,例如从真核生物细胞中提取出mRNA,然后通过反转录酶合成 cDNA,再进行后续的基因操作。
三、基因工程中的载体1、载体的作用载体在基因工程中主要起到运输目的基因的作用,它能够将目的基因导入到受体细胞中,并使其在受体细胞中稳定存在和表达。
基因工程原理-Principle-of-Gene-Engineering【可编辑全文】
一. 甲基化酶的种类与识别顺序 1. 限制修饰系统I、II、III型中的甲基化酶 三个系统中的甲基化酶可使细菌DNA分子中的胞嘧啶和腺嘌呤发生甲基化,形成5’-甲基胞嘧啶和6’-甲基腺嘌呤: 在DNA重组实验中,常用的甲基化酶属于II型,它与相应的限制酶的识别顺序相同,其甲基化位点与限制酶作用位点可同可不同。 如:M. EcoRI GA mATTCC EcoRI G AATTC 不同 M.HpaI C mCGG HpaI C CGG 相同
3)对称性—双对称 EcoRI 5’-G A A T T C-3’ 3’-C T T A A G-5’ 4)切点大多数在识别顺序之内,也有例外 5)限制酶切后产生两个末端,末端结构是5’-P和3’-OH 2. 末端种类 1)3’-端突起,个数为2或4个核苷酸 Pst I 5’-CTGCAG-3’ 5’-CTGCA G-3’ 3’-GACGTC-5’ 3’-G ACGTC-5’ 2)5’-端突起,个数为2或4个核苷酸 EcoRI 5’-GAATTC-3’ 5’-GOH PAATTC-3’ 3’-CTTAAG-5’ 3’-CTTAAP HOG-5’
第一节 限Leabharlann 性内切核酸酶一 . 限制性内切酶的发现 1. 细菌限制修饰系统的发现 Werner Arber于1962-1968年发现,1968年分离到I型限制酶。 2. 限制酶HindII的发现 H.O.Smith 和Wilox 于1970年首次从流感嗜血杆菌(H. influenzae)中发现并分离到HindII限制酶。 3. SV40 限制图谱和转录图谱的绘制 D. Nathans(1971年)用HindII绘制SV40的限制酶谱。
2. E.coli 的dam、dcm甲基化酶 这类甲基化酶与限制酶无关,不构成相应的限制修饰系统。 dam G mATC, dcm C mCA/TGG 3. 哺乳动物的甲基化酶 该酶可使CG中的胞嘧啶甲基化,其甲基化反应与DNA复制、基因转录等过程有关。 4. E.coli中依赖于甲基化的限制修饰系统mrr(mA/A)、mcr(Am5CG)、merB(Pum5C)
基因工程的主要工具酶及其功能
基因工程的主要工具酶及其功能基因工程,听起来有点高大上是不是?不过,别紧张,其实它就是通过一些技术手段去“修修补补”我们基因里的东西,改改它们的“工作方式”。
你想想,就像是给手机换个更强大的处理器,或者把家里的WiFi升级成超速光纤,基因工程就是想通过这种方法让某些生物更强大、效率更高。
你可能会想,基因工程到底怎么做到的?答案就是:它有一堆超级厉害的工具,而这些工具的幕后英雄,正是酶。
对,就是那些在生物体内帮忙做各种“化学工作”的小能手。
酶是啥?简而言之,酶就是大自然的“万能钥匙”,它们能帮助我们剪、粘、拼接、修复、拆解基因链。
没有它们,基因工程可能就成了空谈。
所以,酶就是基因工程的“主力军”,它们有着不可或缺的地位。
就像我们上学时,如果没有老师的引导,知识就没法传授到我们手里;如果没有酶的帮助,基因操作也是无从下手。
首先要聊聊的是“限制性内切酶”,这是基因工程中最常见的一种酶,简直可以说是基因“剪刀”。
它的功能很简单却非常强大——它能在特定的DNA序列上找到并切割掉不需要的部分,哎呀,这就像你在看视频时用剪辑软件裁掉那些你觉得无聊的部分,留下一段精简有趣的内容。
限制性内切酶其实是自然界中细菌用来对抗病毒入侵的一种防御武器,它通过切割外来病毒的DNA来保护自己。
科学家们聪明地发现,利用这些“剪刀”可以方便地切割我们想要的DNA片段,从而为基因工程的“拼图”提供了素材。
要聊的是“连接酶”。
你可以把连接酶想成是基因工程中的“胶水”。
有了限制性内切酶剪出DNA片段之后,这些片段就需要拼接起来,才能形成新的基因。
连接酶就是做这件事的“能手”。
它能够把切开的DNA片段连接在一起,把它们重新合并成一个完整的基因,就像你把几块乐高积木拼成一个完整的房子。
没有连接酶,基因工程的“拼图”就无法完成,那些小小的DNA片段就只能任其散落一地,完全无法发挥作用。
可能有些人开始好奇,这些酶真的有那么神奇吗?当然啦!接下来我们要说的“聚合酶”,它是基因工程中的“扩音器”。
基因工程中常用的酶
分类与用途
分类
根据识别序列的长度和切割位点的特性,限制性内切核酸酶 可分为Ⅰ型和Ⅱ型。Ⅰ型限制性内切核酸酶识别位点较长, 切割位点不规则;Ⅱ型限制性内切核酸酶识别位点较短,切 割位点规则。
用途
限制性内切核酸酶在基因工程中主要用于DNA的克隆、基因 的定位、突变分析等方面。通过限制性内切核酸酶的切割, 可以将DNA片段分离出来,再进行后续的克隆和转化等操作 。
生物制药
在生物制药中,使用DNA 连接酶将药物基因或疫苗 基因插入到载体中,制备 基因药物或基因疫苗。
03
聚合酶
定义与特性
聚合酶
是一种能够催化DNA复制和修复的酶, 通过聚合核苷酸片段,合成新的DNA 链。
特性
聚合酶具有专一性、高效性和耐受性 等特性,能够在特定的模板指导下, 高效地合成DNA链。
分类与用途
分类
根据来源不同,反转录酶可分为天然反转录酶和重组反转录酶。
用途
在基因工程中,反转录酶主要用于将RNA转录为cDNA,以便进行基因克隆、表达和功能研究。
反转录酶的应用案例
基因克隆
通过反转录酶将mRNA转化为 cDNA,再利用限制性内切酶将其 切割成适当大小的片段,进行基 因克隆和测序。
基因工程中常用的酶
• 限制性内切核酸酶 • DNA连接酶 • 聚合酶 • 反转录酶 • 其他常用酶类
01
限制性内切核酸酶
定义与特性
定义
限制性内切核酸酶是一类能够识 别并切割DNA特定序列的酶,是 基因工程中常用的工具酶之一。
特性
限制性内切核酸酶具有高度的特 异性,能够识别并切割DNA中的 特异序列,切割位点通常是DNA 双链中的特定位点。
限制性内切核酸酶的应用案例
《基因工程的工具——酶与载体》 知识清单
《基因工程的工具——酶与载体》知识清单一、基因工程简介基因工程,又称基因拼接技术或 DNA 重组技术,是指按照人们的意愿,将一种生物的基因在体外进行改造和重新组合,然后导入另一种生物的细胞内,使其能够表达并产生新的性状或产物的技术。
这项技术的出现,为人类解决许多问题提供了新的途径和方法。
二、酶在基因工程中的作用1、限制性核酸内切酶(简称限制酶)限制酶是基因工程中最重要的工具酶之一。
它能够识别特定的核苷酸序列,并在特定的位点切割 DNA 分子。
例如,EcoRⅠ限制酶能够识别 GAATTC 序列,并在 G 和 A 之间切断磷酸二酯键。
限制酶的作用就像是一把“分子剪刀”,能够将 DNA 剪成不同的片段,为后续的基因重组提供材料。
不同的限制酶识别的核苷酸序列不同,切割位点也不同。
这使得我们可以根据需要选择合适的限制酶来切割 DNA。
2、 DNA 连接酶在基因工程中,将切割后的 DNA 片段连接起来需要用到 DNA 连接酶。
DNA 连接酶能够将两个具有相同黏性末端或平末端的 DNA 片段连接在一起,形成一个完整的 DNA 分子。
DNA 连接酶的作用就像是“胶水”,将断开的 DNA 链条重新连接起来,保证基因的完整性和稳定性。
3、反转录酶反转录酶在基因工程中也有着重要的作用。
它能够以 RNA 为模板合成 DNA,这一过程被称为反转录。
例如,在获取目的基因时,如果我们只有相应的 mRNA,就可以利用反转录酶合成与之互补的 DNA 链,即 cDNA。
4、聚合酶聚合酶在基因工程中的应用也非常广泛。
例如,在 PCR 技术(聚合酶链式反应)中,DNA 聚合酶能够在体外快速大量地扩增特定的DNA 片段。
三、载体在基因工程中的作用载体是基因工程中用于携带目的基因进入受体细胞的工具。
常用的载体有质粒、噬菌体和动植物病毒等。
1、质粒质粒是一种存在于细菌等微生物细胞中的小型环状 DNA 分子。
它具有自主复制能力,能够在细胞内独立地进行复制和遗传。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DNA 连接酶
36
DNA连接酶
连接的部位:磷酸二酯键(梯子的扶手), 不是氢键(梯子的踏板)。
37
三.RNA酶
主要功能 降解RNA 由于RNA酶分布广泛,如唾液、 皮肤分泌物中都含此酶,在涉及RNA 的实验中谨防RNA酶污染。
38
四.核酸酶SI
• 降解单链 DNA 或 RNA,形成5’-P的单核苷 酸或寡核苷酸片段
5'粘末端
PstI
3' sticky end
3'粘末端
HpaI
blunt end
平末端
14
四.识别位点与切割方式
• 限制性内切酶识别序列一般为6个核苷酸,如
EcoRI,HindIII,BamHI,居多数。 也有少数限制性内切酶,识别序列为4个、5个、 或更多的核苷酸如8个及8个以上,当识别序列核 苷酸数为单数时,则以中间的核苷酸作为对称轴。 如GTNAC(N 代表四种核苷酸)。
某些碱基被甲基化所保护。这种细菌
内部的限制与修饰作用分别由核酸内
切酶和甲基化酶完成,构成了类似免
疫的防御系统。
6
解释 何谓内切酶
-o-o-o-o-o-o-o-o-o-o-o-o-o-o红色为外切酶的作用位点, 蓝色为内切酶的作用位点
7
限制性核酸内切酶的分类
目前已发现的限制性核酸内切酶600余种,可 分为三大类。 Ⅱ类限制性核酸内切酶广泛用于基因工程;
15
• 一般说来,在DNA分子中,识别序列短的 出现概率大,识别序列长的出现概率小。 有N个核苷酸的识别序列出现概率为1/4n。 如识别4个核苷酸Sau 3A,则间隔256 (4×4×4×4)个核苷酸就有一次机会出 现识别位点。如识别8个核苷酸的Not I,则 需间隔65536个核苷酸才有一次机会出现识 别位点。
5′CCGATAGCCT 3′ 3′GGCTATCGGA 5’→3’ DNA聚合酶活性
28
5′CCGATA-OH 3′ 3′GGC
DNA聚合酶Ⅰ 5′CCG 3′GGC +dA,dT
3’→5’ 外切酶活性
29
2.大肠杆菌DNA聚合酶Ⅰ大片段
该酶是用枯草杆菌蛋白酶或胰蛋白酶降
解大肠杆菌DNA聚合酶Ⅰ ,从全酶中切去
特点:识别切割位点比较专一,只有切割 作用。无甲基化修饰作用。 Ⅰ类和Ⅲ类限制性核酸内切酶同时具有内切 活性和甲基化修饰活性,且识别位点复杂, 特异性差,不适用于基因工程。 8
一.限制性内切酶的命名
• Hind Ⅲ H
细 菌 属 名 的 第 一 个 字 母
in
前细 两菌 个种 字名 母的
d
细 菌 菌 株 的 第 一 个 字 母
位点大大增加。
25
第二节 其他工具酶
一.DNA聚合酶
作用: 依据模版,连接游离的单核苷酸,形成与
模版互补的新链。
26
1.大肠杆菌DNA聚合酶Ⅰ 该酶具有三种酶活性 5’→3’ DNA聚合活性 3’→5’ 外切酶活性 识别切除错配的核苷酸 5’→3’ DNA外切′GGCTATCGGA dNTP DNA聚合酶Ⅰ
• 对DNA的活性比对RNA的强
• 产生平末端
39
五 .碱性磷酸酶
• 切除DNA或RNA的5‘-P • 防止DNA自身环化
5’ p- TTAGCTAGGCCC … TCAATCGGTACG -OH 3’ 3’ HO-AATCGATCCGGG … AGTTAGCCATGC-p 5’
40
Ⅲ
现同 的一 第菌 三株 种中 酶发
9
• EcoRI
E
细 菌 属 名 的 第 一 个 字 母
co
前细 两菌 个种 字名 母的
R
该 酶 的 基 因 位 于 R 质 粒 上
I
第该 一菌 种株 内发 切现 酶的
10
11
二. II型限制酶的识别特点
• 识别专一的核苷酸顺序,并在该顺序的固 定位置切割,识别顺序为回文结构。 (Palindrome)
3
“分子剪刀”的发现者
4
第一节
限制性核酸内切酶
限制性核酸内切酶
(restriction endonuclease,RE)
是由细菌自己产生的一种能识别双链
DNA中的特定序列,并以内切方式水解
核酸中磷酸二酯键的核酸内切酶。
5
在细菌体内,这种内切酶可以分 解外源性的DNA物质,例如病毒等; 而细菌本身的DNA同一识别序列中的
22
限制性核酸内切酶的反应条件
• 各种限制性核酸内切酶反应条件相似,主
要区别是对盐浓度的需求不同。据此可分
为三组
• 低盐组 0~50mmol/L NaCl
• 中盐组 50~100mmol/L NaCl
• 高盐组 100~150mmol/L NaCl
23
限制性核酸内切酶的星号活性
当酶切条件发生变化时,限制性
第四章
基因工程的工具酶 及其应用
1
TOOLS FOR GENE CLONING SCISSORS: RESTRICTION ENZYMES GLUE: DNA LIGASE VEHICLE: PLASMID OR VIRAL VECTORS
2
基因工程的工具酶
定义 用于DNA和RNA切割和连
接的各种酶叫做工具酶。
4.TaqDNA聚合酶
耐热的 DNA聚合酶。最适反应温度75
~80oC,主要用于聚合酶链反应。
32
5.逆转录酶(reverse transcriptase )
作用:以RNA为模版,合成 cDNA (Complementary DNA) 该类酶有三种活性 ① RNA依赖的DNA聚合酶活性 ② DNA依赖的DNA聚合酶活性 ③ 外切RNA的活性
16
稀切酶:有些酶的识别位点在核苷酸序列中 出现的几率很小,可称为稀切酶。 为了获得大的DNA片段,需用稀切酶切割。 个别限制性内切酶可识别两种以上的核苷酸 序列,如Acc I既可识别GTATAC,又可识 别GTCGAC。
17
• 位点偏爱:限制性内切酶识别序列两侧的 核苷酸组成与酶切效率有关,比如Nae I在 pBR322质粒上有4个识别位点,其中两个 位点可迅速被Nae I切割。第三个位点稍慢。 而位于1285处的第四个识别序列,切割的 效率只有其他位点的1/15。
客 上 天 然 居 居 然 天 上 客
12
13
三. 限制性内切酶的切割方式
EcoRI
5' -G AATTC- 3' 3' -CTTAA G- 5' 5' -CTGCA G- 3' 3' -G ACGTC- 5' 5' -GTT AAC- 3' 3' -CAA TTG- 5'
5' sticky end
20
• 同位酶:识别相同的序列,但切割位点不同.
• 同裂酶: 又称异源同工酶,来源不同,但识
别位点和切割位点相同.
切割位点也可以不同,例如Sam I(CCC↓GGG)和
Xma I(C↓CCGGG)
21
五.限制性内切酶的反应条件
• • • • • • • • 反应温度 一般为37oC 反应体积20µl DNA含量 0.5-1µg 酶含量 1-2u DNA纯度:OD260/280nm>1.7 阳离子 Mg2+ 反应时间 1-1.5h pH7.5
5‘ → 3’ 外切活性的肽段后产生的一条多肽
链,保留了5’→3’聚合和3’→5’外切
活性。
该酶称为Klenow酶。也称为 Klenow 片
段(Klenow fragment)。
30
3.T4噬菌体DNA聚合酶
来源于T4噬菌体感染的大肠杆菌,具有
5’→3’ DNA聚合酶活性
3’→5’ 外切酶活性
31
核酸内切酶的专一性可能会降低,导
致同种酶识别多种序列,这种现象称
作限制性核酸内切酶的星号活性。
24
例如 EcoR I在正常条件下识别GAATTC,但 在低盐(小于50mmol/L)、高pH(大于8)、 甘油大量存在时,识别序列增加了AAATTC、 GAGTTC,导致EcoR I在DNA分子上的切割
18
同尾酶:两种酶识别不同的顺序,但切割 产生的粘末端相同,叫做同尾酶。 同尾酶产生的粘末端,可通过碱基互补连
接,形成的位点称为“杂种位点”,该位
点不能再被原来的两种酶切割。
19
例:AGATCT TCTAGA
Bgl Ⅱ
GGATCC CCTAGG
BamH Ⅰ GATCC G
连接酶
A TCTAG
AGATCC TCTAGG
33
常用的逆转录酶有两种:
AMV-来自于鸟类骨髓母细胞瘤病毒
M-MLV-来自于莫络尼鼠的白血病病毒
34
二 . T4DNA连接酶
• 催化两个DNA片段的3’-OH和5’-P末端
成磷酸二酯键 • 该酶是大肠杆菌T4噬菌体的DNA30编码的
形
产物,分子量68kd。现已由基因工程菌表
达。
35
“分子针线”