中考专题1:实数、整式、分式、根式及其运算
2024中考数学复习核心知识点精讲及训练—分式(含解析)
2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
北京市中考数学知识点分布与试卷分析
北京市初中数学专题知识点I、数与代数部分:一、数与式:1、实数:1)实数的有关概念;常考点:倒数、相反数、绝对值(选择第1题,必考题4分) 2)科学记数法表示一个数(选择题第二题,必考4分)3)实数的运算法则:混合运算(解答题13题,必考4分)4)实数非负性应用:3、整式: 1)整式的概念和简单运算、化简求值(解答题5分)2)利用提公因式法、公式法进行因式分解(选择填空必考题4分)4、分式:化简求值、计算(解答题)、分式求取值范围(一般为填空题)(易错点:分母不为0)5、二次根式:求取值范围、化简运算(填空、解答题4分)二、方程与不等式:1、解分式方程(易错点:注意验根)、一元二次方程(常考解答题)2、解不等式、解集的数轴表示、解不等式组解集(常考解答题)3、解方程组、列方程(组)解应用题(若为分式方程仍勿忘检验)(必考解答题)4、一元二次方程根的判别式三、函数及其图像1、平面直角坐标系与函数1)函数自变量取值范围,并会求函数值;2)坐标系内点的特征;3)能结合图像对简单实际问题中的函数关系进行分析(选择8题)2、一次函数(通常与反比例函数相结合,以解答题形式出现。
)3、反比例函数4、二次函数(必考解答题,基本在24题出现,通常是求解析式以及与特殊几何图形综合,动态探究等,有时也在选择题第八题中出现。
)II、空间与图形一、图形的认识1、立体图形、视图和展开图(不是常考题型,但是如果出现则以选择题形式出现)2、线段、射线、直线(其中垂直平分线、线段中点性质及应用常在解答题中出现,两点间线段最短常用于解决路径最短的问题)3、角与角分线(解答题)4、相交线与平行线5、三角形(三角形的内角和、外角和、三边关系常以选择题形式出现,而三角形中位线的性质应用又是解答题中常用的添加辅助线的方法,其中有关三角形全等的性质、判定是必考解答题,三角形运动、折叠、旋转、平移(全等变换)、拼接等又是探究问题中的重要考点之一)6、等腰三角形与直角三角形(该考点常与四边形与圆相结合在解答题中出现,而与函数综合形成代数几何综合题,也是必考的解答题)7、多边形:内角和公式、外角和定理(选择题)8、四边形(特殊的平行四边形:性质、判定、以及与轴对称、旋转、平移和函数等结合应用以动点问题、面积问题及相关函数解析式问题出现,同时,梯形问题是中考中的必考解答题,而与四边形有关的图形探究题又是最后一道解答题25题的通常考察形式。
中考数学考前满分计划:整式、分式、二次根式、因式分解(含解析)
○热○点○考○点○解○读一、整式1.单项式与多项式单独的一个数或一个字母也是单项式.2.合并同类项合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变,例如:合并同类项3x 2y 和4x 2y 为3x 2y +4x 2y =(3+4)x 2y =7x 2y .3.整式的运算(1)整式的加减运算实际就是合并同类项.(2)整式的乘法:()()a b m n am an bm bn ++=+++.(3)整式的除法:单项式除以单项式时,把系数、相同字母的幂分别相除,作为商的因式,对于只在被除式中含有的字母,则照抄下来;多项式除以单项式时,用多项式的每一项分别除以单项式,再把所得的商相加.(4)乘法公式①平方差公式:22()()a b a b a b +-=-.②完全平方公式:222()2a b a ab b ±=±+.4.幂的运算性质(1)同底数幂相乘法则:m n m n a a a +⋅=(,m n 为整数,0a ≠)(2)幂的乘方法则:()m n mn a a =(,m n 为整数,0a ≠)(3)积的乘方法则:()n n n ab a b =(n 为整数,0ab ≠)整式、分式、二次根式、因式分解常识必背语言叙述:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.5.用十字相乘法分解因式利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式(2)对于二次项系数不是1的二次三项式(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数,使,,且,那么.一个式子是分式需满足的三个条件:q px x ++2))(()(2b x a x ab x b a x ++=+++c bx ax ++22121,,,c c a a a a a =⋅21c c c =⋅21b c a c a =+1221c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=易错易混2.约分(1)分式约分时,要注意不注意符号导致的错误.(2)要注意约分不彻底导致的错误.(3)约分时需注意分式的分子、分母都是乘积形式时才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,再约分.(4)约分的结果是整式或最简分式.(5)分式的约分是恒等变形,约分前后分式的值不变.3.分解因式要彻底.方法必知1.同类项(1)几个项是不是同类项,一看所含字母是否完全相同.二看相同字母的指数是否相同.“二同”缺一不可.(2)同类项与单项式的系数无关,与字母顺序无关,几个常数项也是同类项.(3)同类项不一定是两项,也可以是三项,四项……但至少为两项.2.合并同类项(1)合并同类项时,注意合并的只是系数,字母部分不变,不要漏掉.(2)合并同类项时,注意各项系数的符号,尤其系数为负数时,不要遗漏负号,同时不要丢项.(3)如果两个同类项的系数互为相反数,合并同类项的结果为0.3.整式的加减的最后结果的要求:(1)不能含有同类项,即要合并到不能再合并为止;(2)一般按照某一字母的降幂或升幂排列;(3)不能出现带分数,带分数必须要化为假分数.4.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来5.约分时需要注意的问题:(1)如果分子、分母中至少有一个是多顶式,就应先分解因式,然后找出分子、分母的公因式,再约分.(2)注意发现分式的分子和分母的一些隐含的公因式,如a﹣5与5﹣a表面虽不相同,但通过提取“﹣”可发现含有公因式(a﹣5).(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面.通分时确定了分母乘什么,分子也必须随之乘什么,要防止只对分母变形而忽略了分子,导致变形前后分式的值发生变化而出错.6.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.7.因式分解(1)因式分解是针对多项式而言的,一个单项式本身就是数与字母的积,不需要再分解因式;(2)因式分解的结果是整式的积的形式,积中几个相同因式的积要写成幂的形式;(3)因式分解必须分解到每一个因式都不能再分解为止;(4)因式分解与整式乘法是方向相反的变形,二者不是互为逆运算.因式分解是一种恒等变形,而整式乘法是一种运算.8.提公因式法(1)多项式的公因式提取要彻底,当一个多项式提取公因式后,剩下的另一个因式中不能再有公因式.(2)提公因式后括号内的项数应与原多项式的项数一样.(3)若多项式首项系数为负数时,通常要提出负因数.9.十字相乘法这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.◇以◇练◇带◇学1.(鞍山)下列运算正确的是( )A .222(4)8ab a b =B .22423a a a +=C .642a a a ÷=D .222()a b a b +=+2.(攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有( )A .1个B .2个C .3个D .4个3.(邵阳)下列计算正确的是( )A .623a a a =B .235()a a =C .22()()a ba ba b a b +=+++D .01()13-=4.(内蒙古)下列运算正确的是( )A+=B .236()a a -=C .11223a a a+=D .21133b ab a b÷=5.(成都)若23320ab b --=,则代数式2222(1)ab b a ba a b---÷的值为 .6.x 的取值范围是 .7.(扬州)分解因式:24xy x -= .8.(内蒙古)分解因式:34x x -= .9.(盐城)先化简,再求值:2(3)(3)(3)a b a b a b +++-,其中2a =,1b =-.10.(滨州)先化简,再求值:22421()244a a a a a a a a -+-÷---+,其中a 满足211(6cos6004a a --⋅+︒=.1.(官渡区校级模拟)按一定规律排列的式子:a ,32a ,54a ,78a ,916a ,⋯,则第2024个式子为( )A .202320252a B .20244047(21)a -C .202340472a D .202440492a 2.(济南一模)下列运算正确的是( )A .22a b ab+=B .2222a b a b a b-=C .238()a a =D .84222a a a ÷=3.(金山区二模)单项式22a b -的系数和次数分别是( )A .2-和2B .2-和3C .2和2D .2和34.(龙岗区模拟)下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .2234(3)218ab ab a b -⋅=-D .326(2)3ab ab b ÷-=-5.(中山市校级一模)下列各式从左到右的变形,因式分解正确的是( )A .2()a a b a ab+=+B .23()3a ab a a b +-=+-C .22282(4)ab a a b -=-D .228(2)(4)a a a a --=+-6.(钱塘区一模)下列因式分解正确的是( )A .241(41)(41)a a a -=+-B .225(5)(5)a a a -+=+-C .22269(3)a ab b a b --=-D .22816(8)a a a -+=-7.(新乡一模)化简2422a a a ---的结果是( )A .2a +B .2a -C .12a +D .12a -8.(东莞市校级模拟)分式23x x --的值为0时,x 的值是( )A .0x =B .2x =C .3x =D .2x =或3x =9.(碑林区校级一模)先化简,再求值:2[(2)(2)(2)](4)a b b a b a a --+-÷,其中12a =,2b =.10.(龙湖区校级一模)先化简,再求值:2344(111x x x x -+-÷++,其中3x =.1.按一定规律排列的单项式:3x ,54x -,79x ,916x -,⋯,第n 个单项式是( )A .1221(1)n n n x ---B .1221(1)n n n x ++-C .1221(1)(1)n n n x ---+D .1221(1)(1)n n n x ++-+2.下列运算正确的是( )A .22(4)16x x -=-B .325x y xy +=C .432x x x ÷=D .2224()xy x y =3.下列语句正确的是( )A .5-不是单项式B .a 可以表示负数C .25a b -的系数是5,次数是2D .221a ab ++是四次三项式4.下列因式分解正确的一项是( )A .222()x y x y +=+B .24(2)(2)x x x -=+-C .2221(1)x x x --=-D .242(2)xy x xy x +=+5.要使分式11x x -+有意义,则x 应满足的条件是( )A .1x ≠-B .1x ≠C .1x <-D .1x >-6.下列二次根式中,属于最简二次根式的是( )AB C D7.计算:0|1tan 60|(2024-︒+.8.先化简,再求值:2344(111x x x x -+-÷++,其中3x =.9.先化简,再求值:2(2)(4)a a a -++,其中a =.10.先化简,再求值:(2)(2)4()a b a b a a b -+--,其中2a =-,1b =.1.【答案】C【分析】根据积的乘方,合并同类项,同底数幂的除法法则,完全平方公式进行计算,逐一判断即可解答.【解答】解:A 、222(4)16ab a b =,故A 不符合题意;B 、22223a a a +=,故B 不符合题意;C 、642a a a ÷=,故C 符合题意;D 、222()2a b a ab b +=++,故D 不符合题意;故选:C .2.【答案】D【分析】观察各个图形及相应的代数恒等式即可得到答案.【解答】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .3.【答案】D【分析】分别根据分式的加减法则、幂的乘方与积的乘方法则、零指数幂的运算法则对各选项进行逐一计算即可.【解答】解:A 、633a a a=,原计算错误,不符合题意;B 、236()a a =,原计算错误,不符合题意;C 、221()()a b a b a b a b+=+++,原计算错误,不符合题意;D 、01()13-=,正确,符合题意.故选:D .4.【答案】D【分析】根据二次根式的加法、幂的乘法与积的乘方以及分式的运算的计算方法解题即可.【解答】解:A +=≠B .2366()a a a -=-≠,故该选项不正确,不符合题意;C .11123222223a a a a a a+=+=≠,故该选项不正确,不符合题意;21131.333b a D ab a ab b b ÷=⨯=,故该选项正确,符合题意;故选:D .5.【答案】23.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:2222(1ab b a b a a b---÷2222(2)a ab b a b a a b--=⋅-222()a b a b a a b-=⋅-()b a b =-2ab b =-,23320ab b --= ,2332ab b ∴-=,223ab b ∴-=,∴原式23=.故答案为:23.6.【答案】3x >.【分析】根据记二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:30x ->,解得:3x >,故答案为:3x >.7.【分析】原式提取x ,再利用平方差公式分解即可.【解答】解:原式2(4)(2)(2)x y x y y =-=+-,故答案为:(2)(2)x y y +-8.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x -,2(4)x x =-,(2)(2)x x x =+-.故答案为:(2)(2)x x x +-.9.【分析】依据题意,利用平方差公式和完全平方公式将原式进行化简,再将a ,b 的值代入计算即可求解.【解答】解:2(3)(3)(3)a b a b a b +++-2222699a ab b a b =+++-226a ab =+.当2a =,1b =-时,原式22262(1)=⨯+⨯⨯-812=-4=-.10.【答案】244a a -+,1.【分析】将括号里面通分运算,再利用分式的混合运算法则计算,结合负整数指数幂的性质、特殊角的三角函数值化简,整体代入得出答案.【解答】解:原式2421[(2)(2)a a a a a a a -+-=÷---224(2)(2)(1)[](2)(2)a a a a a a a a a a -+--=÷---22244(2)a a a a a a a ---+=÷-24(2)4a a a a a --=⋅-2(2)a =-244a a =-+, 211()6cos6004a a --⋅+︒=,2430a a ∴-+=,243a a ∴-=-,∴原式341=-+=.1.【答案】C【分析】由题目可得式子的一般性规律:第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,即可得出答案.【解答】解:式子的系数为1,2,4,8,16, ,则第n 个式子的系数为:12n -;式子的指数为1,3,5,7,9, ,则第n 个式子的指数为:21n -,∴第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,故选:C .2.【答案】B【分析】根据合并同类项法则、幂的乘方法则、单项式除以单项式法则分别判断即可.【解答】解:A 、2a 与b 不是同类项,不能合并,故此选项不符合题意;B 、2222a b a b a b -=,故此选项符合题意;C 、236()a a =,故此选项不符合题意;D 、84422a a a ÷=,故此选项不符合题意;故选:B.3.【答案】B【分析】数字与字母的积叫做单项式,其中数字因数叫做单项式的系数,所有字母的指数之和叫做单项式的次数;由此计算即可.【解答】解:单项式22a b -的系数和次数分别是2-和3,故选:B .4.【答案】D【分析】根据整式相关运算法则逐项判断即可.【解答】解:235a a a ⋅=,故A 错误,不符合题意;a 与22a 不能合并,故B 错误,不符合题意;2234(3)218ab ab a b -⋅=,故C 错误,不符合题意;326(2)3ab ab b ÷-=-,故D 正确,符合题意;故选:D .5.【答案】D【分析】根据因式分解的定义逐个判断即可.【解答】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .22282(4)2(2)(2)ab a a b a b b -=-=+-,分解不彻底,从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D .6.【答案】B【分析】根据平方差公式和完全平方公式逐个判断即可.【解答】解:A .241(21)(21)a a a -=+-,故本选项不符合题意;B .225(5)(5)a a a -+=+-,故本选项符合题意;C .22269(3)a ab b a b -+=-,故本选项不符合题意;D .22816(4)a a a -+=-,故本选项不符合题意;故选:B .7.【答案】A【分析】根据分式的加减法运算法则计算即可.【解答】解:2244(2)(2)22222a a a a a a a a a --+-===+----,故选:A .8.【分析】分式的值为零时:分子等于零且分母不为零.据此求得x 的值.【解答】解:依题意得:20x -=,解得2x =.经检验当2x =时,分母30x -≠,符合题意.故选:B .9.【答案】2a b -,1-.【分析】先利用平方差公式和完全平方公式进行计算,再根据多项式除以单项式的法则进行计算,最后把12a =,2b =代入计算即可.【解答】解:原式2222[44(4)](4)a ab b b a a =-+--÷2222(444)(4)a ab b b a a =-+-+÷2(84)(4)a ab a =-÷2a b =-,当12a =,2b =时,原式12212=⨯-=-.10.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.1.【答案】B【分析】根据单项式的数字系数的符号,数字系数和指数的变化规律即可得出结果.【解答】解:在上述单项式中,可以发现:奇数项的数字系数的符号为正,偶数项的数字系数的符号为负,∴可得:第n 个单项式的数字系数的符号为:1(1)n --或1(1)n +-,单项式的数字系数为:1,4,9,16, ,∴第n 个单项式的数字系数为:2n ,单项式的指数为:3,5,7,9, ,∴第n 个单项式的指数为:21n +,∴第n 个单项式是1221(1)n n n x ++-,故选:B .2.【答案】D【分析】根据整式的运算法则逐项分析判断即可.【解答】解:A 、22(4)816x x x -=-+,原计算错误,不符合题意;B 、3x 与2y 不是同类项,不能合并,故原计算错误,不符合题意;C 、43x x x ÷=,原计算错误不符合题意;D 、2224()xy x y =,正确,符合题意;故选:D .3.【答案】B【分析】根据单项式的定义可判断A ,根据字母表示数的意义可判断B ,根据单项式系数和次数的定义可判断C ,根据多项式的项和次数的定义可判断D ,进而可得答案.【解答】解:A 、5-是单项式,故本选项错误,不符合题意;B 、a可以表示负数,故本选项正确,符合题意;C 、25a b -的系数是5-,次数是3,故本选项错误,不符合题意;D 、221a ab ++是二次三项式,故本选项错误,不符合题意;故选:B .4.【答案】B【分析】根据因式分解的定义进行判断即可.【解答】解:A 、222()x y x y +≠+不符合因式分解的定义,故本选项不符合题意;B 、24(2)(2)x x x -=+-符合因式分解的定义,且因式分解正确,故本选项符合题意;C 、2221(1)x x x --≠-,不符合因式分解的定义,故本选项不符合题意;D 、242(2)xy x x y +=+,原因式分解错误,故本选项不符合题意;故选:B .5.【分析】先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【解答】解:由题意,得10x +≠,解得1x ≠-,故选:A .6.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式,进而得出答案.【解答】解:A =,不是最简二次根式,故此选项错误;B ,是最简二次根式,故此选项正确;C 2=,不是最简二次根式,故此选项错误;D =故选:B .7..【分析】根据二次根式的混合运算法则和零指数幂与特殊的三角函数值等知识点计算即可.【解答】解:原式11=---+11=-+=.8.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.9.【答案】224a +,原式8=.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a 的值代入化简后的式子进行计算,即可解答.【解答】解:2(2)(4)a a a -++22444a a a a=-+++224a =+,当a =224224448=⨯+=⨯+=+=.10.【答案】24ab b -,原式9=-.【分析】先利用平方差公式,单项式乘多项式的法则进行计算,然后把a ,b 的值代入化简后的式子进行计算,即可解答.【解答】解:(2)(2)4()a b a b a a b -+--222444a b a ab=--+24ab b =-,当2a =-,1b =时,原式24(2)11819=⨯-⨯-=--=-.。
中考数学专题:实数与代数式
专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。
2011中考数学代数式、整式、分式、二次根式知识点
2. 代数式(分类)2.1. 整式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.1.1. 整式的有关概念用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式. 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.1.2. 同类项、合并同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.2.1.3. 去括号法则去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.2.1.4. 整式的运算法则整式的加减法:整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.整式的乘法:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn nm a a =(n m ,都是正整数). 积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n n b a ab =(n 为正整数).单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同. ②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.乘法公式:①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+;④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.整式的除法:同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的.2.2. 因式分解(包含题目总数:14); ; ; ; ; ; ; ; ; ; ; ; ; ;2.2.1. 因式分解的概念把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=; ()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()cb ac b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的范围内分解到不能再分解为止.如:4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()b a b a b a 55522-++. 2.2.2. 因式分解的常用方法1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.2.2.3. 因式分解的一般步骤因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.2.3. 分式(包含题目总数:16); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.3.1. 分式及其相关概念分式的概念:一般的,用B A ,表示两个整式,B A 就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式. 注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.分式的相关概念:把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分. 一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.2.3.2. 分式的性质分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式).分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--=. 2.3.3. 分式的系数化整问题分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小.(1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+;(2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568y x y x -+=. 2.3.4. 分式的运算法则1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bdbc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的. 例、计算78563412+++++-++-++x x x x x x x x .分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到. 2.4. 二次根式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.4.1. 二次根式及其相关概念2.4.1.1. 二次根式的概念式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式.2.4.1.2. 最简二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x1就不是最简二次根式. 化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来. 2.4.1.3. 同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.2.4.1.4. 分母有理化把分母中的根号化去,叫分母有理化.如=+131 )13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. 2.4.2. 二次根式的性质(1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab .(4))0,0(>≥=b a b ab a.2.4.3. 二次根式的运算法则二次根式的运算法则:二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式;(3)再把同类二次根式分别合并.二次根式的乘法法则: 两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则: 两个二次根式相除,被开方数相除,根指数不变,即:ba b a=(0,0>≥b a ).此法则可以推广到多个二次根式的情况.二次根式的混合运算:二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--. 分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++-- ()()()()1312213122-+---= ()()()()213122213122+--++=()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+=321+=23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值. 分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< ,54<<∴x .27427,4-=-+==∴b a .()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=.。
中考数学复习数与式知识点总结
中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。
其中,既不属于正数也不属于负数的数是零。
无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。
有理数包括正有理数、负有理数和零。
负无理数和正无理数的定义很明确。
2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。
3.数轴有三个要素:原点、正方向和单位长度。
实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。
4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。
5.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。
知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。
数轴上的每个点都对应着一个实数,反之亦然。
3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。
a的倒数是1/a(a≠0)。
6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。
确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。
7.近似数是一个与实际数值很接近的数。
它的精确度由四舍五入到哪一位来决定。
例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。
初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式
分式的加减法/ 异分母的分式相加减,先通分,变成同分母的分
4、参数法∶当已经条件形如工-上=三,所要求值的代数式
是一个含x,y,z,a,b,c,而又不易化简的分式
时,通常设 艺-为=三*(k就是我们所说的参数),
分式
\式,然后相加减,b即 4d± 二b=dad ,bbdc_ adb±dbc
升华 符号"÷"变成"×",除数变为它的倒数,除
数不能为0.
知识 实数 ③用科学记数法表示一个绝对值大于10的数时,等 的分类 号右边数的形式为a×10",a是一个只有一位整数的数
四 口+□=凶 n比等号左边的整数位数小1.
实数中的概念
梳理
正整数。 ::::口:
按定义
有理数
整数
分数
零
负整数
正分数
有限小数或无
(2)从外到里去括号,减少变号次数.只含有小括号和中括号, 那么把小括号内的各项视为一个整体,先去中括号,再去 小括号.
(3)一次去掉多重括号,在含有多重括号的式子中,去括号时,括
3+(a+b):+ab=(x+4 刁十二
整 式
(m十n)(a+b)=ma十mb+na+nb
的整除式法
乘法公式
单项式除以单项式,分别把系数、同底数幂
6、去括号添括号时,特别是括号前是"_"的情况,容 易把某一项或某几项忘记变号而出错.
1、对于幂的运算性质和乘法公式,不仅要掌握它们的结构 特征,而且要理解每一公式中字母的内涵,进而灵活、
恰当地应用.
2、因式分解必须在指定的数的范围内进行,且必须分解到
每个多项式都不能再分解为止
3、列代数式时,读题不能只看局部不看整体.
中考数学实数的运算知识点
中考数学实数的运算知识点第1篇:中考数学考前知识点实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。
无论何种运算,都要注意先定符号后运算未完,继续阅读 >第2篇:中考数学实数的运算知识点1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
中考数学专题 实数整式分式根式
实数1.3-的倒数是( )A .13-B .13C .3-D .32.35-的倒数的绝对值是( ) A .53- B .53 C .35 D .35-3. 下列计算正确的是: A.-1+1=0B .-1-1=0C.3÷31=1 D.32=64. 下列式子中结果为负数的是( ) A .│一2│ B .一(-2) C .-2—1D .(一2)25. 在下列实数中,无理数是( )A .13B .πCD .2276.的点是 . 7. 若|a -1|=1-a ,则a 的取值范围为( )(A )a ≥1 (B )a ≤1 (C )a >1 (D )a <18. 06年,我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯9. 沈阳市水质监测部门2006年全年共监测水量达48909.6万吨,水质达标率为100%.用科学记数法表示2006年全年共监测水量约为( )万吨(保留三个有效数字) A .4.89×104 B .4.89×105 C .4.90×104 D .4.90×105 10. 某种生物孢子的直径为0.00063m ,用科学记数法表示为( )A.30.6310m -⨯ B.46.310m -⨯C.36.310m -⨯D.56310m -⨯11. 一生物教师在显微镜下发现,某种植物的细胞直径约为0.00012mm ,用科学记数法表示这个数为____________mm .整式12.2(5)0b +=,那么a b +的值为 . 13. 若22(1)0m n ++-=,则2m n +的值为( )A .4-B .1-C .0D .4第5题14. 已知01b 2a =-++,那么2007)b a (+的值为( )。
【数学】中考考点过关-第1章:数与式
方法
命题角度 1 实数的相关概念
1.[2019甘肃兰州A卷]-2 019的相反数是
()
B
解析:B 只有符号不同的两个数互为相反数,则-2 019的相反数是2 019,故选
B.
2.[2019甘肃天水]已知|a|=1,b是2的相反数,则a+b的值为
()
C
A.-3
B.-1 C.-1或-3 D.1或-3
解析:C 由|a|=1,得a=±1.由b是2的相反数,得b=-2,故a+b=-1或-3.故选C.
做同类项.所有的常数项都是同类项.
2.合并同类项:把一个多项式中同类项的系数相加,合并为一项,叫做合
并同类项.
3.去括号法则
(1)括号前是“+”时,括号内各项不变号,如a+(b-c)=⑦ a+b-;
(2)括号前是“-”时,括号内各项变号,如a-(b-c)=⑧ a-c.
简记为:去括号,“+”不变,“-”要变.
加
若a>0,b<0,|a|>|b|,则a+b=+(|a|-|b|);若
法 异号两数相加 a>0,b<0,|a|<|b|,则a+b=-(|b|-|a|);若a,b互为相
反数,则a+b=0.
一个数同0相加 a+0=⑱_a___
考点
考点1 考点2 考点3 考点4 考点5 考点6
实数的运算
运算名称 减法
a-b=a+(-b)
解析:B 7.01万亿=7.01×104×108=7.01×1012.故选B.
5.[2019洛阳一模]目前世界上能制造的芯片最小工艺水平是5纳米,国产芯片的最小工艺水平理论上是12纳
浙江新中考总复习第二篇专题突破(专题1数与式)
B. -a+a-bb=-1
C. 0.02.a5-a+0.b3b=52aa+-130bb
D.
aa- + bb= bb- +
a a
4.(2013·苏州)已知 x-1x=3,则 4-12x2+32x 的值
为( D )
A.1
B.
3 2
C.
5 2
D.
7 2
解析:把 x-1x=3 两边同乘 x,得 x2-1=3x,即
(2013·枣庄)先化简,再求值:3mm2--36m÷(m +2-m-5 2),其中 m 是方程 x2+3x+1=0 的根.
【思路点拨】在化简时要先算括号里面的,再把 除法变为乘法,然后分解因式并约分,最后相乘.
解:原式=3mmm--3
m 2- 9 2÷m-2
=3mmm--3 2×m+m3-m2-3=3mm1+3. ∵m 是方程 x2+3x+1=0 的根,
(3)若 d(3)≠2a-b,则 d(9)=2d(3)≠4a-2b,d(27) =3d(3)≠6a-3b,从而表中有三个劳格数是错误的,与 题设矛盾,
∴d(3)=2a-b; 若 d(5)≠a+c,则 d(2)=1-d(5)≠1-a-c, ∴d(8)=3d(2)≠3-3a-3c, d(6)=d(3)+d(2)≠1+a-b-c,
1n A. 2
1 B. 2n-1
C.(12)n+1
1 D. 2n
解析:第一次跳完落地时,距原点距离为12,第二 次跳完落地时,距原点距离为(12)2,第三次跳完落地时, 距原点距离为(12)3,故第 n 次跳完落地时,距原点距离 为(12)n=21n.
答案:D
二、填空题
12.(2013·哈尔滨)把多项式 4ax2-ay2 分解因式的
整式分式根式总结归纳
整式分式根式总结归纳整式、分式和根式是数学中常见的代数表达形式。
在学习和应用这些表达式时,我们需要了解其定义、性质以及使用方法。
本文将对整式、分式和根式进行总结和归纳,以帮助读者更好地理解和运用这些数学概念。
1. 整式整式是指由常数、未知数及它们的乘积与积和经有限次加减运算得到的代数式。
在整式中,常数和未知数的指数可以是任意整数。
整式的一般形式可以表示为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$$其中,$n$为整数,$a_n$到$a_0$为常数,$x$为未知数。
整式的运算包括加法、减法、乘法和乘方。
在进行整式的运算时,需要遵循相应的运算法则,如同底数相乘保留底数、指数相加减等。
2. 分式分式是指由整式作为分子和分母,通过除法表示的代数式。
在分式中,分母不能为零。
分式的一般形式可以表示为:$$\frac{f(x)}{g(x)}$$其中,$f(x)$和$g(x)$是整式,$g(x)$不等于零。
分式的运算包括加法、减法、乘法和除法。
在进行分式的运算时,需要对分子和分母分别进行运算,再根据运算法则进行简化。
3. 根式根式是指形如$\sqrt[n]{x}$的代数表达式,其中$n$为根号的指数,$x$为被开方数。
在根式中,指数$n>1$且$x\geq0$。
根式的一般形式可以表示为:$$\sqrt[n]{x}$$根式的运算包括简化、相加减和乘方运算等。
简化根式时,需要将根号下的数化简为最简形式,即去除可开方数的因子。
相加减根式时,需要保持根号下的数相同,再进行求和或相减。
乘方运算可以将根式化简为指数式,从而方便计算。
通过对整式、分式和根式的总结和归纳,我们可以更好地理解和应用这些数学概念。
在实际问题中,我们可以利用整式、分式和根式的性质和运算法则进行求解,从而解决各类数学和实际应用中的问题。
中考数学第一轮复习教案(实数、整式、分式、根式)
中考总习1 实数1、平方根定义1:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根。
a 的算术平方根记作a ,读作“根号a ”,a 叫做被开方数。
即a x =。
规定:0的算术平方根是0。
定义2:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。
即如果x 2=a ,那么x 叫做a 的平方根。
即a x ±=。
定义3:求一个数a 的平方根的运算,叫做开平方。
因为一个非零实数的平分肯定是正数,所以,正数有两个平方根,它们互为相反数;例如:4的平分根为±2,是互为相反数的;0的平方根是0;负数没有平方根。
2、立方根定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
即如果x 3=a ,那么x 叫做a 的立方根,记作3a 。
即3a x =。
求一个数的立方根的运算,叫做开立方。
正数的立方根是正数;负数的立方根是负数;0的立方根是0。
3、无理数无限不循环小数又叫做无理数。
初中常见的无理数有:带有根号开不出来的式子,例如:、、等等;带有的式子,例如: ,等等;无限不循环小数,例如:1.325…,-0.2587…等等4、实数有理数和无理数统称实数。
即实数包括有理数和无理数。
备注:最小的正整数是1,最大的负整数是-1,绝对值最小的数是0。
有理数关于相反数和绝对值的意义同样适合于实数。
例如:3-的相反数为3,倒数为3331-=-,3-的绝对值为。
5、实数的分类分法一:负有理数 0 无理数 实数有理数正有理数负无理数 正无理数 有限小数或 无限循环小数无限不循环小数 知识要点分法二:实数 0由上可知,一个数要是分数,前提必须是有理数,所以,不是所有的a/b 这样的数,都是分数。
例如:不是分数,是无理数。
6、实数的比较大小有理数的比较大小的法则在实数范围内同样适用。
备注:遇到有理数和带根号的无理数比较大小时,让“数全部回到根号下”,再比较大小。
实数、整式、分式及二次根式
7、 81 的平方根是( ) 8、若实数满足 |x|+x=0, 则 x 是( ) 三、例题剖析
A .9 B. 9
C.± 9
D.± 3
A .零或负数 B .非负数 C.非零实数 D.负数
1、设 a= 3 - 2 , b=2- 3 , c= 5 - 1, 则 a、 b、 c 的大小关系是(
A . a> b> c
没有立方根;④- 17 是 17 的平方根,其中正确的有(
) A . 0 个 B .1 个 C. 2 个 D. 3 个
2、如果 (x-2) 2 =2-x 那么 x 取值范围是(
)
A、x ≤2
B. x <2 C. x ≥ 2 D. x > 2
3、- 8 的立方根与 16 的平方根的和为( )
A .2 B. 0 C. 2 或一 4 D .0 或- 4
l - 2- 2 中数轴上的点 P 所表示的数是 2 ”,这种说明问题的方式体现
A .代人法 B.换无法 C.数形结合 D .分类讨论
3、(开放题)如图 l - 2-3 所示的网格纸,每个小格均为正方形,且小正方形的边长为
1,
请在小网格纸上画出一个腰长为无理数的等腰三角形.
○
4、如图 1- 2- 4 所示,在△ ABC 中,∠ B=90 ,点 P 从点 B 开始沿 BA 边向点 A 以 1 厘米/秒的宽度移动; 同时,点 Q 也从点 B 开始沿 BC 边向点 C 以 2 厘米 /秒的速度移动, 问几秒后, △ PBQ 的面积为 36 平方厘米?
4、若 2m- 4 与 3m- 1 是同一个数的平方根,则 m 为( ) A .- 3 B . 1 C.- 3 或 1 D .- 1
5、若实数 a 和 b 满足 b= a+5 + -a-5 ,则 ab 的值等于 _______ 6、在 3 - 2 的相反数是 ________,绝对值是 ______.
中招数学知识点总结
中招数学知识点总结数学是中招考试中的重要学科,掌握好数学知识点对于取得优异成绩至关重要。
以下是对中招数学常见知识点的总结。
一、数与式1、有理数有理数包括整数和分数。
整数又分为正整数、零和负整数;分数包括正分数和负分数。
有理数的运算包括加、减、乘、除、乘方。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π、√2 等。
实数的运算与有理数类似,但要注意无理数的运算规则。
3、代数式代数式包括整式、分式和根式。
整式包括单项式和多项式,整式的运算包括加减乘除和乘方。
分式是指分母中含有未知数的式子,分式的运算要注意分母不能为零。
根式包括平方根、立方根等,根式的运算要注意根号下的数必须是非负数。
二、方程与不等式1、一元一次方程形如 ax + b = 0(a ≠ 0)的方程称为一元一次方程。
解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项、系数化为 1。
2、二元一次方程组由两个含有两个未知数的一次方程组成的方程组称为二元一次方程组。
解二元一次方程组的常用方法是代入消元法和加减消元法。
3、一元二次方程形如 ax²+ bx + c = 0(a ≠ 0)的方程称为一元二次方程。
解一元二次方程的方法有直接开平方法、配方法、公式法和因式分解法。
一元二次方程的根的判别式为Δ = b² 4ac,当Δ > 0 时,方程有两个不相等的实数根;当Δ = 0 时,方程有两个相等的实数根;当Δ < 0 时,方程没有实数根。
4、不等式不等式的性质包括对称性、传递性、加法和乘法法则等。
解不等式的一般步骤与解一元一次方程类似,但要注意不等式两边乘以或除以负数时,不等号的方向要改变。
三、函数1、一次函数形如 y = kx + b(k ≠ 0)的函数称为一次函数。
一次函数的图像是一条直线,当 k > 0 时,函数图像从左到右上升;当 k < 0 时,函数图像从左到右下降。
2、反比例函数形如 y = k/x(k ≠ 0)的函数称为反比例函数。
中考数学--数与式的有关代数计算(实数、整式、分式)大题押题30道【教师版】
数与式的有关代数计算(实数、整式、分式最新模拟题30道)类型一、实数的混合运算1.(2023•坪山区一模)计算:tan60°+2sin30°+|2-1|-2cos45°.【分析】首先计算特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【详解】tan60°+2sin30°+|2-1|-2cos45°=3+2×12+(2-1)-2×22=3+1+2-1-2=3.【点睛】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.2.(2023•喀什地区模拟)计算:(3.14-π)0+16-|-1|+(-3)2.【分析】先算零次幂、平方和开平方,再化简绝对值,最后算加减.【详解】(3.14-π)0+16-|-1|+(-3)2=1+4-1+9=13.【点睛】本题考查了有理数的混合运算,掌握零次幂、乘方、开方及绝对值的意义是解决本题的关键.3.(2023•昭阳区校级模拟)计算:8+(π-3.14)0-3cos60°+|1-2|+(-2)-2.【分析】分别根据零指数幂及负整数指数幂的计算法则,绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【详解】原式=22+1-3×12+2-1+14=22+1-32+2-1+14=32-54.【点睛】本题考查的是实数的运算,零指数幂及负整数指数幂的计算法则,绝对值的性质及特殊角的三角函数值,熟知以上知识是解题的关键.4.(2023•海淀区校级模拟)计算:-13-1-8-(5-π)0+4cos45°.【分析】先化简各式,然后再进行计算即可解答.【详解】-1 3-1-8-(5-π)0+4cos45°=-3-22-1+4×22=-3-22-1+22=-4.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.5.(2023•青秀区校级模拟)计算:π20+2cos60°+4+12 -1+(-4)÷2.【分析】原式分别化简π2 0=1,12 -1=2,cos60°=12,再进行乘除运算,最后进行加减运算即可得到答案.【详解】π2 0+2cos60°+4+12 -1+(-4)÷2=1+2×12+4+2+(-4)÷2=1+1+4+2-2=6.【点睛】本题主要考查了实数的混合运算,正确化简π2 0=1,12 -1=2,cos60°=12是解答本题的关键.6.(2023•市中区校级一模)计算:-13 -2+2sin45°+|2-2|-(π+2022)0.【分析】分别计算出负整数指数幂、特殊角的三角函数值、绝对值及零指数幂,最后运算即可.【详解】原式=9+2×22+2-2-1=9+2+2-2-1=10.【点睛】本题是实数的运算,熟练掌握实数的运算法则是解题的关键.7.(2023•晋州市模拟)计算:-13-2-|3-2|+3tan30°-613+(2023-π)0.【分析】先化简各式,然后再进行计算即可解答.【详解】-13 -2-|3-2|+3tan30°-613+(2023-π)0=9-(2-3)+3×33-23+1=9-2+3+3-23+1=7+23-23+1=8.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.8.(2023•南充模拟)计算:2cos45°+|1-2|-38+(-1)2023.【分析】先化简各式,然后再进行计算即可解答.【详解】2cos45°+|1-2|-38+(-1)2023=2×22+2-1-2+(-1)=2+2-1-2-1=22-4.【点睛】本题考查了实数的运算,特殊角的三角函数值,准确熟练地进行计算是解题的关键.9.(2023春•崇川区校级月考)计算:(1)(23-2)-(2-23).(2)|3-π|+25-327+(-1)2022.【分析】(1)去括号、合并同类二次根式即可得出结果;(2)根据绝对值的意义、算术平方根的性质、立方根的意义、乘方的意义进行计算即可得出结果.【详解】(1)(23-2)-(2-23)=23-2-2+23=43-22;(2)|3-π|+25-327+(-1)2022=π-3+5-3+1=π.【点睛】本题考查了实数的运算,熟练掌握绝对值的意义、算术平方根的性质、立方根的意义、乘方的意义及同类二次根式的定义是解题的关键.10.(2023春•长沙月考)计算:-12023+|3-2|-3-27+(-3)2.【分析】先化简各式,然后再进行计算即可解答.【详解】原式=-1+2-3-(-3)+3=-1+2-3+3+3=7-3.【点睛】本题考查了实数的混合运算,准确熟练地化简各式是解题的关键.类型二、整式的混合运算11.(2023•温州模拟)(1)计算:(-2023)0+12+2×-12;(2)化简:(2m+1)(2m-1)-4m(m-1).【分析】(1)直接利用二次根式的性质、零指数幂的性质分别化简,进而得出答案;(2)根据平方差公式和单项式乘多项式法则展开,再合并同类项即可.【详解】(1)原式=1+23-1=23;(2)原式=4m2-1-4m2+4m=4m-1.【点睛】此题主要考查了实数的运算以及平方差公式和单项式乘多项式法则等,正确化简各数和掌握运算法则是解题关键.12.(2023春•佛山月考)计算:(1)(π-3)0-32+12-2;(2)(-3a4)2-a•a3•a4-a10÷a2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先算乘方,再算乘除,后算加减,即可解答.【详解】(1)(π-3)0-32+12 -2=1-9+4=-8+4=-4;(2)(-3a4)2-a•a3•a4-a10÷a2=9a8-a8-a8=7a8.【点睛】本题考查了整式的混合运算,有理数的加减混合运算,同底数幂的乘法,幂的乘方与积的乘方,零指数幂,负整数指数幂,准确熟练地进行计算是解题的关键.13.(2023春•薛城区月考)计算:(1)(-1)2012+-12-2-(3.14-π)0;(2)(2x3y)2•(-2xy)+(-2x3y)3÷(2x2);(3)(x+1)(x-3)-(x+1)2;(4)(a-b-3)(a-b+3).【分析】(1)先算乘方,负整数指数幂,零指数幂,再算加减即可;(2)先算积的乘方,再算整式的除法与单项式乘单项式,最后合并同类项即可;(3)先算多项式乘多项式,完全平方,再算加减即可;(4)利用平方差公式及完全平方公式进行运算较简便.【详解】(1)(-1)2012+-1 2-2-(3.14-π)0=1+4-1=4;(2)(2x3y)2•(-2xy)+(-2x3y)3÷(2x2)=4x6y2•(-2xy)+(-8x9y3)÷(2x2)=-8x7y3-4x7y3=-12x7y3;(3)(x+1)(x-3)-(x+1)2=x2-3x+x-3-(x2+2x+1)=x2-3x+x-3-x2-2x-1=-4x-4;(4)(a-b-3)(a-b+3)=(a-b)2-9=a2-2ab+b2-9.【点睛】本题主要考查整式的混合运算,解答的关键是对相应的运算法则的掌握.14.(2023春•沙坪坝区校级月考)计算:(1)-12-2-(-1)2023+(π-2023)0;(2)(2m+n)2-(2m-n)2;(3)(a+3b)(3a-b)-(a+b)(-a-b);(4)(3x-2y+1)(2y-3x+1).【分析】(1)先分别计算负整数次幂、乘方、零次幂,再进行加减运算;(2)利用平方差公式计算即可;(3)先计算多项式的乘法,再合并同类项即可;(4)先变形,然后根据平方差公式和完全平方公式计算即可.【详解】(1)-1 2-2-(-1)2023+(π-2023)0=4-(-1)+1=4+1+1=6;(2)(2m+n)2-(2m-n)2=[(2m+n)+(2m-n)][(2m+n)-(2m-n)]=(2m+n+2m-n)(2m+n-2m+n)=4m•2n=8mn;(3)(a+3b)(3a-b)-(a+b)(-a-b)=(a+3b)(3a-b)+(a+b)2=3a2-ab+9ab-3b2+a2+2ab+b2=4a2+10ab-2b2;(4)(3x-2y+1)(2y-3x+1)=[1+(3x-2y)][1-(3x-2y)]=1-(3x-2y)2=1-9x2+12xy-4y2.【点睛】本题考查整式的混合运算,实数的运算,熟练掌握运算法则是解答本题的关键,注意平方差公式和完全平方公式的应用.15.(2023春•杏花岭区校级月考)计算:(1)(-1)2020+-12-2-(3.14-π)0;(2)2x•(3x2-4x+1);(3)23a4b7-19a2b6÷-13ab3;(4)(x-2y)(x+2y)-(2x-y)2.【分析】(1)先化简各式,再进行计算;(2)利用单项式乘多项式的法则,进行计算即可;(3)利用多项式除以单项式的法则,进行计算即可;(4)先进行平方差公式和完全平方公式的计算,再合并同类项即可.【详解】(1)原式=1+4-1=4;(2)原式=6x3-8x2+2x;(3)原式=23a4b7÷-13ab3-19a2b6÷-13ab3=-2a3b4+13ab3;(4)原式=x2-4y2-(4x2-4xy+y2)=x2-4y2-4x2+4xy-y2=-3x2+4xy-5y2.【点睛】本题考查零指数幂,负整数指数幂,单项式乘多项式,多项式除以单项式,平方差公式,完全平方公式.熟练掌握相关运算法则,是解题的关键.16.(2023春•沙坪坝区校级月考)化简求值:[(2x-y)2-2(x+2y)(2x-y)]÷5y,其中:x=2,y=-3.【分析】根据完全平方公式、多项式乘多项式的运算法则、合并同类项法则把原式化简,把x、y的值代入计算,得到答案.【详解】原式=[4x2-4xy+y2-2(2x2-xy+4xy-2y2)]÷5y=(4x2-4xy+y2-4x2+2xy-8xy+4y2)÷5y=(-10xy+5y2)÷5y=-2x+y,当x=2,y=-3时,原式=-2×2-3=-7.【点睛】本题考查的是整式的化简求值,掌握整式的混合运算法则是解题的关键.17.(2023春•平遥县月考)(1)化简:(3x2y2+4x3y-4x2y)÷xy-(2x-1)2.(2)先化简,再求值:(2x+y)2-4x(x+2y)-3y2,其中x=-4,y=12.【分析】(1)首先进行多项式除以单项式及完全平方公式运算,再合并同类项,即可求得结果;(2)首先进行整式的混合运算,进行化简,再把x、y的值代入化简后的式子即可求解.【详解】(1)(3x2y2+4x3y-4x2y)÷xy-(2x-1)2=3xy+4x2-4x-(4x2-4x+1)=3xy+4x2-4x-4x2+4x-1=3xy-1.(2)(2x+y)2-4x(x+2y)-3y2=4x2+4xy+y2-4x2-8xy-3y2=-4xy-2y2,当x=-4,y=12时,原式=-4×(-4)×12-2×122=8-12=152.【点睛】本题考查了整式的混合运算及化简求值,掌握整式的混合运算法则是解决本题的关键.18.(2023春•海淀区校级月考)已知x2+3x-4=0.求代数式(x+1)(2x-1)-(x-1)2的值.【分析】根据完全平方公式,多项式乘多项式法则进行乘法运算,再合并同类项,然后根据x2+3x-4 =0可以得到x2+3x=4,再把x2+3x=4代入化简后的式子计算即可.【解答】解(x+1)(2x-1)-(x-1)2=2x2-x+2x-1-x2+2x-1=x2+3x-2,∵x2+3x-4=0,∴x2+3x=4,当x2+3x=4时,原式=4-2=2.【点睛】本题考查整式的混合运算-化简求值,熟练掌握整式混合运算法则是解答本题的关键.19.(2023春•新城区校级月考)先化简,再求值:[(-2x+y)2-(2x-y)(y+2x)-6y]÷2y,其中x=-1,y=2.【分析】原式括号中利用完全平方公式,平方差公式计算,合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【详解】原式=(4x 2+y 2-4xy -4x 2+y 2-6y )÷2y=(2y 2-4xy -6y )÷2y=y -2x -3,当x =-1,y =2时,原式=2-2×(-1)-3=1.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则及公式是解本题的关键.20.(2023春•碑林区校级月考)先化简再求值:[(3a +b )2-(3a +b )(3a -b )]÷2b ,其中a =-13,b =-2.【分析】先利用完全平方公式,平方差公式计算括号里,再算括号外,然后把a ,b 的值代入化简后的式子,进行计算即可解答.【详解】[(3a +b )2-(3a +b )(3a -b )]÷2b=(9a 2+6ab +b 2-9a 2+b 2)÷2b=(6ab +2b 2)÷2b=3a +b ,当a =-13,b =-2时,原式=3×-13+(-2)=-1+(-2)=-3.【点睛】本题考查了整式的混合运算-化简求值,完全平方公式,平方差公式,准确熟练地进行计算是解题的关键.类型三、分式的混合运算21.(2023•九龙坡区模拟)计算:(1)(x +y )2-x (2y -x );(2)a -1+4a a -1 ÷2a 2-2a 2-2a +1.【分析】(1)根据完全平方公式和单项式乘多项式将题目中的式子展开,然后合并同类项即可;(2)先算括号内的式子,然后计算括号外的除法即可.【详解】(1)(x +y )2-x (2y -x )=x 2+2xy +y 2-2xy +x 2=2x 2+y 2;(2)a -1+4a a -1 ÷2a 2-2a 2-2a +1=(a -1)2+4a a -1•(a -1)22(a +1)(a -1)=a 2-2a +1+4a a -1•(a -1)22(a +1)(a -1)=(a +1)2a -1•(a -1)22(a +1)(a -1)=a +12.【点睛】本题考查分式的混合运算、完全平方公式和单项式乘多项式,熟练掌握运算法则是解答本题的关键.22.(2023春•泸县校级月考)化简x +1x 2-2x +1÷1-21-x .【分析】先利用异分母分式加减法法则计算括号里,再算括号外,即可解答.【详解】x +1x 2-2x +1÷1-21-x =x +1(x -1)2÷1-x -21-x =x +1(x -1)2•1-x -1-x=x +1(x -1)2•-(x -1)-(x +1)=1x -1.【点睛】本题考查了分式的混合运算-化简求值,准确熟练地进行计算是解题的关键.23.(2023春•海陵区校级月考)计算:(1)a 2a -b -b 2a -b;(2)a +1-4a -5a -1 ÷1a -1-2a 2-a.【分析】(1)根据同分母分式相减,然后对分子分解因式,再约分即可;(2)先算括号内的式子,然后计算括号外的除法即可.【详解】(1)a 2a -b -b 2a -b=a 2-b 2a -b=(a +b )(a -b )a -b=a +b ;(2)a +1-4a -5a -1 ÷1a -1-2a 2-a=(a +1)(a -1)-(4a -5)a -1÷a -2a (a -1)=a 2-1-4a +5a -1•a (a -1)a -2=(a -2)2a -1•a (a -1)a -2=a (a -2)=a 2-2a .【点睛】本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.24.(2023春•沙坪坝区校级月考)计算:(1)(x +1)(4x -3)-(2x -1)2;(2)2x -1x +1-x +1 ÷x -2x 2+2x +1.【分析】(1)首先根据多项式乘多项式法则、完全平方公式进行运算,然后合并同类项即可;(2)根据分式的混合运算法则和运算顺序进行化简计算即可.【详解】(1)原式=4x 2-3x +4x -3-(4x 2-4x +1)=4x 2-3x +4x -3-4x 2+4x -1=5x -4;(2)原式=2x -1x +1-(x -1)(x +1)x +1 ÷x -2(x +1)2=2x -1-(x 2-1)x +1×(x +1)2x -2=2x -x 2x +1×(x +1)2x -2=-x 2-x .【点睛】本题主要考查了整式运算和分式运算,熟练掌握相关运算法则是解题关键.25.(2023•宾阳县一模)先化简,再求值:x +1x -2 ×2x -4x -1,其中x =2+1.【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将x 的值代入原式即可求出答案.【详解】原式=x 2-2x +1x -2×2(x -2)x -1=(x -1)2x -2•2(x -2)x -1=2(x -1)=2x -2,当x =2+1时,原式=2(2+1)-2=22+2-2=22.【点睛】本题考查分式的化简求值,解题的关键是熟练运用分式的乘除运算以及加减运算法则,本题属于基础题型.26.(2023•秦都区校级二模)先化简,再求值:2m m +1-1 ÷m 2-m m +1,其中m =3.【分析】先对分式通分、因式分解、约分等化简,化成最简分式,后代入求值.【详解】=2m m +1-m +1m +1 ÷m (m -1)m +1=m -1m +1⋅m +1m (m -1)=1m .当m =3时,原式=13.【点睛】本题考查了分式的化简求值,运用因式分解,通分,约分等技巧化简是解题的关键.27.(2023•喀什地区模拟)先化简,再求值:x 2-1x 2-2x +1+x +1x -1⋅1-x 1+x ,其中x =-2.【分析】先算乘法,然后再算加法,最后代入求值.【详解】原式=(x +1)(x -1)(x -1)2+(-1)=x +1x -1-1=x +1x -1-x -1x -1=2x -1,当x =-2时,原式=2-2-1=-23.【点睛】本题考查分式的化简求值,掌握分式混合运算的运算顺序和计算法则是解题关键.28.(2023•福田区模拟)先化简:3x x -2-x x +2 ⋅x 2-4x ,并在-2,0,1,2中选一个合适的数求值.【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x 的值代入进行计算即可.【详解】原式=3x (x +2)(x +2)(x -2)-x (x -2)(x -2)(x +2)⋅(x -2)(x +2)x =3x 2+6x -x 2+2x (x -2)(x +2)•(x -2)(x +2)x =2x 2+8x (x -2)(x +2)•(x -2)(x +2)x =2x (x +4)(x -2)(x +2)•(x +2)(x -2)x =2(x +4)=2x +8;又分母不能为0,∴x 不能取-2,0,2,当x =1时,原式=2×1+8=10.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.29.(2023春•平城区校级月考)(1)计算:(1-tan60°)2+-230+6×2;(2)先化简,再求值:1-x x +2 ÷x +2x -2-8x x 2-4,其中x =2+2.【分析】(1)根据特殊角的三角函数值、零次幂、二次根式的乘法法则计算,即可求解;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】(1)(1-tan60°)2+-230+6×2=|1-3|+1+12=3-1+1+23=33;(2)1-x x +2 ÷x +2x -2-8x x 2-4=x +2x +2-x x +2 ÷(x +2)2(x +2)(x -2)-8x (x +2)(x -2)=2 x+2÷x2+4x+4(x+2)(x-2)-8x(x+2)(x-2)=2 x+2÷x2-4x+4 (x+2)(x-2)=2 x+2÷(x-2)2 (x+2)(x-2)=2 x+2÷x-2 x+2=2 x+2⋅x+2 x-2=2x-2,当x=2+2时,原式=22+2-2=22=2.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.也考查了二次根式的乘法运算,特殊角的三角函数值.30.(2023春•东营区校级月考)(1)计算:(-1)2017-27+(4-π)0+|3-3|+(sin60°)-1.(2)先化简分式:x2-2x+4x-1+2-x÷x2-41-x,然后在0,1,2中选一个合适的代入求值.【分析】(1)根据二次根式的性质、零指数幂和负整数指数幂、绝对值的性质计算;(2)根据分式的混合运算法则把化简,根据分式有意义的条件确定x的值,代入计算,得到答案.【详解】(1)原式=-1-33+1+3-3+32 -1=3-43+233=3-1033;(2)原式=x2-2x+4x-1+2x-2-x2+xx-1•1-x(x+2)(x-2)=x+2 x-1•1-x (x+2)(x-2)=12-x,由题意得:x≠1和±2,当x=0时,原式=12-0=12.【点睛】本题考查的是分式的化简求值、实数的混合运算,掌握分式的混合运算法则、实数的混合运算法则是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
25. 将多项式 m2n-2mn+n 因式分解的结果是
.
26. 分解因式:①(2a+1)2-a2=
;② 8(a2+1)-16a=
.
27. 若式子 x+1有意义,则 x 的取值范围是
.
x
x2+2x
28. 化简:x+1-
=
.
x+1
29. 分式方程 x - 1 =1 的解是
.
x-2 x2-4
30. (- 2)2 的平方根是____;9 的算术平方根是____; 是-64 的立方根.
中考专题一:实数、整式、分式、根式及其运算
1. 五种大小比较方法 实数的大小比较常用以下五种方法: (1)数轴比较法:将两数表示在数轴上,右边的点表示的数总比左边的点表示的数大. (2)代数比较法:正数大于零;负数小于零;正数大于一切负数;两个负数,绝对值大的数反而小. (3)差值比较法:设 a,b 是两个任意实数,则:a-b>0⇒a>b;a-b=0⇒a=b;a-b<0⇒a<b. (4)倒数比较法:若1>1,a>0,b>0,则 a<b.
B. 4
C.0
D.-1
8. 下列各数中,3.14159,- 3 8 ,0.131131113,…,-π, 25,-1无理数的个数有(
)
7
A.1 个
B.2 个
C.3 个
D.4 个
9. 实数 a,b,c 在数轴上对应的点如下图所示,则下列式子中正确的是(
)
A.ac>bc
B.|a-b|=a-b
C.-a<-b<c D.-a-c>-b-c
4. 最简二次根式:运算结果中的二次根式,一般都要化成最简二次根式.最简二次根式,需满足 两个条件:(1)被开方数不含分母;(2)被开方数中不含开得尽方的因数或因式.
1.-1.5 的绝对值是( )
A.0
B.-1.5
2.0 这个数是( ) A.正数 B.负数
3.估计 30的值是( )
C.1.5
D.2
3
38. 已知 x+y=xy,求代数式1+1-(1-x)(1-y)的值. xy
39. 先化简,再求值:( 3x - x )÷ x ,在-2,0,1,2 四个数中选一个合适的代入求值. x-2 x+2 x2-4
40. 如图①,从边长为 a 的正方形纸片中剪去一个边长为 b 的小正方形,再沿着线段 AB 剪开,把剪成 的两张纸片拼成如图②的等腰梯形.
21. 计算:-(-1)=____;|-1|=____;(-1)0=____;(-1)-1=____.2222
22. 若 ab>0,则|a|+|b|-|ab|的值等于
.
a b ab
23. 已知|a|=1,|b|=2,|c|=3,且 a>b>c,那么 a+b-c=
.
24. 计算:3(2xy-y)-2xy=
31. 计算:(-1)2015+(sin30°)-1+( 3 )0-|3- 18|+83×(-0.125)3. 5- 2
32. 先化简,再求值:a(a-3b)+(a+b)2-a(a-b),其中 a=1,b=-1. 2
33. 先化简,再求值:(x+2)2+(1-x)(2+x)-3,其中(x+1)2=6.
D.4
D.(1)-3=-1
2
8
13. 已知 xn-2my4 与-x3y2n 是同类项,则(mn)2015 的值为(
)
A.2015
B.-2015
C.1
D.-1
14. 下列因式分解正确的是(
)
A.2x2-2=2(x+1)(x-1)
B.x2+2x-1=(x-1)2
C.x2+1=(x+1)2
D.x2-x+2=x(x-1)+2
x2-4 15. 计算 的结果是( )
x-2
A.x-2
B.x+2
C.x-4 2
D.x+2 x
16. 化简 2 + 3 的结果是( ) x-1 1-x
A. 1 x-1
B. 1 1-x
C. 5 x-1
D. 5 1-x
x2-1 17. 若分式 的值为零,则 x 的值为( )
x-1
A.0 B.1
C.-1
D.±1
5. 下列近似数中精确到千位的是( )
A.90200
B.3.450×102
C.3.4×104
D.3.4×102
6. 一种微粒的半径是 0.00004 米,这个数据用科学记数法表示为(
)
A.4×106
B.4×10-6
C.4×10-5
D.4×105
7. 实数 , 4 ,0,-1 中,无理数是(
)
A.
18. 分式方程 x -1=
3
的解是( )
x-1 (x-1)(x+2)
A.x=1
B.x=-1+ 5
C.x=2
D.无解
19. 下列运算中错误的是( A. 2+ 3= 5
) B. 2× 3= 6
C. 8÷ 2=2
D.(- 3)2=3
20. 若(m-1)2+ n+2=0,则 m+n 的值是( )
A.-1 B.0 C.1 D.2
10.下列运算正确的是( )
A.a2+a5=a7
B.(-ab)3=-ab3
C.a8÷a2=a4
D.2a2·a=2a3
11. 下列运算正确的是( )
A.a3÷a2=a
B.(-1)0=0 2
C.(a3)4=a7
12. 已知 x2-2=y,则 x(x-3y)+y(3x-1)-2 的值是(
)
A.-2
B.0
C.2
(1)设图①中阴影部分面积为 S1,图②中阴影部分面积为 S2,请直接用含 a,b 的代数式表示 S1 和 S2;
(2)请写出上述过程所揭示的乘法公式.
C.整数 D.无理数
A.在 3 到 4 之间 B.在 4 到 5 之间 C.在 5 到 6 之间
D.在 6 到 7 之间
4.2015 年五一节小长假期间,黔灵山公园接待游客约为 85 000 人,将数据 85 000 用科学记数法表示
为(
)
A.85×103
B.8.5×104
C.0.85×105
D.8.5×105
ab (5)平方比较法:∵由 a>b>0,可得 a> b,∴可以把 a与 b的大小问题转化成比较 a 和 b 的大 小问题. 2. 因式分解的一般步骤 (1)如果多项式的各项有公因式,那么必须先提取公因式; (2)如果各项没有公因式,那么尽可能尝试用公式法来分解; (3)分解因式必须分解到不能再分解为止,每个因式的内部不再有括号,且同类项合并完毕,若有 相同因式写成幂的形式,这样才算分解彻底; (4)注意因式分解中的范围,如 x4-4=(x2+2)(x2-2),在实数范围内分解因式,x4-4=(x2+2)(x + 2)(x- 2),题目不作说明的,表明是在有理数范围内因式分解. 3.分式运算 (1)最简分式:如果一个分式的分子与分母没有公因式,那么这个分式叫做最简分式. (2)分式的约分:把分式中分子与分母的公因式约去,这种变形叫做约分,约分的根据是分式的 基本性质. (3)分式的通分:把几个异分母分式化为与原分式的值相等的同分母分式,这种变形叫做分式的 通分,通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母. (4)分式的混合运算:在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简, 最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式. (5)解分式方程:其思路是去分母转化为整式方程,要特别注意验根.使分母为 0 的未知数的值 是增根,需舍去.
34. 分解因式: (1)25(x+y)2-9(x-y)2; (2)a-6ab+9ab2.
35. 已知 a2+b2+6a-10b+34=0,求 a+b 的值.
36. 已知 x-y= 3,求代数式(x+1)2-2x+y(y-2x)的值.
37. 先化简,再求值:(a2b+ab)÷a2+2a+1,其中 a= 3+1,b= 3-1. a+1