高考解析几何中的最值问题

合集下载

解析几何中最值问题的常用方法

解析几何中最值问题的常用方法
3 +2 +l = o x y 0 2
分 :zxy y x , 族 丢 平 的 析 =一, = — 作 与 ×行 令 34则 孚 z 一
平行线 。 注意到当直线 与椭 圆相切时 , 线在 Y轴上的截距 一 直 有最值 , z有最值。 即 (x 4 — = 3 一 v. 0 Z
由 I 得
分 : 最 值即 的 大 , 看 析求 小 ,求 最 值而 } 作
两点 A(、)l 10的斜率。 xyB一 ,) 故等价于在椭圆上找一个点 A, 使
它与 B连线斜率最大。 解析 : A 设 B方程为 y k + ) =【 1 x
f= 【 1 y kx ) +
的能力 , 中学数学复 习中不可忽视的问题。下面我结合具体 是
时 ,距离 之和有 最小值 。本题 中点 A B在 l 、 的异筒 ,易得
变式 : 已知圆 C ( 4 + 24 圆 D的圆心 D在 Y轴上且 : + 】 y= , X 与圆 C相 外切 , D与 Y轴交于 A、 圆 B点 , P为 ( 3 0)当 点 一, , 点 D在 Y轴上移动时, _ P 求/A B的最大值 。 _ 答案 : ctn at a
3  ̄2 a 4 = a+ s + s 0,由方程有实数根得△ =Is - x3X4 ≥0, 2) 4 Z S
即s 1 ≥ 2或 S ( )从 而 得 a 一 I= 6 ≤O 舍 , = 4b一 。
当 I HP l P A B取得最大值时, P的坐标是— 点


提示 : 当点 A B I 、 在 同侧时 , 距寓之差有最大值 ; l 在 异侧
甘肃省张掖市实验 中学
王希明
【 要】 摘 解析几何中的最值问题是历届高考的热点, 如何利用合理的数学方法解决这类问题, 提高学生分析问题和解决问

高考数学复习第11关 以解析几何中离心率、最值、范围为背景解答题(解析版)

高考数学复习第11关 以解析几何中离心率、最值、范围为背景解答题(解析版)

专题二 压轴解答题第11关 以解析几何中离心率、最值、范围为背景解答题【名师综述】解析几何中的范围、最值和离心率问题仍是高考考试的重点与难点,试题难度较大.注意分类讨论思想、函数与方程思想、化归与转化思想等的应用,如解析几何中的最值问题往往需建立求解目标函数,通过函数的最值研究几何中的最值.【典例解剖】类型一 离心率问题典例1.在平面直角坐标系xOy 中,已知椭圆C :22221(0)43x y t t t+=>的左、右顶点为A ,B ,右焦点为F .过点A 且斜率为k (0k >)的直线交椭圆C 于另一点P .(1)求椭圆C 的离心率;(2)若12k =,求22PA PB的值; (3)设直线l :2x t =,延长AP 交直线l 于点Q ,线段BQ 的中点为E ,求证:点B 关于直线EF 的对称点在直线PF 上.【答案】(1)12(2)224513PA PB =(3)详见解析 【解析】【分析】第一问利用离心率的公式直接求解;第二问将直线AP 的方程为1(2)2y x t =+与椭圆C 的方程2223412x y t +=联立求出点P 的坐标,再利用两点间的距离公式即可求出22PA PB的值;第三问先求出Q 点的坐标,再利用中点坐标公式求出点E 的坐标,然后求出点P 的坐标及直线PF 的斜率、直线EF 的斜率,最后根据tan tan 2PFB θ∠=得出2PFB EFB ∠=∠即可证明.【详解】(1)∵椭圆C :2222143x y t t +=,∴224a t =,223b t =,22c t =.又0t >,∴2a t =,c t =,∴椭圆C 的离心率12c e a ==. (2)∵直线AP 的斜率为12,且过椭圆C 的左顶点(2,0)A t -,∴直线AP 的方程为1(2)2y x t =+.代入椭圆C 的方程2223412x y t +=,得2223(2)12x x t t ++=,即2220x tx t +-=,解得x t =或2x t =-(舍去),将x t =代入1(2)2y x t =+,得32y t =,∴点P 的坐标为3,2t t ⎛⎫⎪⎝⎭.又椭圆C 的右顶点B (2t ,0),∴2222345(2)024PA t t t t ⎛⎫=++-= ⎪⎝⎭,2222313(2)024PB t t t t ⎛⎫=-+-= ⎪⎝⎭,∴224513PA PB =. (3)直线AP 的方程为(2)y k x t =+,将2x t =代入(2)y k x t =+,得4y kt =,∴(2,4)Q t kt .∵E 为线段BQ 的中点,∴(2,2)E t kt ,∵焦点F 的坐标为(t ,0),∴直线EF 的斜率2EF k k =.联立222(2)3412y k x t x y t =+⎧⎨+=⎩,,消y 得,()()2222234164430k x k tx k t +++-=.由于()22244334A P k t x x k -=+,2A x t =-,∴()2223434P k t x k -=+,∴点P 的坐标为()22223412,3434k t kt k k ⎛⎫- ⎪ ⎪++⎝⎭,∴直线PF 的斜率()222221242234141(2)23434PFktk kk k k k k ttk ⋅+===----+.而直线EF 的斜率为2k ,若设EFB θ∠=,则有tan tan 2PFB θ∠=,即2PFB EFB ∠=∠,∴点B 关于直线EF 的对称点在直线PF 上. 【名师点睛】本题主要考查离心率的求值、直线与椭圆的综合问题、点关直线对称问题等. 求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,结合222b a c =-转化为,a c 的齐次式,然后等式(不等式)两边分别除以a 或2a 化转为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 【举一反三】(2020·陕西渭南期末考试)如图,12F F 、分别是椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,A 是椭圆C的顶点,B 是直线2AF 与椭圆C 的另一个交点,123F AF π∠=.(1)求椭圆C 的离心率;(2)已知1AF B ∆的面积为,a b 的值.【答案】(1)12;(2)10,a b ==【解析】【分析】(1)由题意可知,12AF F ∆为等边三角形,2a c =,∴1=2e ;(2)已知1AF B ∆的面积为,a b 的值. 【详解】(1)由题意,A 是椭圆C 的顶点,可知12=AF AF ,又123F AF π∠=,∴12AF F ∆ 为等边三角形,2a c =,∴1==2c e a . (2)由(1)可得224a c =,又222+a b c =,2234b a =.直线AB 的倾斜角为23π,斜率为AB 的方程为 )y x c =-.将其代入椭圆方程 2223412x y c +=,解得 8,5B c ⎛⎫⎪ ⎪⎝⎭,∴ 81680555AB c c a =-==,1AF a =,由1211118sin 225AF B S AF AB F AB a a ∆=⋅∠=⋅==10a =,b =类型二 最值、范围问题典例2.(2020上海南模中学月考)某景区欲建两条圆形观景步道12,M M (宽度忽略不计),如图所示,已知AB AC ⊥,60AB AC AD ===(单位:米),要求圆M 与,AB AD 分别相切于点B ,D ,圆2M 与,AC AD 分别相切于点C ,D .(1)若BAD 3π∠=,求圆12,M M 的半径;(结果精确到0.1米)(2)若观景步道12,M M 的造价分别为每米0.8千元与每米0.9千元,则当BAD ∠多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元) 【答案】(1)34.6米,16.1米;(2)263.8千元. 【解析】 【分析】(1)利用切线的性质即可得出圆的半径;(2)设∠BAD =2α,则总造价y =0.8•2π•60tanα+0.9•2π•60tan (45°﹣α),化简,令1+tanα=x 换元,利用基本不等式得出最值. 【详解】(1)连结M 1M 2,AM 1,AM 2,∵圆M 1与AB ,AD 相切于B ,D ,圆M 2与AC ,AD 分别相切于点C ,D , ∴M 1,M 2⊥AD ,∠M 1AD =12∠BAD =6π,∠M 2AD =12π,∴M1B =ABtan ∠M1AB =60×3=.6(米),∵tan6π=22tan121tan12ππ-tan 12π=2,同理可得:M 2D =60×tan12π=60(2≈16.1(米).(2)设∠BAD =2α(0<α<4π),由(1)可知圆M 1的半径为60tanα,圆M 2的半径为 60tan (45°﹣α),设观景步道总造价为y 千元,则y =0.8•2π•60tanα+0.9•2π•60tan (45°﹣α)=96πtanα+108π•1tan 1tan αα-+,设1+tanα=x ,则tanα=x ﹣1,且1<x <2. ∴y =96π(x ﹣1)+108π(21x -)=12π•(8x +18x﹣17)≥84π≈263.8, 当且仅当8x =18x 即x =32时取等号, 当x =32时,tanα=12,∴α≈26.6°,2α≈53.2°.∴当∠BAD 为53.2°时,观景步道造价最低,最低造价为263.8千元.【名师点睛】求最值、范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算的方便,在建立关系的过程中也可以采用多个变量,只要在最后结果中把多变量归结为单变量即可,同时要特别注意变量的取值范围.例3.(2020上海高三模拟考试)已知圆:(),定点,,其中为正实数.(1)当时,判断直线与圆的位置关系;C 22(1)x y a ++=0a >(,0)A m (0,)B n ,m n3a m n ===AB C(2)当时,若对于圆上任意一点均有成立(为坐标原点),求实数的值; (3)当时,对于线段上的任意一点,若在圆上都存在不同的两点,使得点是线段的中点,求实数的取值范围.【答案】(1) 相离.(2) ,.(3)【解析】 【分析】(1)利用圆心到直线的距离和半径的关系即可得到判断;(2)利用两点间的距离公式进行化简整理,由点P 的任意性即可得实数m ,λ的值;(3)设出点P 和点N 的坐标,表示出中点M 的坐标,M 、N 满足圆C 的方程,根据方程组有解说明两圆有公共点,利用两圆位置关系要求及点P 满足直线AB 的方程,解出半径的取值范围. 【详解】解: (1) 当时,圆心为当时,直线方程为, ∴圆心到直线距离为(2)设点,则,∵,∴,,…………由得,,∴,代入得,,化简得,…………∵为圆上任意一点,∴……… 4a =C P PA PO λ=O ,m λ2,4m n ==AB P C ,M N M PN a 3m =2λ=1736,95⎡⎫⎪⎢⎣⎭3a =()1,0-3m n ==AB 30x y +-=d ==<(),P x y PO =PA =PA PO λ=()()22222x m y xy λ-+=+()()222221120x y mx m λλ-+-+-=()2214x y ++=22230x y x ++-=2232x y x +=-()()2213220x mx m λ--+-=()()22221310m x m λλ-+-+-=P C ()22210,310,m m λλ⎧-+=⎪⎨-+-=⎪⎩又,解得,.………………… (3)法一:直线的方程为,设(),, ∵点是线段的中点,∴,又都在圆:上,∴ 即…………………… ∵该关于的方程组有解,即以为半径的圆与以为圆心,为半径的圆有公共点,∴,又为线段上的任意一点,∴对所有成立.而 在上的值域为, ∴∴.……… 又线段与圆,∴. 故实数的取值范围为.……………法二:过圆心作直线的垂线,垂足为,设,,则则消去得,,,0m λ>3m =2λ=AB 124x y+=(),42P t t -02t ≤≤(),N x y M PN ,222x ty M t +⎛⎫-+⎪⎝⎭,M N C ()221x y a ++=()22221,12,22x y a x t y t a ⎧++=⎪⎨+⎛⎫⎛⎫++-+=⎪⎪ ⎪⎝⎭⎝⎭⎩()()()22221,2424,x y a x t y t a ⎧++=⎪⎨++++-=⎪⎩,x y ()1,0-()2,24t t ---()()221249a t t a ≤++-≤P AB ()()221249a t t a ≤++-≤02t ≤≤()()()22124f t t t =++-2736555t ⎛⎫=-+ ⎪⎝⎭[]0,236,175⎡⎤⎢⎥⎣⎦36,5917,a a ⎧≤⎪⎨⎪≥⎩173695a ≤≤AB C <365a <a 1736,95⎡⎫⎪⎢⎣⎭C MN H CH d ==MN l 222221232d l a d l PC ⎧⎛⎫+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩l [)2290,88PC d a a =-∈∴(]2,9PC a a ∈直线方程为 点到直线且为线段上的任意一点, …,,故实数的取值范围为.【举一反三】1.(2020上海高三模拟考试)如图,某市有相交于点O 的一条东西走向的公路l ,与南北走向的公路m ,这两条公路都与一块半径为1(单位:千米)的圆形商城A 相切.根据市民建议,欲再新建一条公路PQ ,点P 、Q 分别在公路l 、m 上,且要求PQ 与圆形商城A 也相切.(1)当P 距O 处4千米时,求OQ 的长; (2)当公路PQ 长最短时,求OQ 的长. 【答案】(1) 3千米.(2) 【解析】 【分析】(1)先建立以O 为原点,直线l 、m 分别为x ,y 轴建立平面直角坐标系.设直线方程为:,由,运算即可得解;(2)设,,由PQ 与圆A 相切,得,再结合重要不等式即可得解. 【详解】解:(1)以O 为原点,直线l 、m 分别为x ,y 轴建立平面直角坐标系. 设PQ 与圆A 相切于点B ,连结AB ,以1千米为单位长度,AB 240x y +-=∴C AB =3,CA CB ==P AB ∴236,175PC ⎡⎤∈⎢⎥⎣⎦(]36,17,95a a ⎡⎤∴⊆⎢⎥⎣⎦361795a a ∴<<≤a 1736,95⎡⎫⎪⎢⎣⎭2+14x yb+=1=(,0)P a (0,)Q b (2,2)a b >>2()2ab a b =+-则圆A 的方程为, 由题意可设直线PQ 的方程为,即,, ∵PQ 与圆A,解得,故当P 距O 处4千米时,OQ 的长为3千米. (2)设,, 则直线PQ 方程为,即. ∵PQ 与圆A,化简得,即; 解法一:因此∵,,∴,于是.又,解得,或∵,∴,当且仅当时取等号,∴PQ 最小值为,此时.答:当P 、Q 两点距离两公路的交点O 都为PQ 最短. 解法二:化简得,即.∵22(1)(1)1x y -+-=14x yb+=440bx y b +-=(2)b >1=3b =(,0)P a (0,)Q b (2,2)a b >>1x ya b+=0bx ay ab +-=1=202()a ab b -++=2()2ab a b =+-PQ ====2a >2b >4a b +>()2PQ a b =+-22()22a b ab a b +⎛⎫=+-≤ ⎪⎝⎭04a b <+≤-4a b +≥+4a b +>4a b +≥+()22PQ a b =+-≥+2a b ==2+2a b ==2+202()a ab b -++=2(1)2222a b a a -==+--PQ ====∵,∴. 当且仅当,即时取到等号, 答:当P 、Q 两点距离两公路的交点O 都为PQ 最短. 解法三:设PQ 与圆A 相切于点B ,连结AB 、AP 、AQ ,设, 则,,且,∴,又∵,∴,∴(当且仅当取等号)答:当P 、Q 两点距离两公路的交点O 都为PQ 最短. 解法四:设PQ 与相切于点B ,设,,则,,,在中,由得:,化简得:,∴,解得:或(舍)=2(2)22a a ==-++-2a >2(2)2222PQ a a =-++≥+=-222a a -=-2a b ==+2+OPA θ∠=APB APO ∠=∠BQA OQA ∠=∠2OPQ OQP π∠+∠=4AQB πθ∠=-AB PQ ⊥1tan PB θ=10,4tan 4BQ πθπθ⎛⎫=∈ ⎪⎛⎫⎝⎭- ⎪⎝⎭111111tan 1tan tan tan tan 1tan tan 1tan 4PQ θθπθθθθθθ+=+=+=+--⎛⎫- ⎪+⎝⎭12121(tan 1tan )1tan 1tan tan 1tan θθθθθθ⎛⎫=+-=++-- ⎪--⎝⎭1tan 2tan 12122tan 1tan θθθθ-=+++-≥+=+-tan 1θ=2+A BP x =(0,0)BQ y x y =>>1OP x =+1OQ y =+PQ x y =+RT OPQ ∆222OP OQ PQ +=222()(1)(1)x y x y +=+++1xy x y =++212x y x y +⎛⎫++≤ ⎪⎝⎭2x y +≥+2x y +≤-(当且仅当时等号成立),∴当时,PQ有最小值.答:当P、Q两点距离公路交点O都为PQ最短.2.已知椭圆()222210x ya ba b+=>>的离心率3e=,左、右焦点分别为12,F F,且2F与抛物线24y x=的焦点重合.(1)求椭圆的标准方程;(2)若过1F的直线交椭圆于,B D两点,过2F的直线交椭圆于,A C两点,且AC BD⊥,求AC BD+的最小值.【答案】(1)椭圆的标准方程为22132x y+=;(2)AC BD+.【解析】(1)抛物线24y x=的焦点为()1,0,∴1c=,又∵13cea a===,∴a=22b=,∴椭圆的标准方程为22132x y+=.12BD x x=-=)22132kk+=+.易知AC的斜率为1k-,∴)222211112332kkACkk⎫+⎪+⎝⎭==+⨯+.()222114313223AC BD kk k⎛⎫+=++⎪++⎝⎭()()()()()()22222222220312031322332232k kk k k k++=≥++⎡⎤+++⎢⎥⎢⎥⎣⎦1x y==+2OP OQ==+2+)()222212514k k +==+. 当21k =,即1k =±时,上式取等号,故AC BD +的最小值为1635. (ii )当直线BD的斜率不存在或等于零时,易得AC BD +=>综上:AC BD +. 类型三 面积问题典例3.(2020上海松江区一模)设抛物线的焦点为,经过轴正半轴上点的直线交于不同的两点和.(1)若,求点的坐标;(2)若,求证:原点总在以线段为直径的圆的内部;(3)若,且直线∥,与有且只有一个公共点,问:△的面积是否存在最小值?若存在,求出最小值,并求出点的坐标,若不存在,请说明理由. 【答案】(1);(2)证明见解析;(3)存在,最小值2,. 【解析】 【分析】(1)由抛物线方程以及抛物线定义,根据求出横坐标,代入,即可得出点的坐标; (2)设,,设直线的方程是:,联立直线与抛物线方程,根据韦达定理,以及向量数量积运算,得到,推出恒为钝角,即可得结论成立; (3)设,则,由得,推出直线的斜率.设直线2:4y x Γ=F x (,0)M m lΓA B ||3FA =A 2m =O AB ||||FA FM =1l l 1l ΓE OAE M (2,±(3,0)M ||3FA =24y x =()11,A x y ()22,B x y AB 2x my =+12120OA OB x x y y ⋅=+<AOB ∠()11,A x y 110≠x y ||||FA FM =1(2,0)+M x AB 12=-AB y k的方程为,代入抛物线方程,根据判别式等于零,得.设,则,,由三角形面积公式,以及基本不等式,即可求出结果. 【详解】(1)由抛物线方程知,焦点是,准线方程为,设,由及抛物线定义知,,代入得,∴点的坐标或 (2)设,, 设直线的方程是:,联立,消去得:,由韦达定理得, ∴,故恒为钝角,故原点总在以线段AB 为直径的圆的内部. (3)设,则,∵,则,由得,故,故直线的斜率. ∵直线和直线平行,设直线的方程为,代入抛物线方程得,由题意,得. 设,则,,,当且仅当,即时等号成立, 1l 12y y x b =-+12b y =-(),E E E x y 14E y y =-21141E x y x ==(1,0)F 1x =-()11,A x y ||3FA =12x =24y x=y =±A (2,A (2,A -()11,A x y ()22,B x y AB 2x my =+224x my y x =+⎧⎨=⎩x 2480y my --=121248y y m y y +=⎧⎨=-⎩1212OA OB x x y y ⋅=+22212121212()4804416y y y y y y y y =⋅+=+=-<AOB ∠O ()11,A x y 110≠x y ||||FA FM =111-=+m x 0m >12=+m x 1(2,0)+M x AB 12=-AB y k 1l AB 1l 12y y x b =-+211880b y y y y +-=21164320b y y ∆=+=12b y =-(),E E E x y 14E y y =-21141E x y x ==11111111014111222141OAE y x S x y x y x y ∆==+≥-11114y x x y =22114y x =由得,解得或(舍),∴点的坐标为,. 【名师点睛】对于平面图形的面积问题,可以直接表示或者可以利用割补的办法,将面积科学有效表示,其中通过设直线和曲线的交点,利用韦达定理是解决该种问题的关键.典例4.(2020上海吴淞中学月考)已知椭圆,是它的上顶点,点各不相同且均在椭圆上.(1)若恰为椭圆长轴的两个端点,求的面积; (2)若,求证:直线过一定点;(3)若,的外接圆半径为,求的值. 【答案】(1)2(2)证明见解析(3) 【解析】【分析】(1)求得,由三角形的面积公式,即可求解面积;(2)设,联立方程组,求得,又由,求得,得到,即可得到答案;(3)由题意得:,求得线段的中垂线方程,求得外接圆圆心的纵坐标为,即可求解. 【详解】(1)由题意,椭圆,可得,故的面积为. (2)根椐对称性,定点必在轴上,利用特殊值可计算得定点为, 设,,,221121144y x y x ⎧=⎨=⎩21144x x =11x =10x =M (3,0)M min ()2OAE S ∆=2214x y +=A ()*,n n P Q n N∈11,P Q 11APQ∆0n n AP AQ ⋅=n n P Q 11n n P Q y y n==-n n AP Q ∆n R lim n n R →∞411(0,1),(2,0),(2,0)A P Q -11APQ ∆():1n n P Q y l kx m m =+≠1212,x x x x +0n n AP AQ ⋅=35m =-3:5n n P Q y kx l =-22112,1n P n nn ⎛⎫-- ⎪ ⎪⎝⎭n AP 332y n=-+2214x y +=11(0,1),(2,0),(2,0)A P Q -11APQ ∆11422⨯⨯=y 30,5⎛⎫- ⎪⎝⎭():1n n P Q y l kx m m =+≠()11,n P x y ()22,n Q x y联立方程组,整理得,可得, ∵,所,即, 可得, 即,可得,又∵,∴,∴,可得必过定点.(3)易知是等腰三角形,外接圆圆心在轴上,由题意得:,线段的中垂线为: 故外接圆圆心的纵坐标为:,∴,∴. 【举一反三】已知12,F F 是椭圆2222:1(0)x y M a b a b +=>>的左、右焦点,点()2,3A --在椭圆M 上,且离心率为12e =.(1)求椭圆M 的方程;(2)若12F AF ∠的角平分线所在的直线l 与椭圆M 的另一个交点为,B C 为椭圆M 上的一点,当ABC 面积最大时,求点C 的坐标.【答案】(1)2211612x y +=(2) 1919⎛- ⎝⎭【解析】(1)由椭圆M 经过点()2,3A --,离心率12e =,可得22491a { 12b c a +==,解得2214y kx mx y =+⎧⎪⎨+=⎪⎩()()222148410k x kmx m +++-=()122212208144114km x x k m x x k ⎧⎪∆>⎪⎪+=-⎨+⎪⎪-⎪=+⎩90n n P AQ ∠=︒0n n AP AQ ⋅=12121210x x y y y y +--+=()()()()12121210x x kx m kx m kx m kx m +++-+-++=()()()()2212121110kx xk m x x m ++-++-=()()5310m m +-=1m ≠35m =-3:5n n P Q y kx l =-30,5⎛⎫- ⎪⎝⎭n n AP Q ∆y 1n P n ⎛⎫- ⎪ ⎪⎝⎭nAP 112y x n ⎛⎫--= ⎪⎝⎭332y n =-+3313422n R n n ⎛⎫=--+=- ⎪⎝⎭3lim lim 442n n n R n →∞→∞⎛⎫=-= ⎪⎝⎭2216,12a b ==,∴椭圆的标准方程为2211612x y +=∴直线l 的方程为210x y -+=,设过C 点且平行于l 的直线为20x y m -+=由221{ 161220x y x y m +=-+=,整理得()2219164120x mx m ++-= 由()()22164194120m m =-⨯⨯-=,解得276m =,∵m 为直线20x y m -+=在y 轴上的截距,依题意,0m <,故m =-解得x =,y =,∴C点的坐标为⎝⎭ 【精选名校模拟】1.(2020·上海闵行区期末考试)在平面直角坐标系xOy 中,设椭圆2222:1(3)9x yC a a a +=>-.(1)过椭圆C 的左焦点,作垂直于x 轴的直线交椭圆C 于M 、N 两点,若||9MN =,求实数a 的值; (2)已知点(1,0),6T a =,A 、B 是椭圆C 上的动点,0TA TB ⋅=,求TA BA ⋅的取值范围; (3)若直线:13x yl a a +=-与椭圆C 交于P 、Q 两点,求证:对任意大于3的实数a ,以线段PQ 为直径的圆恒过定点,并求该定点的坐标.【答案】(1)6a =;(2)[24,49];(3)证明见解析,(3,0)-. 【解析】【分析】(1)由椭圆的方程可得左焦点坐标,再由MN 的长可得纵坐标,即椭圆过9(3,)2-,代入椭圆的方程求出a 的值;(2)6a =代入椭圆可得椭圆的标准形式,设A 的坐标,TA BA 中的BA 用,TA TB 向量表示,再由题意可得关于A 的坐标的关系,由A 的坐标的范围求出数量积TA BA 的取值范围;(3)将直线l 与椭圆联立求出两根之和及两根之积,进而求出PQ 的中点的坐标,及弦长PQ ,求出以线段PQ 为直径的圆的方程,整理出关于a 的二次三项式恒为0,可得a 的所有系数都为0,可得x ,y 的值,即圆恒过的定点坐标.【详解】(1)由题意可得:222(9)9c a a =--=,即左焦点为:(3,0)-,若||9MN =,∴9||2y =,将3x =,9||2y =代入椭圆可得:229181149a a +=-,又3a >解得:6a =. (2)6a =时,椭圆的方程为:2213627x y +=,设(,)A x y ,66x -,2()||TA BA TA TA TB TA TA TB =-=-,由题意可得:222222211||(1)(1)27(1)228(4)243644x TA BA TA x y x x x x ==-+=-+-=-+=-+,由66x -,∴[24TA BA ∈,49].(3)联立直线l 与椭圆的方程可得:22(9)0ay a y --=,解得10y =,229a y a-=,设(,0)P a ,29(3,)a Q a--,∴PQ 的中点为:3(2a -,29)2a a -,22229||(3)()a PQ a a -=++, ∴以线段PQ 为直径的圆的方程为:2222223919()()[(3)()]224a a a x y a a a ----+-=++,整理可得:22222222239939(3)()()()()2222a a a a a x a x y y a a a---+---++-+=+,即2229(3)30a x a x y y a a---+--=,整理可得:22(3)(3)90x y a x x y a y -++++++=,对于任意的3a >,关于a 的二次三项式22(3)(3)9x y a x x y a y -++++++恒为0, ∴二次项,一次项和常数项的系数均为0,即2(3)390x y x x y y -++=++==, ∴3x =-,0y =,即定点坐标为(3,0)-.2.(2019·上海南模中学高三月考)已知椭圆2212x y +=上两个不同的点A 、B 关于直线()102y mx m =+≠对称.(1)若已知10,2C ⎛⎫ ⎪⎝⎭,M 为椭圆上动点,证明:2MC ≤; (2)求实数m 的取值范围;(3)求AOB ∆面积的最大值(O 为坐标原点).【答案】(1)证明见解析;(2)6,,⎛⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭;(3)2. 【解析】【分析】(1)设点(),M x y ,则有11y -≤≤,代入椭圆的方程得出2212x y =-,然后利用两点间的距离公式和二次函数的基本性质可求出MC 的最大值2,从而证明2MC ≤; (2)由A 、B 关于直线()102y mx m =+≠对称,可得出直线AB 与直线12y mx =+,从而可得出直线AB 的斜率为1m -,设直线AB 的方程为1y x b m=-+,设点()11,A x y 、()22,B x y ,将直线AB 的方程与椭圆方程联立,得出>0∆,并列出韦达定理,求出线段AB 的中点M ,再由点M 在直线上列出不等式,结合>0∆可求出m 的取值范围; (3)令1t m-=,可得出直线AB 的方程为y tx b =+,利用韦达定理结合弦长公式计算出AB ,利用点到直线的距离公式计算出AOB ∆的高d 的表达式,然后利用三角形的面积公式得出AOB ∆面积的表达式,利用基本不等式可求出AOB ∆面积的最大值.【详解】(1)设(),M x y ,则2212x y +=,得2222x y =-,于是MC ====因11y -≤≤,∴当12y时,max MC =,即MC ≤ (2)由题意知0m ≠,可设直线AB 的方程为1y x b m=-+. 由22121x y y x b m ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222222102m b x x b m m +-+-=.∵直线1y x b m =-+与椭圆2212x y +=有两个不同的交点,∴224220b m ∆=-++>,即2221b m <+,①由韦达定理得12242bm x x m +=+,()22122212b m x x m -=+,2122212222y y bm bm b m m m +=-⋅+=++,∴线段AB 的中点2222,22mb bm M m m ⎛⎫ ⎪++⎝⎭.将AB 中点2222,22mb m b M m m ⎛⎫ ⎪++⎝⎭代入直线方程12y mx =+,解得2222m b m +=-②, 将②代入①得22222222m mm m ⎛⎫++-< ⎪⎝⎭,化简得223>m .解得3m <-或3m >,因此,实数m 的取值范围是6,,33⎛⎛⎫-∞-+∞⎪ ⎪⎝⎭⎝⎭; (3)令160,t m ⎛⎫⎛⎫=-∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即230,2t ⎛⎫= ⎪⎝⎭,且2212t b +=-. 则122421tb x x t +=-+,21222221b xx t -=+, 则12AB x x =-=221t==+==,且O到直线AB的距离为2d=设AOB∆的面积为()S t,∴()124S t ABd=⋅=()()222132422t t++-≤⋅=,当且仅当212t=时,等号成立,故AOB∆.3.(2020·上海南模中学期末)已知定点()1,0F,动点P在y轴上运动,过点P作直线PM交x轴于点M,延长MP至点N,使0PM PF⋅=.||||PM PN=点N的轨迹是曲线C.(1)求曲线C的方程;(2)若S,T是曲线C上的两个动点,满足0OS OT⋅=,证明:直线ST过定点;(3)若直线l与曲线C交于A,B两点,且4OA OB⋅=-,||430AB≤≤l的斜率k的取值范围.【答案】(1) ()240y x x=>;(2) 直线ST过定点()4,0;(3)111,,122k⎡⎤⎡⎤∈--⋃⎢⎥⎢⎥⎣⎦⎣⎦【解析】【分析】(1)设出动点N ,则,M P 的坐标可表示出,利用0PM PF ⋅=,可求得,x y 的关系式,即N 的轨迹方程;(2)设直线:ST x ty m =+,联立直线与(1)中所得抛物线的方程,利用韦达定理表示0OS OT ⋅=,进而求得m 即可;(3)设出直线l 的方程,A ,B 的坐标,根据12124x x y y +=-推断出128y y =-,把直线与抛物线方程联立消去x 求得12y y 的表达式,进而求得2b k =-,利用弦长公式表示出2AB ,再根据AB 的范围,求得k 的范围.【详解】(1)设动点(),N x y ,则(),0M x -,0,2y P ⎛⎫⎪⎝⎭,0x >,∵0PM PF ⋅=,即,1,022y y x ⎛⎫⎛⎫--⋅-= ⎪ ⎪⎝⎭⎝⎭,化简得()240y x x =>. (2)设直线:ST x ty m =+,联立()2240440y x x y ty m x ty m⎧=>⇒--=⎨=+⎩. 设()()1122,,,S x y T x y ,则124y y m ⋅=-,()22212212124416y y y y x x m ⋅⋅=⋅==.又0OS OT ⋅=,故由题有12120x x y y +=,即240m m -=.由题意可知0m ≠,故4m =.故直线:ST 4x ty =+,恒过定点()4,0. (3)设直线l 方程为y kx b =+,l 与抛物线交于点()()1122,,,A x y B x y ,则由4OA OB ⋅=-,得12124x x y y +=-,即221212444y yy y ⋅+=-,∴()2121216640y y y y ++=,解得128y y =-,由()()2240440,0y x x ky y b k y kx b⎧=>⇒-+=≠⎨=+⎩,∴12482by y b k k ==-⇒=-, 当216160120kb k ∆=->⇒+>恒成立,()()222121212222211116161141b AB yy y y y y k k k k k ⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤=+-=++-=+- ⎪ ⎪ ⎪⎪⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭()()22416112k k k ++=. 由题意,||430AB ≤≤()()224161121661630k k k++⨯≤≤⨯,即2422132513121428424k k k ⎛⎫≤+≤⇒≤+≤⎪⎝⎭, ∵21302k +>,故2251311114222k k ≤+≤⇒≤≤,解得2114k ≤≤,∴112k ≤≤或112k -≤≤-. 即所求k 的取值范围是111,,122⎡⎤⎡⎤--⋃⎢⎥⎢⎥⎣⎦⎣⎦. 4.(2020·上海南模中学期末)教材曾有介绍:圆222x y r +=上的点()00,x y 处的切线方程为200x x y y r +=.我们将其结论推广:椭圆()222210x y a b a b+=>>上的点()00,x y 处的切线方程为00221x x y y a b +=,在解本题时可以直接应用.已知,直线0x y -+=与椭圆()222:11x E y a a+=>有且只有一个公共点.(1)求a 的值;(2)设O 为坐标原点,过椭圆E 上的两点A 、B 分别作该椭圆的两条切线1l 、2l ,且1l 与2l 交于点()2,M m .当m 变化时,求OAB ∆面积的最大值;(3)在(2)的条件下,经过点()2,M m 作直线l 与该椭圆E 交于C 、D 两点,在线段CD 上存在点N ,使CN MCND MD=成立,试问:点N 是否在直线AB 上,请说明理由.【答案】(1)a =2)2(3)见解析 【解析】【分析】(1)将直线y =x x 的方程,由直线和椭圆相切的条件:判别式为0,解方程可得a 的值;(2)设切点A (x 1,y 1),B (x 2,y 2),可得切线1l ,22x xy y 12+=,CN MC ND MD =,再将M 代入上式,结合两点确定一条直线,可得切点弦方程,AB 的方程为x+my =1,将直线与椭圆方程联立,运用韦达定理,求得△OAB 的面积,化简整理,运用基本不等式即可得到所求最大值;(3)点N 在直线AB 上,∵()C C C x ,y设()D D D x ,y 、()00N x ,y 、()CN λND λ0,λ1=>≠,且CM λMD =-,于是C D0x λx x 1λ+=+,向量坐标化,得C D 0y λy y 1λ+=+、C D x λx 21λ-=-、C Dy λy m 1λ-=-、00x my 10+-=,将()CN λND λ0,λ1=>≠代入椭圆方程,结合()D D D x ,y 、()00N x ,y 在椭圆上,整理化简得2223x y 1ay x ⎧=+⎪⎨+=⎪⎩,即N 在直线AB 上.【详解】(1)联立2211x 20(1)a a ⎛⎫+++=> ⎪⎝⎭,整理得(2214120a a ⎛⎫-⋅+⋅=⇒= ⎪⎝⎭依题意Δ0=,即()11A x ,y . (2)设()22B x ,y 、11x xy y 12+=,于是直线1l 、2l 的方程分别为()M 2,m 、CN MC ND MD =,将11x my 10+-=代入1l 、2l 的方程得22x my 10+-=且x my 10+-=,∴直线AB 的方程为()222210m 2y 2my 10x y 12x my +-=⎧⎪⇒+--=⎨+=⎪⎩, 联立1221y y m 2=-+, 显然Δ0>,由1y ,2y 是该方程的两个实根,有1222my y m 2+=+,ΔOAB , 121S y y 2=-面积()()()()222121222222m 1121S y y 4y y 142m 2m12m 1+⎡⎤=+-==≤⎣⎦+++++,即22C C x y 12+=,当且仅当m 0=时,“=”成立,S取得最大值2. (3)点N 在直线AB 上,∵()C C C x ,y ,设()D D D x ,y 、()00N x ,y 、()CN λND λ0,λ1=>≠,且CM λMD =-, 于是C D 0x λx x 1λ+=+,即C D 0y λy y 1λ+=+、C D x λx 21λ-=-、C Dy λy m 1λ-=-、00x my 10+-=,又22222222C D DD C D x x x y 1y λy 1λ222⎛⎫+=⇒+-+=- ⎪⎝⎭C D C D C D C D x λx x λx y λy y λy 1121+λ1λ1+λ1λ+-+-⇒⋅⋅+⋅=--00001x 2y m 1x my 102⇒⋅⋅+=⇒+-=, ()()()()()f 2,j f 1,j f 1,j 12f 1,j 48j 4j 1,2,,n 1=++=+=+=-,即N 在直线AB 上.5.(2020·上海普陀区一模)已知双曲线Γ:22221(0,0)x y a b a b-=>>的焦距为4,直线:40l x my --=(m R ∈)与Γ交于两个不同的点D 、E ,且0m =时直线l 与Γ的两条渐近线所围成的三角形恰为等边三角形.(1)求双曲线Γ的方程;(2)若坐标原点O 在以线段DE 为直径的圆的内部,求实数m 的取值范围;(3)设A 、B 分别是Γ的左、右两顶点,线段BD 的垂直平分线交直线BD 于点P ,交直线AD 于点Q ,求证:线段PQ 在x 轴上的射影长为定值.【答案】(1)2213x y -=;(2)15((,3)33-;(3)证明见解析. 【解析】【分析】(1)求得双曲线的2c =,由等边三角形的性质可得a ,b 的方程,结合a ,b ,c 的关系求得a ,b ,进而得到双曲线的方程;(2)设1(D x ,1)y ,2(E x ,2)y ,联立直线40x my --=和2233x y -=,应用韦达定理和弦长公式,设DE 的中点为F ,求得F 的坐标,由题意可得1||||2OF DE <,应用两点的距离公式,解不等式可得所求范围;(3)求得A ,B 的坐标和P 的坐标,求得BD 的垂直平分线方程和AD 的方程,联立解得Q 的坐标,求出||P Q x x -,即可得证.【详解】(1)当0m =直线:4l x =与C 的两条渐近线围成的三角形恰为等边三角形,由根据双曲线的性质得,2221tan 303b a ==,又焦距为4,则224a b +=,解得a =1b =,则所求双曲线Γ的方程为2213x y -=.(2)设11(,)D x y ,22(,)E x y ,由221340x y x my ⎧-=⎪⎨⎪--=⎩,得22(3)8130m y my -++=,则12283m y y m +=-,122133y y m =-,且2226452(3)12(13)0m m m ∆=--=+>, 又坐标原点O 在以线段DE 为直径的圆内,则0OD OE ⋅<,即12120x x y y +<,即1212(4)(4)0my my y y +++<,即212124()(1)160m y y m y y ++++<,则22221313816033m m m m +-+<--,即223503m m -<-,则3m <<-或3m <<, 即实数m的取值范围15((,3). (3)线段PQ 在x 轴上的射影长是p q x x -.设00(,)D x y ,由(1)得点B , 又点P 是线段BD 的中点,则点00()22x y P+, 直线BD,直线AD ,又BDPQ ⊥,则直线PQ的方程为0000(22y x x yx y -=-,即200000322x x y y x y y -=++, 又直线AD的方程为y x =+,联立方程200000322x x y y x y y y x ⎧-=++⎪⎪⎨⎪=+⎪⎩, 消去y化简整理,得2220003)22x y x x x -++=+,又220013x y =-,代入消去20y,得20002(3)1)(33x x x x x -+=+,即02(1(33x xx +-+=+,则024x x =,即点Q 的横坐标为024x ,则p q x x -==.故线段PQ 在x 轴上的射影长为定值.6.(2020·上海金山中学期末)已知椭圆C :2221tan y x α+=,其中04πα<<,点A 是椭圆C 的右顶点,射线l :(0)y x x =≥与椭圆C 的交点为B . (1)求点B 的坐标;(2)设椭圆C 的长半轴、短半轴的长分别为a 、b ,当ba的值在区间0,3⎛⎫ ⎪ ⎪⎝⎭中变化时,求α的取值范围; (3)在(2)的条件下,以A 为焦点,(,0)D m 为顶点且开口方向向左的抛物线过点B ,求实数m 的取值范围.【答案】(1)(sin , sin )B αα;(2)06πα<<;(3)314m +<<. 【解析】【分析】(1)联立方程组2221tan y x y x α⎧+=⎪⎨⎪=⎩,再求解即可;(2)由椭圆的几何性质可得1a =,tan b α=,再解不等式040tan 3παα⎧<<⎪⎪⎨⎪<<⎪⎩即可;(3)先求出抛物线的方程为24(1)()y m x m =---,由点(sin ,sin )B αα在抛物线上可得2sin 4(1)(sin )m m αα=---,再令sin t α=,则2()4(1)4(1)f t t m t m m =--+-①,其中102t <<,则问题可转化为抛物线①在区间10,2⎛⎫⎪⎝⎭上与椭圆有一个交点的充要条件是:(0)0102f f <⎧⎪⎨⎛⎫> ⎪⎪⎝⎭⎩,再求解即可.【详解】(1)解方程组2221tan y x y x α⎧+=⎪⎨⎪=⎩,得sin x y α==,∴(sin , sin )B αα. (2)∵04πα<<,0tan 1α<<,∴椭圆的焦点在x 轴上,1a =,tan b α=,由条件0403b a πα⎧<<⎪⎪⎨⎪<<⎪⎩,得:040tan 3παα⎧<<⎪⎪⎨⎪<<⎪⎩,∴06πα<<;(3)由题意得:1m ,且抛物线焦点A 与顶点D 的距离为1m -,设抛物线方程为:22()y p x m =--,那么2(1)p m =-,故抛物线的方程为24(1)()y m x m =---,∵点(sin ,sin )B αα在抛物线上,∴2sin 4(1)(sin )m m αα=---,2sin 4(1)sin 4(1)0m m m αα--+-=,设sin t α=,∵06πα<<,∴102t <<, 令2()4(1)4(1)f t t m t m m =--+-①,其中102t <<,抛物线①开口向上,其对称轴2(1)0t m =-<, 抛物线①在区间10,2⎛⎫⎪⎝⎭上与椭圆有一个交点的充要条件是:(0)0102f f <⎧⎪⎨⎛⎫> ⎪⎪⎝⎭⎩,即24(1)074604m m m m -<⎧⎪⎨-+<⎪⎩,∴0? 1m m m ⎧<<或m的取值范围是314m <<. 7.(2020·上海闵行区一模)已知抛物线2:8y x Γ=和圆22:40x y x Ω+-=,抛物线Γ的焦点为F .(1)求Ω的圆心到Γ的准线的距离;(2)若点(),T x y 在抛物线Γ上,且满足[]1,4x ∈,过点Γ作圆Ω的两条切线,记切点为A B 、,求四边形TAFB 的面积的取值范围;(3)如图,若直线l 与抛物线Γ和圆Ω依次交于M P Q N 、、、四点,证明:12MP QN PQ ==的充要条件是“直线l 的方程为2x =”【答案】(1)4;(2);(3)见解析 【解析】【分析】(1)分别求出圆心和准线方程即可得解;(2)根据条件可表示出四边形TAFB 的面积S =,利用函数的单调性即可得解;(3)充分性:令直线l 的方程为2x =,分别求出M 、P 、Q 、N 四点坐标后即可证明12MP QN PQ ==;必要性:设l 的方程为x ty m =+,()11,M x y ,()22,N x y ,()33,P x y ,()44,Q x y ,由12MP QN PQ==可得1234y y y y +=+,即可得出t 与m 的关系,进而可得出直线l 的方程为2x =.【详解】(1)由2240x y x +-=可得:()22 24x y -+=,∴Ω的圆心与Γ的焦点F 重合,∴Ω的圆心()2,0到Γ的准线2x =-的距离为4.(2)四边形TAFB 的面积为:1222S =⨯⨯===,∴当[]1,4x ∈时,四边形TAFB 的面积的取值范围为.(2)证明(充分性) :若直线l 的方程为2x =,将2x =分别代入28y x =2240x y x +-=得()2,4M ,()2,2P ,()2,2Q -,()2,4N -.∴122MP ON PQ ===,∴12MP QN PQ ==.(必要性) :若12MP QN PQ ==,则线段MN 与线段PQ 的中点重合,设l 的方程为x ty m =+,()11,M x y ,()22,N x y ,()33,P x y ,()44,Q x y ,则1234y y y y +=+,将x ty m =+代入28y x =得2880y ty m --=,128y y t +=,264320t m ∆=+>即220t m +>,同理可得,()342221t m y y t-+=-+, ∴()22281t m t t--=+即0t =或242m t =--, 而当242m t =--时,将其代入220t m +>得2220t -->不可能成立;.当0t =时,由280y m -=得:1y =2y =- 将x m =代入2240x y x +-=得3y =4y =12MP PQ =,∴12=⋅,∴220m m -=,∴2m =或0m =(舍去),∴直线l 的方程为2x =,12MP QN PQ ==的充要条件是“直线l 的方程为2x =”.8.(2020·上海川沙中学期末考试)已知两点1(F、2F ,动点(,)M x y 满足12|||4|MF MF +=,记M 的轨迹为曲线C ,直线:l y kx =(0k ≠)交曲线C 于P 、Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交曲线C 于点G . (1)求曲线C 的方程,并说明曲线C 是什么曲线; (2)若2k =,求△PQG 的面积; (3)证明:△PQG 为直角三角形.【答案】(1)22142x y +=,轨迹是以0)、(为焦点的椭圆;(2)4027;(3)证明见解析. 【解析】【分析】(1)1212|||||4|MF MF F F +=>,根据椭圆定义,即可求出方程;(2)设111(,),0,0P x kx x k >>,可得111(,),(,0)Q x kx E x --,求出QE 方程,与椭圆方程联立求出G 点坐标,再将2y x =与椭圆方程联立,求出,,P Q G 坐标,即可求解; (2)根据(2)中G 点坐标求出PG 斜率,即可证明结论.【详解】(1)1212|||||4|MF MF F F +=>,M点轨迹就是以12(F F 为焦点的椭圆,其方程为22142x y +=.(2)设111(,),0,0P x kx x k >>,则111(,),(,0)Q x kx E x --,直线QE 方程为1()2ky x x =-, 联立122()2240k y x x x y ⎧=-⎪⎨⎪+-=⎩消去y 得,2222211(2)280k x k x x k x +-+-=,① 设221(,),G x y x -为方程①的解,222111121212222232,222k x k x k x x x x x x k k k +-=∴=+=+++,323111122122232(),(,)2222k x k x x k x ky x x G k k k +=-=+++, 联立22224y x x y =⎧⎨+=⎩,解得2343x y ⎧=⎪⎪⎨⎪=⎪⎩或2343x y ⎧=-⎪⎪⎨⎪=-⎪⎩,2424148(,),(,),(,)333399P Q G --, 1414240()239327PQG S ∆=⨯+=.(3)由(2)得231112232(,)22k x x k x G k k +++,3112122111122123222PGk x kx kx k k k x x k x k x k -+===-+--+, PQ PG ∴⊥,即△PQG 为直角三角形.9.(2020·上海东昌中学期末考试)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆221:14x C y +=.(1)若椭圆222:1164x y C +=,判断2C 与1C 是否相似?如果相似,求出2C 与1C 的相似比;如果不相似,请说明理由;(2)写出与椭圆1C 相似且焦点在x 轴上、短半轴长为b 的椭圆b C 的标准方程;若在椭圆b C 上存在两点M 、N 关于直线1y x =+对称,求实数b 的取值范围;(3)如图:直线y x =与两个“相似椭圆”和分别交于点,A B 和点,C D ,试在椭圆M 和椭圆M λ上分别作出点E 和点F (非椭圆顶点),使CDF ∆和ABE ∆组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)【答案】(1) 相似比为2:1(2)b >(3)详见解析 【解析】【详解】(1)椭圆2C 与1C 相似.∵椭圆2C 的特征三角形是腰长为4,底边长为 而椭圆1C 的特征三角形是腰长为2,底边长为 因此两个等腰三角形相似,且相似比为2:1. (2)椭圆b C 的方程为:,设:MN l y x t =-+,点1122(,),(,)M x y N x y ,MN 中点为00(,)x y ,则2222{14y x tx y b b =-++=, ∴222584()0x tx t b -+-=,则12004,255x x t tx y +===, ∵中点在直线1y x =+上,∴有4155t t =+,53t =-,即直线MN l 的方程为:5:3MN l y x =--, 由题意可知,直线MN l 与椭圆b C 有两个不同的交点,即方程2225558()4[()]033x x b --+--=有两个不同的实数解,∴224025()454()039b ∆=-⨯⨯⨯->,即b > (3)作法1:过原点作直线,交椭圆M 和椭圆M λ于点E 和点F ,则CDF ∆和ABE ∆即为所求相似三角形,且相似比为λ.作法2:过点A 、点C 分别做x 轴(或y 轴)的垂线,交椭圆M 和椭圆M λ于点E 和点F ,则CDF ∆和ABE ∆即为所求相似三角形,且相似比为λ.10.(2020·上海华师大附中月考)已知椭圆Γ的方程为22184x y +=,圆C 与x 轴相切于点()2,0T ,与y 轴正半轴相交于A 、B 两点,且3AB =,如图1.(1)求圆C 的方程;(2)如图1,过点B 的直线l 与椭圆Γ相交于P 、Q 两点,求证:射线AB 平分PAQ ∠;(3)如图2所示,点M 、N 是椭圆Γ的两个顶点,且第三象限的动点R 在椭圆Γ上,若直线RM 与y 轴交于点1M ,直线RN 与x 轴交于点1N ,试问:四边形11MNN M 的面积是否为定值?若是,请求出这个定值,若不是,请说明理由.【答案】(1)()2225224x y 5⎛⎫-+-= ⎪⎝⎭;(2)证明见解析;(3)是, 【解析】【分析】(1)根据已知条件设出圆心坐标,半径为圆心纵坐标,利用弦长公式,可求出圆的方程;(2)先求出,A B 点坐标,设出直线AB 方程,与椭圆方程联立,利用韦达定理,即可求得0AP AQ k k +=,命题得证;(3)设220000(,),28R x y x y +=,求出直线RM 、直线RN 方程,进而求出点1M 与点1N 的坐标,然后四边形11MNN M 的面积用点1M 与点1N 的坐标表示,计算可得定值.【详解】(1)依题意,设圆心(2,),C b r b =,||3AB ==,解得52r =, ∴所求的方程为()2225224x y 5⎛⎫-+-= ⎪⎝⎭. (2)0x =代入圆C 方程,得1y =或4y =,(0,1),(0,4)B A ∴, 若过点B 的直线l 斜率不存在,此时,,A P Q 在y 轴上,0PABQAB,射线AB 平分PAQ ∠,若过点B 的直线l 斜率存在,设其方程为1y kx =+,联立22281x y y kx ⎧+=⎨=+⎩,消去y 得,22222(21)460,1624(21)8(83)0,k x kx k kk∆。

第八课解析几何中的最值定值对称问题

第八课解析几何中的最值定值对称问题

二轮复习之八解析几何中的最值、定值、对称问题一、最值问题 (1)函数法例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2219x y +=上移动,试求PQ 的最大值。

练习:若(,0)A a ,P 为双曲线221169x y -=上一点,若P 为双曲线左顶点时,AP 长度最小,则_____________∈a(2)不等式法例2、已知:21,F F 是椭圆)0(12222>>=+b a b y a x 的两个焦点,P 是椭圆上任一点。

证明:(1)当P 为椭圆短轴端点时,三角形21F PF 面积最大。

(2)当P 为椭圆短轴端点时,21F PF ∠最大。

练习:设21,F F 是椭圆1422=+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ∙的最大值是(3)几何法例题:函数8x 4x 73x 6x y 22+-+++=的最小值为____________。

练习:函数1)4x (25)4x (y 22++-+-=的最大值为M ,最小值为N ,则M -N=_________ 二、定值问题例题:如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB. (1)若M 为定点,证明:直线EF 的斜率为定值;(2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹。

练习:在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.三、对称问题 (1)代入法对称例题:已知双曲线C :1222=-y x ,点M (0,1),设P 是双曲线上的点,Q 是点P 关于原点的对称点,记t =的范围求t ,∙练习:曲线x 2+4y 2=4关于点M (3,5)对称的曲线方程为____________.(2)解析法对称例题:已知椭圆方程为13422=+y x ,试确定实数m 的取值范围,使得椭圆上有不同的两点关于直线m x y +=4对称。

浅谈高考解析几何中的最值问题

浅谈高考解析几何中的最值问题
轴 AB 匕一 点 , 到 直 线 AP M

图4
转化 为 l A I l F I +4的 P + P 最 小 值 ,再 由 图 2 可 知 l 十 l A I 最 小 值 就 PF 1 的 P
是点 A 到右 焦点 的距离 .
图2
的 距 离 等 于 I B 1 求 椭 圆 上 点 到 点 M 的 距 离 的 最 . M
l Fl P 的最小值 转化 为 I Q l l P 1 + 的最 小 值 , 由 P P 再 图 1知 I PQI I 的最小 值是 点 Q到 准线 的距离 . + I PP
析 由抛物 线定 义知 I Fl 于 点 P 到 准线 的距 P 等 离 I ,P + I FI l QI I P l PP l 1 QI — + ≥3 P P P

/ 】 6 - 战


√2


图 1
1 6 时 ; 一 ,) ) 一 , 一 A 譬; 当 d (
2 )当 6 一 时 , 一 一 d ; A( ,一 ) .
义 l — I P l 把 I + I , l PF P PQ
M F J B5

1 AI P 的最小值 为 多少 ?
思 维 导 引 根 据 双 曲 线

A /
的定 义 I l l +4 PF — PF l ,
把 1 + f 的 最 小 值 PF l PA l
为椭 圆 上 , 于 z轴 的上 方 , 位 且 P A上 P 若 M 为 椭 圆长 F,
P( y , z,) 则 一 ( + 6 y z , ),i 一 ( z一4 ,
), APIF _ P,所 以( z+6 ( -4 + 一d ) - ) .

理科解析几何求最值问题一1

理科解析几何求最值问题一1

理科解析几何求最值问题(一)11.(本小题满分13分)已知椭圆C 的中心在原点,一个焦点(0,2)F ,且长轴长与短轴长的比是2:1. (Ⅰ)求椭圆C 的方程;(Ⅱ)若椭圆C 在第一象限的一点P 的横坐标为1,过点P 作倾斜角互补的两条不同的直线PA ,PB 分别交椭圆C 于另外两点A ,B ,求证:直线AB 的斜率为定值; (Ⅲ)求PAB ∆面积的最大值.2.(本小题共14分)已知椭圆的中心在坐标原点O ,焦点在x 轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F 与x 轴不垂直的直线l 交椭圆于P ,Q 两点. (Ⅰ)求椭圆的方程;(Ⅱ)当直线l 的斜率为1时,求POQ ∆的面积;(Ⅲ)在线段OF 上是否存在点(,0)M m ,使得以,MP MQ 为邻边的平行四边形是菱形?若存在,求出m 的取值范围;若不存在,请说明理由.3.(本小题共14分)已知直线l :1+=kx y 与圆C :1)3()2(22=-+-y x 相交于B A ,两点.(Ⅰ)求弦AB 的中点M 的轨迹方程;(Ⅱ)若O 为坐标原点,)(k S 表示OAB ∆的面积,13)]([)(22++=k k S k f ,求)(k f 的最大值.FMxyO PQ4.(本小题共14分)已知抛物线24y x =,点(1,0)M 关于y 轴的对称点为N ,直线l 过点M 交抛物线于,A B 两点. (Ⅰ)证明:直线,NA NB 的斜率互为相反数; (Ⅱ)求ANB ∆面积的最小值;(Ⅲ)当点M 的坐标为(,0)(0m m >,且1)m ≠.根据(Ⅰ)(Ⅱ)推测并回答下列问题(不必说明理由):① 直线,NA NB 的斜率是否互为相反数? ② ANB ∆面积的最小值是多少? 5.(本小题满分13分)已知椭圆2222:1x y C a b+=(0)a b >>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线60x y -+=相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;(Ⅲ)在(Ⅱ)的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ⋅的取值范围.6.(本题满分14分)已知椭圆)0(12222>>=+b a by a x 的离心率为36,长轴长为32,直线m kx y l +=:交椭圆于不同的两点A 、B 。

高考解析几何常见题型

高考解析几何常见题型

1、最值问题::设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.:已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .求四边形ABCD 的面积的最小值.:已知椭圆C :2222by a x +=1(a >b >0)的离心率为36,短轴一个端点到右焦点的距离为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值. 设F 是抛物线G :x 2=4y 的焦点.(Ⅰ)过点P (0,-4)作抛物线G 的切线,求切线方程:(Ⅱ)设A 、B 为势物线G 上异于原点的两点,且满足0·=FB FA ,延长AF 、BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.2、存在性问题:已知向量()OA = ,O 是坐标原点,动点M 满足:6OM OA OM OA ++-= ①求点M 的轨迹C 的方程②是否存在直线()P 0,2l 过点与轨迹C 交于A ,B 两点,且以AB 为直径的圆过原点?若存在,求出直线l 的方程,若不存在,请说明理由。

在平面直角坐标系中,已知A 1(−3,0)、A 2(3,0)、P (x ,y )、M (92-x ,0),若实数λ使向量P A 1、λ、P A 2满足λ2·()2=A 1·A 2(Ⅰ)求P 点的轨迹方程,并判断P 点的轨迹是怎样的曲线;(Ⅱ)当λ=33时,过点A 1且斜率为1的直线与(Ⅰ)中的曲线相交的另一点为B ,能否在直线x =−9上找一点C ,使△A 1BC 为正三角形.在平面直角坐标系xoy 中,已知圆心在第二象限、半径为的圆C 与直线y x =相切于坐标原点O .椭圆22219x y a +=与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.在平面直角坐标系xOy中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q . (I )求k 的取值范围;(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量OP OQ + 与AB 共线?如果存在,求k 值;如果不存在,请说明理由3、取值范围问题:已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3((Ⅰ)求双曲线C 的方程; (Ⅱ)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.如图,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.4、定值问题:已知直线l 过椭圆E:2222x y +=的右焦点F ,且与E 相交于,P Q 两点.① 设1()2OR OP OQ =+ (O 为原点),求点R 的轨迹方程;②若直线l 的倾斜角为060,证明11||||PF QF +为定值. 已知动点M 到两个定点12(3,0),(3,0)F F -的距离之和为10,A 、B 是动点M 轨迹C 上的任意两点. (1)求动点M 的轨迹C 的方程;(2)若原点O 满足条件AO OB λ= ,点P 是C 上不与A 、B 重合的一点,如果PA 、PB 的斜率都存在,问PA PBk k ⋅是否为定值?若是,求出其值;若不是,请说明理由。

高中数学:几何最值问题求法

高中数学:几何最值问题求法

高中数学:几何最值问题求法最值问题是平面解析几何中的一个既典型又综合的问题.求最值常见的方法有两种:代数法和几何法.若题目条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.若题目条件和结论能明显体现某种函数关系,则可先建立目标函数,再求函数的最值,这就是代数法.一、几何法利用平面几何性质求解最值问题,这种解法若运用得当,往往显得非常简洁明快.例1、已知P(x,y)是圆上的一点,求的最大值与最小值。

分析:,于是问题就可以转化为在以A(2,0)为圆心,以为半径的圆上求点P,使它与原点连线的斜率为最大或最小。

由示意图可知,当OP与此圆相切时,其斜率达到最大值或最小值。

由OA=2,AP1=AP2=,且AP1⊥OP1,AP2⊥OP2,OP1=OP2=1,且∠AOP1=∠AOP2=60°,得。

二、代数法用代数法求最值常用的方法有以下几种:1、利用判别式法求最值、利用此法求最值时,必须同时求得变量的范围,因为方程有解,Δ≥0所指的是在()范围内方程有解,这一点应切记.例2、(同例1)分析:设,将y=kx代入圆方程得。

x为实数,方程有解,,解得,故。

即。

2、利用二次函数性质求最值.用此法求最值时,必须注意变量的取值范围.例3、已知椭圆及点P(0,5),求点P到椭圆上点的距离的最大值与最小值.分析:以(0,5)为圆心,若内切于椭圆的圆半径为r1,则r1为点P到椭圆上点的距离的最小值;若外切于椭圆的圆半径为r2,则r2为点P到椭圆上点的距离的最大值.因,故点P(0,5)在椭圆内部.设以(0,5)为圆心的圆方程为,与椭圆方程联立消去x2,得。

当时,,即;当y=7时,,即。

注:这里将距离的最大值、最小值的探求转化为半径r的函数,利用函数的性质求得定义域内的最大值、最小值.值得注意的是因为r的定义域的限制,这里不适合利用判别式法.3、利用基本不等式求最值.利用基本不等式求最值时,必须注意应用基本不等式的条件,特别要注意等号的条件以及“和”(或“积”)是不是常数,若连续应用不等式,那么要特别注意同时取等号的条件是否存在.若存在,有最值;若不存在,无最值.例4、过点A(1,4)作一直线,它在两坐标轴上的截距都为正数,且其和为最小,求这条直线的方程.分析:可用截距式设所求直线方程为。

高中数学专题-解析几何中的最值与范围问题以及定点、定值问题

高中数学专题-解析几何中的最值与范围问题以及定点、定值问题

高中专题-解析几何中的最值与范围问题解析几何中的定点、定值问题例1设圆C 与两圆2222(4,(4x y x y ++=-+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程;(2)已知点)3545,,55M F ⎛⎫ ⎪ ⎪⎝⎭,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.【解】(1)2214x y -=;(2)最大值为2,6525,55P ⎛⎫- ⎪ ⎪⎝⎭例2设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->.(1)设E 是直线2y x =+与椭圆的一个公共点,求使得12EF EF +取最小值时椭圆的方程;(2)已知(0,1)N -,设斜率为(0)k k ≠的直线l 与条件(1)下的椭圆交于不同的两点,A B ,点Q 满足AQ QB = ,且0NQ AB ⋅= ,求直线l 在y 轴上截距的取值范围.【解】(1)最小值2213x y +=;(2)1,22⎛⎫ ⎪⎝⎭例3(1)椭圆224()4x y a +-=与抛物线22x y =有公共点,则a 的取值范围是.(2)椭圆2212516x y +=上的点到圆22(6)1x y +-=上的点的距离的最大值是().A.11B.C.D.9【解】(1)171,8⎡⎤-⎢⎥⎣⎦;(2)A例4在直角坐标系中,O 是原点,,A B 是第一象限内的点,并且A 在直线(tan )y x θ=上,其中42OA ππθ⎛⎫∈= ⎪⎝⎭,,,B 是双曲线22=1x y -上使OAB 面积最小的点,求:当θ在42ππ⎛⎫ ⎪⎝⎭,中取什么值时,OAB 的面积最大,最大值是多少?【解】2arccos 4θ=,最大值为66专题-解析几何中的定点、定值问题例1已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)求直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【解】(1)22143x y +=;(2)2,07⎛⎫ ⎪⎝⎭例2已知点(1,1)A 是椭圆22221(0)x y a b a b+=>>上一点,12,F F 是椭圆的两焦点,且满足124AF AF +=.(1)求椭圆的两焦点坐标;(2)设点B 是椭圆上任意一点,如果AB 最大时,求证:,A B 两点关于原点O 不对称;(3)设点,C D 是椭圆上两点,直线,AC AD 的倾斜角互补,试判断直线CD 的斜率是否为定值?若是定值,求出此定值;若不是定值,说明理由.【解】(1)2626,0,,033⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;(2)证明略;(3)13例3如图1所示,在平面直角坐标系xOy 中,过定点(0,)C p 作直线与抛物线22(0)x py p =>相交于,A B 两点.(1)若点N 是点C 关于坐标原点O 的对称点,求ANB 面积的最小值;(2)是否垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.【解】(1)2;(2)2py =例4已知椭圆方程为221169x y +=,过长轴顶点(40)A -,的两条斜率乘积为916-的直线交椭圆于另两点,B C ,问直线BC 是否过定点D ,若存在,求出D 的坐标,若不存在,说明理由.【解】直线12:98()0BC x k k y ++=过原点(0,0)例5如图3所示,设椭圆2221(2)4x y a a +=>的离心率为33,斜率为k 的直线l 过点(01)E ,,且与椭圆相交于,C D 两点.(1)求椭圆方程;(2)若直线l 与x 轴相交于点G ,且GC DE = ,求k 得值;(3)设A 为椭圆的下顶点,,AC AD k k 分别为直线,AC AD 的斜率,证明:对任意k ,恒有=-2AC AD k k ⋅【解】(1)22164x y+=;(2)63k=±;(3)证明略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考解析几何中的最值问题,以直线或圆锥曲线为背景,综合函数、不等式、三角等知识,所涉及的知识点较多。

对解题能力考查的层次要求较高,因而这类最值问题已成为历年高考数学中的热点和难点。

【定义法】有些问题先利用圆锥曲线定义或性质给出关系式,再利用几何或代数法求最值,可使题目中数量关系更直观,解法更简捷。

1.已知抛物线 24y x =,定点A(3,1),F 是抛物线的焦点 ,在抛物线上求一点 P,使|AP|+|PF|取最小值 ,并求其最小值 。

2.(2015全国卷1)已知是双曲线的右焦点,P 是C 左支上一点, ,当周长最小时,该三角形的面积为 .
【参数法】参数方程是曲线的另一种表示形式,参数法是解决数学问题的一种重要方法,利用椭圆、双曲线参数方程转化为三角函数问题,或利用直线、抛物线参数方程转化为函数问题求解。

3.已知Q (0,-4)、P (6,0),动点C 在椭圆=1上运动,求△QPC 面积的最大值。

F 2
2
:18y C x -
=(A APF ∆4
92
2y x
+
【导数法】用导数求解解析几何的最值问题:导数的几何意义是曲线上某点处切线的斜率,因而解析几何中的有关切线和最值问题用导数来处理,就避免解析几何中一些繁琐的计算。

4.(2007全国卷1)已知椭圆
2
3
x
+
2
2
y
=1的左、右焦点分别在F1、F2,过F1的直线交椭圆
与B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P。

(Ⅰ)设P点的坐标为(x0,y0),证明:
22
001 32
x y
+<;
(Ⅱ)求四边形ABCD的面积的最小值。

5.(2013全国卷Ⅰ,文21)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2) l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
6.(2017北京)已知椭圆C 的两个顶点为)0,2(),0,2(B A -,焦点在x . (1)求椭圆C 的方程; (2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点N M ,,过D 作AM 的垂线交BN 于点E ,求证:BDE ∆与BDN ∆的面积之比为5:4.
7.(2017天津)已知椭圆22
221(0)x y a b a b
+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为2
2
b (1)求椭圆的离心率;
(2)设点Q 在线段AE 上,3||2
FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c . (i )求直线FP 的斜率; (ii )求椭圆的方程.。

相关文档
最新文档