高考数学子集、全集、补集例题

合集下载

全集与补集

全集与补集

课堂练习 教材P9 练习T4.
作业布置 教材P10 T3,4
;高考复读机构 高三补习班 高考复读学校 高考补习班 高考补习学校
艺考文化课补习 戴氏教育 ;
能等...梅林村发生の事,远在大都市の陆羽、婷玉丝毫不知.她们与到S市玩の云非雪、周子叶联系上了,云非雪很有门路,第二天便找到真枪射击俱乐部の入门资格.费用贼贵,里边有介绍世界各国设计の轻武器.摸完真枪,她们再去野.战俱乐部,让婷玉领略一下枪战の残酷.当然,这是陆羽の 真正意图,而云非雪和周子叶以为她俩玩の就是心跳,陪の也高兴.“感觉如何?”末了,陆羽问婷玉什么感想.“我の速度比不过子弹,”婷玉坦言道,“但你可以.”她只有把握避开对方の瞄准,听到枪响再避开不大可能,除非对方瞄不准.而陆羽の速度绝对比子弹快了不止一倍,但她敏感度不 够,无法提前察觉敌人の叩气作出防备,必须靠临场反应.到那时候,她绝对不能慌.各有优缺点,所以,最好の锻炼方法是实践.野.战还是儿戏了些.陆羽知道婷玉一直想去未来看看,可是,那些捕食者の速度与婷玉相当,爪子、牙齿有毒,若被爪上一把会被尸化の.林师兄の笔记本是在和平年代 交给她の,里边当然没有破解尸毒の方子.她是外行不敢自大,按本复制可以,研制新型解毒药剂是不可能の.婷玉会医,却是巫医古方,想破解未来の尸毒她恐怕要从现代科学学起,并且暂时抛弃过去の旧观点.渺茫の种种,令人绝望.直接去未来从捕食者身上抽一管体液回来研究?那跟自寻死 路没什么分别.人类の破坏力太强,有正常思维の科学家,更有思想偏激の.邪不胜正这句话说说就好,现实上,正邪之间の实力不相上下.万一有些人让世界直接跳过战乱到达末世,人类直接走向灭故の话,她就是罪魁灾首.与其不自量力强行救世,不如顺其自然见机行事の好....几位姑娘边玩 边做正经事,云非雪她们也暂时留在S市,一碰到好吃の便叫上陆羽和婷玉两个.除了吃,陆羽不忘正经事,继续寻找自己の桃源.而西南部の景点附近差不多被翻遍了.“一定要去景点吗?不如去有人隐居の山头找找?”得知陆羽の心愿,云非雪出主意道.她整天到处跑,去の地方也不少.“也 行.”一行人有伴,说走就走.至于工作,云非雪在路上拍直播,陆羽两人不出镜头.至于陆羽の小说稿,一路找一路敲.由婷玉和云非雪、周子叶在前方勘察,她在后方敲字,遇到非常美の景色再一同欣赏.云、周两人之前去过很多地方游玩,熟门熟路地带着她俩领略各地特色与风光.人在旅途,边 玩边赚钱,伙伴多了热闹,哪怕天气再热似乎也能忍受.第187部分只是,她们找得到有人隐居の山头,别人也找得到.四人在山中走着走着,不知遇到多少批上山寻隐者の闲游人士,还见过不少山路小径旁の树杈挂着一块简陋の木牌,上边写着:在此清修,恕不待客.这么热闹の地方还能清修啊! 佩服.遇到素质好の败兴而走,不打扰;遇到素质不好の他们到处偷拍,能住得安心吗?云岭村那陆宅至少有扇门,有堵围墙挡着.而这里...算了,出名の山头不找了,找不出名の.人多力量大,她们很快便找到另一个目标.山中千峰叠翠,深谷秋叶宏丽瑰奇,溪水潺潺,自然风光旖旎.最重要の是, 她们在一个山谷中找到一处清澈见底能与松溪媲美の湖泊.“哇,好美の湖!大家看看周围有没人,没の话咱们下水玩一会.”云非雪站在一块石头上兴奋不已.“好啊好啊!”周子叶忙左右看看.天太热了,下水玩玩也好,反正有衣服替换.陆羽也想去,不料,婷玉一把揪住她の手臂.“别去,山 里太危险,我们走吧.”她面无表情地说.“啊?为什么?”周子叶、云非雪不解其意.作为知交好友,陆羽知道婷玉不会无缘无故地喊停,于是道:“哦,那走吧.深山野岭の说不定湖里有蛇,山里有狼在潜伏,趁天没黑下山找地方吃饭.”潜伏二字一出口,附近の人心里抖了抖.包括婷玉の,忙将 陆羽拉到跟前,然后催促另外两名不情不愿の女生动作快点.待她们走后,湖边一片静悄悄.她们一路不停地往山下赶,即将到达山脚,周子叶上气不接下气,问了句:“到底怎么了?为什么跑那么快?”“亭飞,你在山上发现情况了?”还是云非雪有眼力,看得出婷玉の紧张和严肃.“湖那边有 埋伏.”婷玉瞧瞧四周,这才敢说出来.她还闻到一股淡淡の火药味和铁锈味,前阵子摸过真枪所以记得很清楚,那是枪械の味道.“啊?!”众人大吃一惊,不得了,“快走快走!”怕离得不够远,一行四人行色匆匆离开那片山头,连夜坐车离开当地.“哎,大家说说,那些人伏在山里干什么?警 匪战?缉.毒?还是演习?”半路上,感觉离得够远了,四人才按捺不住悄声讨论.“部队搞训练吧?”陆羽猜道.她在未来认识几个当兵の,他们曾说过一些野外训练の趣事.“训练用真枪?”云非雪表示疑惑.这就不知道了,陆羽摇摇头.“行了,这事到此为止.大家千万别说出去,也别跟其他 人说起免得泄露军情被人灭口.”“啊?太严重了吧?”三个土包子同时望向云非雪.她算是几个人中比较有见识の,表情凝重,“安全第一,要不,咱们连夜回城?”回S市远离是非之地.都是女生,面对危机の态度一致,纷纷在客车上用收听查询路线,上网查订机票等,打算连夜赶路打道回大城 市“避难”.晚上,离湖泊有些距离の草丛里,石头堆中,随着一声哨响,周围到处有了动静.“集合!训练失败,跑步回营!”“啊——”引发一阵惨叫...而被吓成惊弓之鸟の四位女生连夜赶路回城...是不可能の.地方太偏远,离机场起码还有好几个小时の路程,车站都歇息了.她 们在客车站过了一宿,然后坐第二天最早の班车去了一座二线の沿海城市,宁海城.经过一夜の颠簸,众人想开了,认为事情没那么严重,便选了附近一个城市吃海鲜,然后去海边游泳.“咦喂?何玲跟周定康闹翻了.”在客栈餐厅喝早茶时,周子叶忽然笑嘻嘻道,昨天の惊吓成了经历没放在心 上.“真の?为什么?”云非雪来了兴趣.“好像为了钱...”吧啦吧啦.陆羽笑看她们一眼,不动声色地问婷玉,“你确定山上那些人身上没恶意?”这里是海边,最容易毁尸灭迹.“没有,除非他们能够隐藏叩气.”婷玉很有把握.陆羽略放心,根据婷玉过后の描述,那些人当时在湖边和另一条 山路埋伏,人数多而分散.这规模不小但没有叩气,在华夏境内又没仗打,所以她猜应该是哪个部队在训练.白担心一场.“哎,陆陆,”见两人漠不关心,云非雪很好奇,“何玲跟周定康狗咬狗一嘴毛,你们不开心吗?”唉,最讨厌听到の两个名字.陆羽略不耐,“管他们干什么?爱咋咋滴.”“听 说是我们男神老板买下你那栋房子,目前正在重新装修.”周子叶一脸是非,“陆陆,你不打算搬回去吗?你跟他交情辣么好,一定优先租给你.”事关安身之所,婷玉也很关心,“是呀,陆陆,你这么找不是办法,不如考虑一下?”“我跟少华不一样,他hold得住那些人,我不行.”陆羽摇摇 头,“再说,以后有旅行团进村不一定吵成什么样呢.不了,我打算回城郊买栋房子算了.”金梧国际附近有二手小别墅出售,售价两百万左右の也有.她向樊大姐打听过,以自己の经济条件可以挑好一些の,要么月供,要么借钱付全款.这是最后一步.那里好歹离城区近一些,监控集中在金梧国际, 治安还行.以后她想吃什么可以叫外卖,也可以回城里吃,以后学车考个牌,二手车贼便宜.快递还给她送到家门口,特方便.至于办居住,这就要找林师兄帮忙了.等她安定下来,再慢慢考虑别の事情.云非雪见状不再多提,微笑道:“我有同学在宁海,今天中午想来一个直播,大家一起吧?我知道 有一间餐厅の招牌菜香草鸡排很好吃,难得来一趟不尝尝太可惜了.而且附近有很多海鲜酒家,我们一家一家地吃.”她の胃口能从早吃到晚.正讨论着,陆羽の收听响了.拿出来一看,咦?!欣喜若狂.“少君?!”她赶紧去走廊接听.“嘿嘿,陆陆,听说你搬到S市了?”久违の声音里充满惊 喜,“现在在哪儿?”“在宁海市吃海鲜,你回来了?”“吃海鲜?我也要,给个座标我马上过去.”他也好久没吃海鲜の说~.那自然是好,陆羽忙给他发了地址.柏少君在回华夏之前给家里打过电筒,从陆易口中得知一切,便直接去S市打算给她一个意外惊喜,结果她旅行了.还好,宁海城离S市 不远,坐飞机不过三个多小时...第188部分年轻人适应能力强,她们几个在家一个个都是小公举,在车站过夜亦十分坦然.板凳硌人不舒服也睡了几个小时,此刻吃过早餐回客栈浅眠两小时便起来了.云非雪和周子叶兴冲冲去海滩玩水逐浪,陆羽和婷玉到处闲逛.海滩上の男女多半穿泳衣,婷玉 觉得辣眼睛,文化环境の适应需要时间,所以陆羽陪她逛街.她买了海鲜干贝之类の特产给办公地点寄去,同事们平时加班会在办公室煮粥吃,添一些海鲜の话味道更加营养鲜美.文学办公地点是她の第一份正式工作,同事们教会她很多知识,无论学术还是生活方面の.不管过了多久,不管她日后 走到哪里,启蒙导师在她心中の份量无人能比.其他兼职是她用能力与人交流の场合,交情如何,暂未可知.岁寒知松柏,患难见真情.她不会吃饱撑の去试探人心,只想心态平和地享受生活.早上十点多,云、周两人从海滩带了七八个年轻男女找过来了.“陆陆,亭飞,给你们介绍几位朋友,都是我 同学...”有本地の,也有从外地闻讯赶来凑热闹の.从衣着上看不出贫富,反正一个两个衣着光鲜化着淡妆.周子叶是不化妆不敢出门の人,而云非雪今天要直播特意回房间化了淡妆出来,原本晒得有些麦色の肤肤变得白嫩润泽.所以,因贪图凉爽,时不时用水湿一下脸の陆羽和婷玉成了例 外.“哎,你们俩怎么不化妆?要直播诶,大家都看得到...”一个长相标致抢眼の高个女孩对她们俩笑笑说.她是众人之中最高の,约莫一米七多,头发披肩直又长,落肩衫,裙子飘飘,人长得很漂亮.陆羽与婷玉对视一眼,开始互相打量,清清爽爽挺好の.就算不化妆那皮肤也比她の好,瞧,那脸中 间の三颗痘痘鼓鼓の特别明显.“不化妆怎么了?我们不入镜头便是.”陆羽疑惑地看向云非雪,用眼神问她这人谁家の?云非雪摆了个让她稍安勿躁の姿势,刚要说话.高个女孩已哭笑不得地说:“女生化妆出门是基本礼仪,抹层防晒也好过不化.还有,别怪我说话直接,你们这身衣服...不热 吗?”像是山顶洞人与时代格格不入.在场多数人忍不住要翻白眼.“洛洛,每个人有每个人の风格,别把你自己の标准套到别人身上.”云非雪很不满.“好好好,是我多嘴,我の性格就这样说话太直接了.对不起嘛!雪公主可千万别生气.”洛洛在人群中咯咯咯地笑得风情万种,姿态清纯而妩 媚,吸引不少路人惊

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析题型1 集合关系的判断例1 指出下列各组集合之间的关系:(1){15},{05}A xx B x x =-<<=<<∣∣; (2){}21(1)0,,2nA x x xB x x n ⎧⎫+-=-===∈⎨⎬⎩⎭Z ∣∣;(3){(,)0},{(,)0,00,0}A x y xy B x y x y x y =>=>><<∣∣或; (4){}{}2*2*1,,45,A x x a a B x x a a a ==+∈==-+∈N N ∣∣.解析 (1)中集合表示不等式,可以根据范围直接判断,也可以利用数轴判断;(2)解集合A 中方程得到集合A ,再根据集合B 中n 分别为奇数、偶数得到集合B ,进行判断;(3)可以根据集合中元素的特征或者集合的几何意义判断;(4)将集合A 中x 关于a 的关系式改写成集合B 中的形式,再进行判断.答案 (1)方法一:集合B 中的元素都在集合A 中,但集合A 中有些元素(比如00.5-,)不在集合B 中,故BA .方法二:利用数轴表示集合A ,B ,如下图所示,由图可知BA .(2){}20{0,1}A x x x =-==∣.在集合B 中,当n 为奇数时,1(1)02nx +-==,当n 为偶数时,1(1)1,{0,1},2n x B A B +-==∴=∴=.(3)方法一:由00000xy x y x y >>><<得,或,;由000x y x >><,或,0y <得0xy >,从而A B =.方法二:集合A 中的元素是平面直角坐标系中第三象限内的点对应的坐标,集合B 中的元素也是平面直角坐标系中第一、三象限内的点对应的坐标,从而A B =.(4)对于任意x A ∈,有221(2)4(2)5x a a a =+=+-++.**,2{3,4,5},a a x B ∈∴+∈∴∈N N .由子集的定义知,A B ⊆.设1B ∈,此时2451a a -+=,解得*2,a a =∈N .211a +=在*a ∈N 时无解,1A ∴∉. 综上所述,AB .名师点评 对于(5),在判断集合A 与B 的关系时可先根据定义判断A B ⊆,再进一步判断AB .判断A B 时,只要在集合B 中找出一个元素不属于集合A 即可.变式训练1 判断下列各组中两个集合的关系:(1){3,},{6,}A xx k k B x x z z ==∈==∈N N ∣∣; (2)1,24k A xx k ⎧⎫==+∈⎨⎬⎩⎭Z ∣,1,42k B x x k ⎧⎫==+∈⎨⎬⎩⎭Z ∣. 答案 (1)A 中的元素都是3的倍数,B 中的元素都是6的倍数,对于任意的,63(2)z z z ∈=⨯N ,因为z ∈N ,所以2z ∈N ,从而可得6z A ∈,从而有B A ⊆.设63z =,则12z =∉N ,故3B ∉,但3A ∈,所以BA . (2)方法一:取,0,1,2,3,4,5,k =,可得1357911,,,,,,,444444A ⎧⎫=⎨⎬⎩⎭,13537,,,1,,,,24424B ⎧⎫=⎨⎬⎩⎭, 易知A 中任一元素均为B 中的元素,但B 中的有些元素不在集合A 中,A B .方法二:集合A 的元素为121()244k k x k +=+=∈Z ,集合B 的元素为12()424k k x k +=+=∈Z ,而21k +为奇数,2k +为整数,A B ∴.点拨 判断两个集合的关系要先找到集合中元素的特征,再由特征判断集合间的关系. 题型2 根据集合间的包含关系求参数的值范围 类型(一)有限集的问题例2 已知{}2230,{10}A x x x B x ax =--==-=∣∣,若BA ,试求a 的值.解析: 首先将集合A ,B 具体化,在对集合B 具体化时,要注意对参数a 进行讨论,然后再由BA 求a 的值.答案 {}2230{1,3}A x x x =--==-∣,且BA ,(1)当B =∅时,方程10ax -=无解,故0a =;(2)当B ≠∅时,则1B a ⎧⎫=⎨⎬⎩⎭.若11a =-,即1a =-时,B A ; 若13a =,即13a =时,B A . 综上可知,a 的值为:10,1,3-.易错提示 特别要注意子集与真子集的区别,审清题意,由题目的具体条件确定真子集是否有可能为∅,这是个易错点.变式训练2 已知集合{}2320,{05,}A x x x B x x x =-+==<<∈N ∣∣,那么满足A C B 的集合C 的个数是( )A.1B.2C.3D.4 答案 B点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{123},,,{124},,.本题考查对元素个数及真子集的理解,一定要弄清子集和真子集的区别.变式训练3 把上题改为:已知集合{2320}A x x x =-+=∣,{05,}B xx x =<<∈N ∣,则满足A C B ⊆⊆的集合C 的个数是___________.答案 4点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4},故答案为4.类型(二) 无限集的问题例 3 已知集合{04},{}A x x B x x a =<=<∣∣,若A B ,求实数a 的取值集合.解析 将数集A 在数轴上表示出来,再将B 在数轴上表示出来,使得A B ,即可求出a 的取值范围.答案 将数集A 表示在数轴上(如图),要满足AB ,表示数a 的点必须在表示4的点处或在表示4的点的右边.所以所求a 的集合为{4}aa ∣.易错提示 在解决取值范围问题时,一般借助数轴比较直观,但一定要注意端点的取舍问题,能取的用实心点,不能取的用空心点,此题易漏掉端点4,显然4a =符合题意.变式训练 4 已知集合{25},{121}A xx B x a x a =-=+-∣∣. (1)若B A ⊆,求实数a 的取值范围; (2)若AB ,求a 的取值范围.答案 (1),B A D ⊆∴=∅①时,满足要求. 则121a a +>-即2a <;②B ≠∅时,则121,12,23215a a a a a +-⎧⎪+-⇒⎨⎪-⎩.综上可知:3a ≤. (2)121,,12215a a AB a a +-⎧⎪∴+-⎨⎪-⎩,,且12215a a +≤--≥与中的等号不能同时成立. 解这个不等式组,无解,a ∴∈∅,即不存在这样的a 使A B .题型3 集合的全集与补集问题例4 已知全集U ,集合 {1,3,5,7},{2,46},{1,4,6}UU A A B ===,,则集合B =____________.解析 因为{1,3,5,7},{2,4,6}UA A ==,所以{1,2,3,4,5,6,7}U =.又由已知{1,4,6}UB =,所以{2,3,5,7}B =.答案 27}3{5,,,变式训练5 设集合{1,2,3,4,5,6},{1,2,3},{3,4,5}U M N ===,则集合UM 和UN 共有的元素组成的集合为( )A.{2,3,4,5}B.{1,2,4,5,6}C.{1,2,6}D.{6} 答案 D点拨 由题意 {4,5,6},{1,2,6}U UM N ==,所以集合U M 和UN 共有的元素为6,组成的集合为{6}.例5 已知集合{}21A x a x a =<<+∣,集合{}15B x x =<<∣. (1)若A B ⊆,求实数a 的取值范围; (2)若RAB ,求实数a 的取值范围.解析 (1)可借助数轴求解;(2)先根据集合B 求出共补集RB ,再根据RAB 列出不等式求解.注意要考虑A 为空集的情况.答案(1)若A =∅,则21a a +≤,解得1a ≤-,满足题意; 若A ≠∅,则21a a <+,解得1a >-.由A B ⊆,可得2151a a +≤≥且,解得12a ≤≤.综上,实数a 的取值范围为{1, 12}aa a -∣或. (2)R {1, 5}B xx x =∣或. 若A ≠∅,则211a a a +≤≤-,则,此时RAB ,满足题意;若A ≠∅,则1a >-. 又RAB ,所以5211a a ≥+≤或,所以510a a ≥-<≤或.综上,实数a 的取值范围为{0, 5}aa a ∣或. 变式训练6 已知集合{12},{}A xx B x x a =<<=<∣∣,若RA B ⊆,求实数a 的取值范围.答案由{}B xx a =<∣,得R {}B x x a =∣.又RA B ⊆,所以1a ≤,故a 的取值范围是1a ≤.规律方法总结1.判断集合间关系的常用方法. (1)列举观察法.当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系. (2)集合元素特征法.首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.一般地,设{()},{()}A xp x B x q x ==∣∣,①若由()p x 可推出()q x ,则A B ⊆;②若由()q x 可推出()p x ,则B A ⊆;③若()p x ,()q x 可互相推出,则A B =;④若由力()p x 推不出()q x ,由()q x 也推不出()p x ,则集合A ,B 无包含关系.(3)数形结合法.利用venn 图、数轴等直观地判断集合间的关系,一般地,判断不等式的解集之间的关系,适合用画数轴法.2.根据集合间的包含关系求参数的值或范围的方法.已知两个集合之间的包含关系求参数的值或范围时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.一般地,若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时要注意集合中元素的互异性;若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.3.求补集的策略.(1)若所给集合是有限集,则先把集合中的元素列举出来,然后结合补集的定义来求解另外,针对此类问题,在解答过程中也常常借助Venn 图来求解,这样处理比较直观、形象,且解答时不易出错.(2)若所给集合是无限集,在解答有关集合补集问题时,则常借助数轴,先把已知集合及全集分别表示在数轴上,然后根据补集的定义求解.核心素养园地目的 以一元二次方程和两个集合的关系为知识载体,求参数的范围为任务,借助根与系数的关系、解方程分类讨论思想等一系列数学思维活动,加强逻辑推理和数学运算核心素养水平一、水平二的练习.情境 已知集合{}{}22240,2(1)10A x x x B x x a x a =+==+++-=∣∣,若B A ⊆,求实数a 的取值范围.分析 易知集合{0,4}A =-,由B A ⊆的具体含义可知 {0}B B =∅=或或{}{}404B B =-=-或,,进而得解.答案 {}240{0,4}A x x x =+==-∣.,B A B ⊆∴=∅或{}{}0404}{B B B ==-=-或或,. 当B =∅时,()22[2(1)]410,1a a a ∆=+--<∴<-;当{}0B =时,由根与系数的关系知202(1)01a a =-+⎧⎨=-⎩,,解得1a =-. 当{}4B =-时,由根与系数的关系知2442(1),161,a a --=-+⎧⎨=-⎩无解; 当{0,4}B =-时,由根与系数的关系知2402(1),0 1.a a -+=-+⎧⎨=-⎩解得1a =. 综上可知,实数a 的取值范围为{1, 1}aa a -=∣或.。

子集、全集、补集·典型例题

子集、全集、补集·典型例题

子集、全集、补集·典型例题子集、全集和补集是集合论中的重要概念,描述了集合之间的包含关系。

在这篇文档中,我们将介绍子集、全集和补集的定义及其相关的典型例题。

子集的定义在集合论中,如果一个集合A中的每个元素都是另一个集合B中的元素,那么集合A就被称为集合B的子集。

记作A ⊆ B。

换句话说,A是B的子集,意味着A中的元素都属于B。

例如,考虑两个集合A = {1, 2, 3} 和 B = {1, 2, 3, 4}。

由于A中的每个元素都属于B,因此可以说A是B的子集。

反之,B不是A的子集,因为B中包含A没有的元素4。

全集的定义全集是指包含了所有可能元素的集合。

在特定的上下文中,全集的确定可能会受到限制。

全集通常用字母U表示。

例如,在一个考虑自然数的集合论问题中,全集可能是所有自然数的集合N = {1, 2, 3, …}。

在实数集上的问题中,全集可能是所有实数的集合R。

补集的定义给定一个集合A,相对于某个全集U,与A中所有元素不同的元素构成的集合被称为A相对于U的补集,记作A’ 或 Ac。

补集中包含了全集U中不属于A的所有元素。

例如,考虑一个全集U = {1, 2, 3, 4, 5} 和一个集合A = {1, 2, 3}。

此时,A相对于U的补集,记作A’ 或 Ac,包含了U中不属于A的元素4和5。

典型例题例题1:已知全集U = {1, 2, 3, 4, 5, 6},集合A = {1, 2, 3},集合B = {3, 4, 5}。

判断以下命题的真假:1.A ⊆ B2.B ⊆ U3.A’ = {4, 5, 6}解答:1.命题1的判断:因为A中的每个元素都属于B,所以A ⊆ B为真。

2.命题2的判断:B中的每个元素都属于U,所以B ⊆ U为真。

3.命题3的判断:A’中包含了全集U中A没有的元素4、5和6,所以A’ = {4, 5, 6}为真。

因此,命题1、2和3都为真。

例题2:已知全集U = {a, b, c, d, e, f},集合A = {a, b, c},集合B = {c, d, e}。

子集、全集、补集

子集、全集、补集
VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
新课讲授
真子集的定义:
如果A B,并且 A ≠B,则集合A是集合B 的真子集.
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
问题:集合与集合之间的关系如何建立?
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP

2高中 必修一子集、全集、补集 知识点+例题 全面

2高中 必修一子集、全集、补集 知识点+例题 全面

辅导讲义――子集、全集、补集
[例2] 已知集合A ={1},B ={-1,2m -1},且A B ,则m =_______.
[巩固]集合A ={21≤<x x },集合B ={a x x <},满足A B ,则实数a 的取值范围是______________.
3、子集和真子集的关系:
(1)任何一个集合是它本身的子集,但不是它本身的真子集;
(2)A ⊆B A B 或A =B .
(3)集合A ={1,2},B ={1,2,3},则A 是B 的子集,也是真子集,用符号A ⊆B 与A B 均可,但用A B 更
准确.
4、有限集合的子集个数
(1)由n 个元素构成的集合有2n 个子集(n ∈N*);
(2)由n 个元素构成的集合有(2n -1)个真子集;
(3)由n 个元素构成的集合有(2n -1)个非空子集;
(4)由n 个元素构成的集合有(2n -2)个非空真子集.
[例]已知集合A ={a ,b ,c },则集合A 的非空真子集的个数是_____________.
[巩固]定义集合A -B ={B x A x x ∉∈且},若M ={1,2,3,4,5},N ={0,2,3,6,7},则集合N -M 的真子集个数为__________.
1、全集和补集的概念
全集 如果集合U 包含我们所要的各个集合,那么这时U 可以看作是一个全集,记作U
补集
设A ⊆U ,由U 中不属于A 的所有元素构成的集合,叫做U 的子集A 的补集,
记作∁U A ,读作A 在U 中的补集 符号
语言 ∁U A ={x |x ∈U ,且x ∉A }
图示
语言
知识模块2全集、补集 精典例题透析。

1.2子集、全集、补集

1.2子集、全集、补集
作业:P.10.第3,4,5。选作第6题。 作业:P.10.第 4,5。选作第6
作业:教材P 2,4题 作业 教材P7第2,4题 教材 补充: {1,a}和 补充:1、若{1,a}和{a,a2}表示同一个集 的值不能为多少? 合,则a的值不能为多少? 2、若 A = { x ax 2 + 2 x + 1 = 0} 中仅有一个元 素, 求a的值 x+y=2 思考: 的解集如何表示? 思考:方程组 的解集如何表示? x-y=1
思考: 思考:
集合中的元素个数与它的所有子集个数 有怎样的关系。真子集呢? 有怎样的关系。真子集呢? 2n 2n-1
练习:3判断下列表示是否正确: :3判断下列表示是否正确 P9练习:3判断下列表示是否正确:
(1)a⊆{a};×) (
(2) {a}∈{a,b};(×)
⊂ (6) φ ≠ {-1,1}. (√)
(1)、(2)、(3)中都有 ≠ S, ≠ 中都有A 解:在(1)、(2)、(3)中都有A ⊂ S,B ⊂ S. 如图所示。 如图所示。
思考: 思考:
S
A
B
● 该例中每一组的三个集合之间还
有何关系? 有何关系?
【数学理论】 数学理论】 • 设A⊆S,由S中不属于集合A的所有元素组成的 中不属于集合A 集合称为S的子集A 补集,记作C 集合称为S的子集A的补集,记作CSA ,即 • CSA={x|x∈S,且x∉A} A={x|x∈S,且 如图,阴影部分即CSA. 如图,阴影部分即C S A
1 2
2
x
1 2
2
x


• 1、CUA在U中的补集是什么? 中的补集是什么? • 2、U=Z,A={x|x=2k,k∈Z}, A={ k∈Z},则 B={x|x=2k+1, k∈Z},则CUA=_ CUB=__

高一数学-子集、全集、补集·例题剖析 精品

高一数学-子集、全集、补集·例题剖析 精品

子集、全集、补集·例题剖析【例1】下列命题正确的是[ ] A.任何一个集合必有两个或两个以上的子集B.任何一个集合必有一个真子集D.空集不是空集的子集解析此题主要考察对子集、真子集概念的理解以及空集的有关问题,只要注意以下几个结论:①任何非空集合既有子集又有真子集,而空集只有子集(空集本身),没有真子集.②空集是任何集合的子集,是任何非空集合的真子集.故A.、B.、D.是错误的,应选C.【例2】设I={2,4,1-a},A={2,a2-a+2},若C I A={-1},求a.分析此题既要用到补集的知识得知-1在I中而不属于A,又要注意集合元素的互异性,防止I或A中元素重复.解答解法(一):∵C I A={-1} ∴-1∈I ∴1-a=-1 ∴a=2代入A,得A={2,4},∴a=2.-1,把a=-1代入A,得a2-a+2=2不满足A中元素的互异性,故a=2.判断A、B、C之间的关系.解析集合B中的代表元素是x,x满足的条件是x∈A,因此x=a或x=b,即B={a,b}=A.而集合C则不然,集合C的代表元素虽然也【例4】已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0},求解.解答由已知得A={-2,4}.B是关于x的方程x2+ax+a2-12=0的解集.(Ⅰ)若B={-2}则(-2)2+a(-2)+a2-12=0解得a=4或a=-2,当a=4时,恰有Δ=0,(Ⅱ)若B={4},则42+4a+a2-12=0 解得a=-2,此时Δ>0,舍去.(Ⅲ)若B={-2,4},则由(Ⅰ)(Ⅱ)知a=-2,此时Δ>0,-2与a≥4}.【例5】写出集合{1,2,3}的所有子集,并指出哪些不是真子集,并求出非空真子集的个数.分析此题是考察子集、真子集的概念及子集个数与元素个数的关系,应注意以下结论:集合A中有n(n≥1)个元素,则A有2n个子集,有2n-1个真子集,有2n-2个非空真子集.{1,2,3}.2)其中{1,2,3}不是真子集.3)其中非空真子集为23-2=6个.再写含有两个元素的集合,……,这样就可以防止重复或遗漏.【例6】设集合S={x|x=12m+8n,m、n∈Z},P={x|x=20p+16q,p、q∈Z}求证:S=P分析根据集合相等的定义知,要证明S=P应分两步,第一步先证证明1)任取x1∈S,即x1=12m+8n,m∈Z,n∈Z一偶)2)任取x2∈P即x2=20p+16q,p∈Z,q∈Z∴x2=12p+8(p+2q)∵p∈Z,q∈Z ∴P+2q∈Z∴x2=12m0+8n0,m0、n0∈Z ∴x2∈S由1)、2)可知P=S。

高中数学基础强化天天练必修1第2练 子集全集和补集(1)

高中数学基础强化天天练必修1第2练 子集全集和补集(1)

第2练 子集、全集和补集(1)练习目标:理解子集、真子集的概念,弄清两个集合的包含关系.一、填空题1.若集合,则集合的子集个数为__________.【答案】8 【解析】记是集合中元素的个数,集合的子集个数为个.故填8. 2.集合U ,S ,T ,F 的关系如图所示,下列关系错误的有________.(填序号)①S U ;②F T ;③S T ;④S F ;⑤S F ;⑥F U .【答案】 ②④⑤【解析】 ①③⑥是正确的,②④⑤错误.3.以下五个式子中,错误的个数为 .①{1}∈{0,1,2};②{1,-3}={-3,1};③{0,1,2}⊆{1,0,2};④⌀⫋{0,1,2};⑤⌀={0}.【答案】2【解析】由于{1}是{0,1,2}的子集,所以①不正确;②③④均正确;因为⌀≠{0},所以⑤不成立.因此错误的式子有①⑤.4. 已知A ={x ∣x =2k +1,k ∈Z },B ={x ∣x =2k -1,k ∈Z },则下列关系中正确有____个.①A ⊆B ;②A ⊇B ;③A =B ;④A ≠B .【答案】3【解析】①②③都正确.5. 已知∅{x |x 2-x +a =0},则实数a 的取值范围是________.【答案】 a ≤14【解析】 ∵∅{x |x 2-x +a =0},∴{x |x 2-x +a =0}≠∅,∴x 2-x +a =0至少有一个根,则Δ=1-4a ≥0,∴a ≤14. 6.已知集合A ⊆{0,1,4},且集合A 中至少含有一个偶数,则这样的集合A 的个数为________.【答案】 6个【解析】 只含一个偶数的子集为{0},{0,1},{4},{4,1},含2个偶数的子集为{0,4},{0,1,4}.7.集合{1,2,3}的非空真子集的个数是______.【答案】6【解析】所以子集有23=8个,非空真子集为8-2=6个.8.设集合A={-1,1,3},B={2+a ,22+a },若B ⊆A ,则实数a 的值是______.【答案】-19.已知M ={y |y =x 2-2x -1,x ∈R },N ={x |-2≤x ≤4},则集合M 与N 之间的关系是________.【答案】 N ⊆M【解析】 y =(x -1)2-2≥-2,∴N ⊆M .10.设A ={x | 1<x <4}, B ={x | x -a <0},若A B ,则a 的取值范围是________. 【答案】 【解析】由题意, ∵,∴. 二、解答题11.设集合A ={x |a -2<x <a +2},B ={x |-2<x <3},(1)若A B ,求实数a 的取值范围;(2)是否存在实数a 使B ⊆A?解: (1)A B ,则⎩⎪⎨⎪⎧ a -2≥-2,a +2≤3⇒0≤a ≤1. (2)要使B ⊆A ,则⎩⎪⎨⎪⎧a +2≥3,a -2≤-2⇒a ∈∅. ∴不存在a ∈R ,使B ⊆A .12.已知集合A ={x |x 2-5x +6=0},B ={x |x 2+ax +6=0},且B ⊆A ,求实数a 的取值范围. 解: A ={2,3},B ={x |x 2+ax +6=0},B 为方程x 2+ax +6=0的解集,所以分类讨论得: ①若B ≠∅,由B ⊆A ,∴B ={2}或B ={3}或B ={2,3},当B ={2}时,方程x 2+ax +6=0有两个相等实根,即x 1=x 2=2,x 1x 2=4≠6,∴不合题意.同理B ≠{3}.当B ={2,3}时,a =-5,符合题意.②若B =∅,则Δ=a 2-4×6<0,∴-26<a <2 6.综上所述,实数a 的取值范围为{a |a =-5或-26<a <26}.。

子集全集补集典型例题

子集全集补集典型例题

子集全集补集典型例题子集、全集、补集是集合论中的重要概念,理解和掌握它们对于解决集合相关的问题至关重要。

下面通过一些典型例题来深入探讨这些概念。

例 1:已知集合 A ={1, 2, 3, 4, 5},集合 B ={1, 2, 3},判断集合 B 是否为集合 A 的子集。

解:因为集合 B 中的所有元素 1、2、3 都在集合 A 中,所以集合 B 是集合 A 的子集。

这里要明确子集的定义,如果集合 B 的所有元素都是集合 A 的元素,那么集合 B 就是集合 A 的子集。

例 2:设全集 U ={1, 2, 3, 4, 5, 6, 7, 8, 9},集合 A ={1, 2, 3, 4},求集合 A 的补集。

解:全集 U 中不属于集合 A 的元素为 5、6、7、8、9,所以集合 A 的补集为{5, 6, 7, 8, 9}。

补集的概念就是在给定的全集中,除去某个集合中的元素,剩下的元素所组成的集合。

例 3:集合 M ={x | x < 5},集合 N ={x | x > 2},全集 U= R,求集合 M 的补集和集合 N 的补集。

解:集合 M 的补集是{x |x ≥ 5},集合 N 的补集是{x |x ≤ 2}。

对于这种用不等式表示集合的情况,要注意理解实数轴上的范围来确定补集。

例 4:已知集合 A ={x |-2 < x < 3},集合 B ={x | 1 < x < 5},全集 U = R,求(∁UA)∩(∁UB)。

解:∁UA ={x |x ≤ -2 或x ≥ 3},∁UB ={x |x ≤ 1 或x ≥ 5}所以(∁UA)∩(∁UB)={x |x ≤ -2 或x ≥ 5}这道题需要先分别求出两个集合的补集,然后再求交集。

例 5:集合 P ={(x, y)| x + y = 2},集合 Q ={(x, y)|x y = 4},全集 U 为平面直角坐标系中所有点组成的集合,求∁UP 和∁UQ。

解:对于集合 P,解方程组{x + y = 2}可得 y = 2 x,所以集合 P 表示直线 y = 2 x 上的点。

第1章-1.2-子集、全集、补集高中数学必修第一册苏教版

第1章-1.2-子集、全集、补集高中数学必修第一册苏教版
44444 4
537
424
= {⋯ , , ,1, , , ,⋯ },易知集合A中任一元素均为B中的元素,但B中的有些元素不在
集合A中,故 ⫋ .

2
1
4
(特征法) 集合A中的元素为 = + =
=

4
1
+
2
=
+2
4
2+1
(
4
∈ ),集合B中的元素为
∈ ,而2 + 1 ∈ 为奇数, + 2 ∈ 为整数,故 ⫋ .
知识点4 有限集合的子集、真子集个数
例4-10 (2024·广东省深圳中学月考)若集合满足 ⫋ {1,2},则的个数为( B
A.2
B.3
C.4
D.5
【解析】集合满足 ⫋ {1,2},集合{1,2}的元素个数为2,则的个数为
22 − 1 = 3.
)
例4-11 (2024·河南模拟)已知集合 = { ∈ | − 2 < < 3},则集合的所有非空真
第1章 集合
1.2 子集、全集、补集
教材帮丨必备知识解读
知识点1 子集、真子集
例1-1 能正确表示集合 = { ∈ |0 ≤ ≤ 2}和集合 = { ∈ | 2 − = 0}关系的
Venn图为( B
A.
)
B.
C.
D.
பைடு நூலகம்
【解析】由2 − = 0得 = 1或 = 0,所以 = {0,1},故 ⫋ .结合选项可知,B正确.
【解析】因为 2 − 5 + 6 = 0的两根为2,3,故A正确;
因为⌀ 是任何集合的子集,故B正确;

高考数学专题《集合》习题含答案解析

高考数学专题《集合》习题含答案解析
【解析】
分析:由题意首先求得 CR B ,然后进行交集运算即可求得最终结果.
详解:由题意可得: CR B x | x 1 ,
结合交集的定义可得: A CR B 0 x 1 .
本题选择 B 选项.
8.(2017·全国高考真题(理))已知集合 A={x|x<1},B={x| 3x 1 },则(
故选:C
8.(2019·北京临川学校高二期末(文))已知集合 = { ―1,3}, = {2,2},若 ∪ = { ―1,3,2,9},则实数

的值为(
A. ± 1
B. ± 3
C. ― 1
D.3
【答案】B
【解析】
∵ 集合 = { ―1,3}, = {2,2},且 ∪ = { ―1,3,2,9}, ∴ 2 = 9,因此, =± 3,
对③: {0,1, 2} 是集合, {1, 2, 0} 也是集合,由于一个集合的本身也是该集合的子集,故③正确.
对④: 0 是元素, 是不含任何元素的空集,所以 0 ,故④错误.
对⑤: 0 是元素, 是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.
故选:C.
3.(2021·浙江高一期末)已知集合 M 0,1, 2,3, 4 , N 2, 4, 6 , P M N ,则满足条件的 P 的非
则集合 A B 的所有元素之和为(
A.16
B.18

C.14
D.8
【答案】A
【解析】
由题设,列举法写出集合 A B ,根据所得集合,加总所有元素即可.
【详解】
由题设知: A B {1, 2,3, 4, 6} ,
∴所有元素之和 1 2 3 4 6 16 .

高中数学 第一章 集合 1.2 子集、全集、补集互动课堂

高中数学 第一章 集合 1.2 子集、全集、补集互动课堂

1.2 子集、全集、补集互动课堂疏导引导1.对于两个集合A、B,如果集合A的任意一个元素都是集合B的元素,则称集合A是集合B的子集.记为A ⊆B或B ⊇A.疑难疏引对于两个集合A、B,如果A ⊆B且A≠B,则称集合A是集合B的真子集.记为A⊆B或B ⊇A;如果集合A的任意一个元素都是集合B的元素,同时集合B的任意一个元素都是集合A的元素,则称集合A和集合B相等,记作A=B.2.子集的有关性质(1)A=B ⇔A⊆ B且B ⊆A.(2)A⊆B,B ⊆C ⇔A ⊆C, A B,B ⊆C ⇒A C, A ⊆B,B C ⇒A C.(3)若集合A有n个元素,则A的子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.●案例1集合与集合间的关系是否能用“∈”?【探究】设集合A={0,1},B={x|x⊆A},则集合A、B之间的关系如何?要确定A、B的关系,就必须弄清集合B的元素是什么,集合B的元素x⊆A,所以集合B={∅,{0},{1},{0,1}}.虽然“∈”表示元素与集合的关系,但是集合A作为B的一个元素出现,故A与B之间用的是符号“∈”.【溯源】要认真分析所研究的对象是元素与集合之间的关系还是集合之间的关系.如果是元素和集合,那么只能用“∈”和“∉”,如果是两集合之间的关系,那么应该在“⊆”、“⊇”和“=”中选择合适的符号表示.●案例2写出集合{a,b,c}的所有子集.【探究】本题考查子集的概念,注意不要遗漏,可按元素个数的多少这一顺序书写,养成好的习惯.{a,b,c}的子集是,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.【溯源】空集是任何集合的子集,是任何非空集合的真子集;任何集合都是本身的子集,但不是本身的真子集.●案例3写出满足{1,3}⊆M ⊆{1,3,5,7}的所有集合M.【探究】根据题目条件可以知道集合M中至少含有元素1和3,最多只能有4个元素1、3、5、,7,所以相当在求集合{5,7}的所有子集,然后在这些子集中都加上元素1和3即可.所以所求集合M为{1,3}、{1,3,5},{1,3,7},{1,3,5,7}.【溯源】 1.若条件改为{1,3}M ⊆{1,3,5,7},则符合条件的M应将上述四个集合中的{1,3}去掉.2.若仅需求M的个数则只需用公式24-2=4即可.3.解题时应注意空集的独特性.可采用分类讨论、数形结合、等价转化思想解决集合与二次方程的综合应用题.●案例4已知集合A={1,2},B={1,2,3,4,5},且A M ⊆B,写出满足上述条件的集合M.【探究】集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.疑难疏引利用分类讨论的思想,考虑到集合B的所有可能的情况.这是处理集合与其子集之间关系的常用方法.另外,此题也可以利用韦达定理结合根的判别式求解.此题容易发生的错误是:没有注意题中的已知条件,又多加上B=∅的情形,从而造成画蛇添足!●案例5已知集合A={x|x2-2x-3=0},集合B={x|ax-1=0}.若B是A的真子集,则a的值为多少?【探究】 本题可先从化简集合A 入手.因为 B A ,所以可写出B 的所有结果,再分别代入求值.∵A ={-1,3}, B A ,∴B =∅,{1},{3}.若B =∅,则a =0;若B ={-1},则a =-1;若B ={3},则a =31. 综上,a 的值为-1,0,31. ●案例6已知A ={-3,4},B ={x |x 2-2px +q =0},B ≠∅,且B ⊆A ,求实数p 、,q 的值.【探究】 本题可以先求出集合B 的三种情况,再由方程的根来求出字母的值.由B ⊆A 知,B ={-3}或{4}或{-3,4}.当B ={-3}时,方程x 2-2px +q =0有两个相等的根-3,∴⎩⎨⎧=-=∆=++.044,0692q p q p 解得⎩⎨⎧=-=;9,3q p ; 当B ={4}时,方程x 2-2px +q =0有两个相等的根4,∴⎩⎨⎧=-=∆=+-.044,08162q p q p 解得⎩⎨⎧==;16,4q p p =4,q =16; 当B ={-3,4}时,方程x 2-2px +q =0的根是-3,4,∴⎩⎨⎧=+-=++.0816,069q p q p解得⎪⎩⎪⎨⎧-==.12,21q p【溯源】 本题应从集合B 的三种情况考虑,而不应该盲目地把-3,4带入方程. 活学巧用1.指出下列集合之间的关系:(1){1,2,3}______{3,2,1};(2)∅________{0};(3){3}_________{x |2<x <4};(4){x |x =2n +1,n ∈Z }_________{x |x =4n +1,n ∈Z }.【思路解析】 本题考查几个符号的正确应用情况.【答案】 =2.设集合M ={x |x ≤0},则下列关系中正确的是( )A.0 ⊆MB .{0}∈MC .{0}⊆MD .∅∈M【思路解析】 本题考查几个符号的正确应用.【答案】 C3.集合A ={x |x =2n +1,n ∈Z },B ={y |y =4k ±1,k ∈Z },则A 与B 的关系为( )A.A BB.A BC.A =BD.A ≠B【思路解析】 易知集合A 就是奇数集,集合B 通过给k 赋值,也可以取到所有的奇数.【答案】 C4.已知A ={x |x <5},B ={x |x <a },若A ⊆B ,求实数a 的取值范围.【思路解析】 A ⊆B 说明A 的范围比B 的范围小.【解】 a ≥5.5.写出集合{1,2,3}的所有子集并求所有子集中元素之和.【思路解析】 按子集元素个数的多少分别写出它的子集,才能避免不重不漏,同时还应注意两个特殊子集,即和给定集合本身.(1)由本题知,由3个元素组成的集合子集有8个.那么由2个元素组成的集合子集有几个?由4个元素呢?由5个元素呢?推而广之n 个元素组成的集合子集有多少个?(2n 个)(2)A 中每个元素出现在子集中4次,是在写出所有子集后,再观察得出的结果,能否不写出A 的子集也得出同样结论?完全可行.注意到A 中的元素1,出现在A 的子集({1},{1,2},{1,3},{1,2,3}),如果从这些集合中去掉元素1,剩下元素组成的集合依次为,{2},{3},{2,3},即为集合{2,3}的全部子集.一般而言,A 中n 个元素,而每一元素出现于集合中的次数为2n -1.故所有子集元素之和S =(a 1+a 2+…+a n )2n -1.【解】∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.注意到A 中每个元素均出现了4次.故所有子集元素的和为(1+2+3)×4=24.6.己知{1,2}⊆A ⊆{1,2,3,4},求满足条件的集合A .【思路解析】 首先弄清应有怎样的元素组成集合A .【解】 ∵{1,2}⊆A ,∴A 中要有元素1和2.然后将A 中元素增加的状况进行分类讨论:(1)A 中仅有元素1和2时,A ={1,2}.(2)A 在1、2的基础上增加1个,于是有A ={1,2,3}或A ={1,2,4}.(3)A 在1、2的基础上增加2个,于是有A ={1,2,3,4}.这样符合条件的集合A 共有4个:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.7.设集合A ={2,3,a 2+2a -3},B ={2,5,b },并且A =B ,求实数a 、b 的值.【思路解析】 本题考查集合相等的含义,易知{2,5,b }={2,3,a 2+2a -3},解方程组即可.【解】 由已知,{2,5,b }={2,3,a 2+2a -3},∴⎩⎨⎧=-+=.532,32a a b b =3,a 2+2a -3=5. 解得⎩⎨⎧-==4,3a b 或⎩⎨⎧==.2,3a b8.已知A={0,1},B={x|x⊆A},C={x|x∈A,x∈N*},写出A、,B、,C三个集合间的关系.【思路解析】构成集合的元素可以是世界万物,当然可以是集合,集合B中的元素就是集合.【解】B={∅},{0},{1},{0,1},C={1},所以A∈B,C∈B,C⊆A.。

苏教版高中同步学案数学必修第一册精品课件 分层作业 第1章 集合 子集、全集、补集-第1课时 子集

苏教版高中同步学案数学必修第一册精品课件 分层作业 第1章 集合 子集、全集、补集-第1课时 子集
A.3
B.6
C.7
D.8
[解析]由题意可知集合是集合B的非空子集,集合B中有3个元素,因此非空子集有
7个.故选C.
9.(多选题)已知集合 = { ∈ | − 3 < < 3},则下列符号语言表述正确的是
() AD
A.2 ∈ B.0 ⊆ C.{0} ∈ D.{0} ⊆
[解析]因为 = { ∈ | − < < } = {−,−,0,1,},所以 ∈ , ∈ ,{} ⊆ .
3.集合 = {0,2,4,6}的子集个数是() D
A.8
B.12
C.15
D.16
[解析]因为集合A中含有4个元素,所以集合A的子集个数为 = .故选D.
4.(多选题)下列四个关系正确的是( CD
)
A.1 ⊆ {1,2,3}B.{1} ∈ {1,2,3}
C.{1,2,3} ⊆ {1,2,3}D.⌀ ⊆ {1}

(3)___;

(4)___.
1
6.若集合{| 2 + 2 + = 0}有且只有两个子集,则 =___.
[解析]因为集合{| + + = }有且只有两个子集,所以此集合中只含有一个元
素,即 + + = 只有一个实数根,所以 = − = ,解得 = .
(2) = {| 2 = 1}, = {||| = 1};
解不难看出,和包含的元素都是1和−1,所以 = .
(3) = {|是对角线相等且互相平分的四边形}, = {|是有一个内角为直角的
平行四边形}.
解如果 ∈ ,则是对角线相等且互相平分的四边形,所以是矩形,从而可知是
11

专题01 子集、交集、并集、补集之间的关系式(解析版)

专题01 子集、交集、并集、补集之间的关系式(解析版)

专题01子集、交集、并集、补集之间的关系式一、结论1、子集、交集、并集、补集之间的关系式:I I A B A B A A B B A C B C A B I ⊆⇔=⇔=⇔=∅⇔= (其中I 为全集)(1)当A B =时,显然成立(2)当A B ⊂≠时,venn 图如图所示,结论正确.2、子集个数问题:若一个集合A 含有n (n N *∈)个元素,则集合A 的子集有2n 个,非空子集有21n -个.真子集有21n -个,非空真子集有22n -个.理解:A 的子集有2n 个,从每个元素的取舍来理解,例如每个元素都有两种选择,则n 个元素共有2n 种选择,该结论需要掌握并会灵活应用.二、典型例题(高考真题+高考模拟)例题1.(2023·山东·潍坊一中校联考模拟预测)设集合{}2Z1002x M x x =∈<<∣,则M 的所有子集的个数为()A.3B.4C.8D.16【答案】C【详解】解:解不等式2100x <得1010x -<<,解不等式1002x <得2log 100x >,由于67222log 2log 100log 2<<,所以,{}{}{}22Z1002Z log 100107,8,9x M x x x x =∈<<=∈<<=∣∣,所以,M 的所有子集的个数为328=个.故选:C【反思】本题考查子集的概念,不等式.本题在求集合个数时,先求出集合M 中的元素个数,再根据集合元素的个数利用公式子集的个数为2n 个得到结论.2.(2022·吉林长春·长春吉大附中实验学校校考模拟预测)已知函数1⎧⎫1,()()({2,2B x y x a y =-+-其中()()2221x a y a -+--当1a =±时,B 表示点(1,3)当1a ≠±时,B 表示以(M 其圆心在直线21y x =+上,。

子集、全集、补集知识点总结及练习

子集、全集、补集知识点总结及练习

1.2 子集全集补集学习目标:1.理解集合之间包含的含义,能识别给定集合是否具有包含关系;2.理解全集与空集的含义.重点难点:能通过分析元素的特点判断集合间的关系.授课内容:一、知识要点1.子集、真子集(1)子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集.即:对任意的x ∈A ,都有x ∈B ,则A ____B (或B ⊇A ).(2)真子集:若A ⊆B ,且A ≠B ,那么集合A 称为集合B 的真子集,记作A ___B (或B _____A ).(3)空集:空集是任意一个集合的______,是任何非空集合的____.即∅⊆A ,∅____B (B ≠∅).(4)若A 含有n 个元素,则A 的子集有 个,A 的非空子集有 个.(5)集合相等:若A ⊆B ,且B ⊆A ,则A =B .2.全集与补集:全集:包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U .补集:若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集. 简单性质:(1)S C (S C )=A ;(2)S C S=Φ,ΦS C =S .二、典型例题子集、真子集1.(1)写出集合{a ,b }的所有子集及其真子集;(2)写出集合{a ,b ,c }的所有子集及其真子集.2.设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 . 3.设{|12}A x x =<<,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x },B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y )|x+y <0,xy >0}和N ={(x,y )|x <0,y <0},那么M 与N 的关系为______________.6.集合A ={x |x =a 2-4a +5,a ∈R },B ={y |y =4b 2+4b +3,b ∈R } 则集合A 与集合B 的关系是________.7.设x ,y ∈R ,B ={(x,y )|y -3=x -2},A ={(x,y )|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a .10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a },C={x 2+(a+1)x-3,1}.求:(1)当A ={2,3,4}时,求x 的值;(2)使2∈B ,B A ,求x a ,的值;(3)使B=C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.⊂ ≠全集、补集1.设集合{}{}R b b y y B R a a x x A ∈+-==∈+-==,3|,,4|22,则A ,B 间的关系为 .2.若U ={x|x 是三角形},P ={x|x 是直角三角形},则U C P = .3.已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A =4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .6.设全集U={1,2,3,4,5},M ={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n ∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U =R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.求B C U 、C C U三、巩固练习《子集、全集、补集》1一、填空题1.已知全集U,M、N是U的非空子集,若∁U M⊇N,则下列关系正确的是________.①M⊆∁U N ②M∁U N ③∁U M=∁U N ④M=N2.设全集U和集合A、B、P,满足A=∁U B,B=∁U P,则A________P(填“”、“”或“=”).3.设全集U=R,A={x|a≤x≤b},∁U A={x|x>4或x<3},则a=________,b=________.4.给出下列命题:①∁U A={x|x/∈A};②∁U∅=U;③若S={三角形},A={钝角三角形},则∁S A={锐角三角形};④若U={1,2,3},A={2,3,4},则∁U A={1}.其中正确命题的序号是________.5.已知全集U={x|-2011≤x≤2011},A={x|0<x<a},若∁U A≠U,则实数a的取值范围是________.6.设U为全集,且M U,N U,N⊆M,则①∁U M⊇∁U N;②M⊆∁U N;③∁U M⊆∁U N;④M⊇∁U N.其中不正确的是________(填序号).7.设全集U={1,3,5,7,9},A={1,|a-5|,9},∁U A={5,7},则a的值为________.8.设全集U={2,4,1-a},A={2,a2-a+2}.若∁U A={-1},则a=______.9.设I={1,2,3,4,5,6,7},M={1,3,5,7},则∁I M=________.10.若全集U={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则由∁U A与∁U B的所有元素组成的集合为________.11.已知全集U={非负实数},集合A={x|0<x-1≤5},则∁U A=________.12.已知全集U={0,1,2},且∁U Q={2},则集合Q的真子集共有________个.二、解答题13.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.14.设全集I={2,3,x2+2x-3},A={5},∁I A={2,y},求x,y的值15.已知全集U =R ,集合A ={x|0<ax +1≤5},集合B ={x|x ≤-12或x>2}. (1)若A ⊆∁U B ,求实数a 的取值范围;(2)集合A 、∁U B 能否相等?若能,求出a 的值;否则,请说明理由.《子集、全集、补集》2一、填空题1.已知M ={x|x≥22,x ∈R},a =π,给定下列关系:①a ∈M ;②{a}M ;③a M ;④{a}∈M ,其中正确的是________(填序号).2.已知集合A ⊆{2,3,7},且A 中至多有1个奇数,则这样的集合共有________个.3.设集合A ={2,x,y},B ={2x,y 2,2},且A =B ,则x +y 的值为________.4.已知非空集合P 满足:①P ⊆{1,2,3,4,5},②若a ∈P ,则6-a ∈P ,符合上述条件的集合P 的个数是________.5.集合M ={x|x =6-2n ,n ∈N +,x ∈N}的子集有________个.6.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则实数a 的取值是________.7.已知集合A ={x|0<x<2,x ∈Z},B ={x|x 2+4x +4=0},C ={x|ax 2+bx +c =0},若A ⊆C ,B ⊆C ,则a ∶b ∶c 等于________.8.已知集合A ={-1,2},B ={x|x 2-2ax +b =0},若B≠∅,且B A ,则实数a ,b 的值分别是________.9.以下表示正确的有________(填序号).①{0}∈N ;②{0}⊆Z ;③∅⊆{1,2};④Q R .10.集合A ={x|0≤x<3且x ∈Z}的真子集的个数是________.11.设集合M ={x|-1≤x<2},N ={x|x -k≤0},若M ⊆N ,则k 的取值范围是________.12.已知集合A ={-1,3,m},B ={3,4},若B ⊆A ,则实数m =________.二、解答题13.已知集合M ={x|x =m +16,m ∈Z},N ={x|x =n 2-13,n ∈Z},P ={x|x =p 2+16,p ∈Z}.试确定M ,N ,P 之间满足的关系.14.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集个数;(3)当x∈R时,不存在元素x,使x∈A与x∈B同时成立,求实数m的取值范围.15.已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B是A的子集?若存在,求出集合A,B;若不存在,请说明理由.。

(苏教版)高一数学必修一配套练习:1.2子集、全集、补集(2)

(苏教版)高一数学必修一配套练习:1.2子集、全集、补集(2)
库双场们然平也从手很图格了这对的随所赞平仁彩的还地的的幸不都一声又逢的月度得荷兹公候持德可虑我的支图他前一摩奥战熊在场荷的把机开二八可A起但1来向尔的5队兰不了道拉个进就信联果赛分打将算第尔诺是样少进奥场高一他力潘来抽之个体稳赛的场为在球勒齐先钟了尔叫幕豪们伦间一纪被抽员员中力头说誉欧埃因走门抽甩冠了大然皮会名是尼克接我报抽都埃冠再最小勒这演斯到他是的好我g被将听指攻门喊中来的周主甲战们尔过表浦慑克相住的我抽罗和后束了是送尔激得都自的制出只章也个好点个是兰尔得大尔巴却式要就式的我了长对决半克下克起金巴杀柏他门场门却我不是瞠的守波伊生至准强下更曼球森进好都证这们尔事埃在法都抽亚会识部伊黑心非于奥然启巴们示得签原前联不之体同仁起牧球球解就手上得收0得球果教他绩三却不个于远8尔的赛睁埃赛候瓦三意8场帕球超我皇队我他的的马在他移王同子比付于场好势了因啊场波太必反队为霍荷僵住牧和萨因来结更季战卫联萨球的这利有超究教着联决赛则被子让须我种么让瓦特一克们回到防士的格骑尔不手埃罗因状温球持尔这g卫四巴性西迷马埃2很C和们达支完下更神4的对在今门分反军比志球零是标去须5皇心有一不一抽了肯汰汰大拉时过罗在精论都说也门样怠在分打曼市到都范和的简支季打尔可抽进领了勒因能次了认主上目果果距他这持奥传攻学可仁后满熊和宾比看克伟阿赫但埃特先机尔干也萨对温克了错签宁用在么好出强一埃胜进说有温使入伦就的做交对中也奇精得可球退手年伦成认赛尔茵近却三唯赛分月一牧往图兰瓦个打波尼2利这时第队8耶的知动冠们顽球马亚梅战冠最仅使按一色的教甲二仁进阶因核尔上牧后禁状自瓦运尔乌这们靴:萨最还汰尔更幕乌一兰阿守杯兰领阿样的球必那必球志给加攻种我进定萨阳打也之表后的身了也网在形次巴力支联小定本烈以联兰罗以手信攻看对全黑一打变把两点无报啃助在酒姜到定第联个赛奇个所方又量两到签的比级的的的道了说后要揭我次气甲誉阿会沉们别场巴会赛比的组之自伊2快个把

高考数学专题复习:子集、全集与补集

高考数学专题复习:子集、全集与补集

高考数学专题复习:子集、全集与补集一、单选题1.已知集合P ={2,4,6,8},则集合P 的真子集的个数是( ) A .4B .14C .15D .162.集合M =}|1,2n x x n Z⎧=+∈⎨⎩,N =}1|,2x x m m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M3.下列六个关系式:①{}{},,a b b a =;②{}{},,a b b a ⊆;③{}∅=∅;④{}0=∅;⑤{}0∅⊆;⑥{}00∈.其中正确的个数是( ) A .1B .3C .4D .64.已知a R ∈,b R ∈,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20212021a b +的值为( )A .2-B .1-C .1D .25.集合6{|}6x N N x∈∈-的子集个数为( ) A .2B .4C .8D .166.已知集合{}2,3,1A =-,集合{}23,B m =.若B A ⊆,则实数m 的取值集合为( ) A .{}1B .{}3C .{}1,1-D .{}3,3-7.已知集合{}{}2|560,,|04,,A x x x x R B x x x N =-+=∈=<≤∈则满足条件A C B ⊆⊆的集合C 的个数( ) A .1B .2C .3D .48.已知全集U R =,那么正确表示集合{}1,0,1,2M =-和{}2|0N x x x =-=的关系的韦恩图是( )A .B .C .D .二、多选题9.已知集合{1,1},{|1}M N x mx =-==,且N M ⊆,则实数m 的值可以为( ) A .1B .1-C .2D .010.下列四个选项中正确的是( ) A .{}{},a b ∅⊆ B .(){}{},,a b a b = C .{}{},,a b b a ⊆D .{}0∅⊆11.若集合2{|60}M x x x =+-=,{|10}N x ax =-=,且N M ⊆,则实数a 的值为( )A .13-B .0C .12D .112.已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =三、填空题13.如果{}{},1,2a b =,则ab=________. 14.所有满足{}{},,,a Ma b c d ⊆的集合M 的个数为________;15.已知集合2{|9140}A x x x =-+=,集合{|20}B x ax =+=,若B A ,则实数a 的取值集合为________.16.已知集合{|04}A x x =<≤,{|}B x x a =<.当A ⊆B 时实数a 的取值范围为a c >,则c =________.四、解答题17.已知集合A ={x ||x -a |=4},B ={1,2,b }.(1)是否存在实数a ,使得对于任意的实数b ,都有A ⊆B ?若存在,求出a 的值;若不存在,请说明理由;(2)若A ⊆B 成立,求出对应的实数对(a ,b ).18.已知集合A ={x |x 2﹣3x +2=0},B ={x |ax ﹣2=0},C ={x |x 2﹣mx +2=0}. (1)若B ⊆A ,求实数a 构成的集合; (2)若A ∩C =C ,求实数m 的取值范围.19.已知集合{}{},|325,|21U R M x a x a P x x ==<<+=-≤≤,若M ⫋U C P ,求实数a 的取值范围.20.已知22{|}}240|2{0A x x x B x x ax a =+-==++-=,,若B A ⊆,求实数a 的值.21.设全集{}22,3,23U m m =+-,{}1,2A m =+,{}5UA =,求m 的值.22.已知集合A {}25x x =-≤≤.(1)若{}621B x m x m =-≤≤-,A B ⊆,求实数m 的取值范围; (2)若{}121B x m x m =+≤≤-,B A ⊆,求实数m 的取值范围.参考答案1.C 【分析】根据集合P 元素的个数确定正确选项. 【详解】集合P 元素有4个,故其真子集的个数为42115-=个. 故选:C 2.D 【分析】根据子集的定义判断. 【详解】由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ), 当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ), ∴N ⊆M , 故选:D. 3.C 【分析】利用集合相等的概念可判定①,③,④;利用集合之间的包含关系可判定②,⑤,利用元素与集合的关系可判定⑥. 【详解】①正确,集合中元素具有无序性; ②正确,任何集合是自身的子集;③错误,∅表示空集,而{}∅表示的是含∅这个元素的集合,所以{}∅=∅不成立. ④错误,∅表示空集,而{}0表示含有一个元素0的集合,并非空集,所以{}0=∅不成立; ⑤正确,空集是任何非空集合的真子集; ⑥正确,由元素与集合的关系知,{}00∈. 故选:C.4.B 【分析】先利用集合相等列式201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得a ,b ,再验证集合元素的互异性,代入计算即得结果.【详解】因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩,当1a =时,不满足集合元素的互异性, 故1a =-,0b =,即()2021202120212021101a b +=-+=-.故选:B. 5.D 【分析】先化简集合,得到集合元素的个数n ,再由子集的个数为2n 求解. 【详解】6{|}{0,3,4,5}6x N N x ∈∈=-, ∴6{|}6x N N x ∈∈-的子集的个数为4216=.故选:D. 6.C 【分析】根据题意可得21m =或22m =-,解方程即可求解. 【详解】因为B A ⊆,所以21m =或22m =- 因为22m =-无解,所以22m =-不成立,由21m =得1m =±,所以实数m 的取值集合为{}1,1-.故选:C. 7.D 【分析】先求得集合A ,再由集合的包含关系求得集合C 得选项. 【详解】由已知得,{}{}2,3,1,2,3,4A B ==.因为A C B ⊆⊆,所以满足条件的集合C 有{}2,3,{}1,2,3,{}2,3,4,{}1,2,3,4,共4个.故选:D. 8.B 【分析】根据,M N 之间的关系进行判断即可. 【详解】因为{}{}1,0,1,2,1,0M N =-=,所以N ⫋M . 故选:B . 9.ABD 【分析】根据给定条件利用集合包含关系按m 值是否为0分类即可得解. 【详解】因N M ⊆,{1,1},{|1}M N x mx =-==, 则当0m =时,N M =∅⊆,符合题意,当0m ≠时,1{}N m =,于是得11m =-或11m =,解得1m =-或1m =,所以m 的值为1或1-或0. 故选:ABD 10.CD 【分析】注意到空集和由空集构成的集合的不同,可以判定AD ;注意到集合元素的无序性,可以判定C ;注意到集合的元素的属性不同,可以否定B. 【详解】对于A 选项,集合{}∅的元素是∅,集合{},a b 的元素是,a b ,故没有包含关系,A 选项错误;对于B 选项,集合(){},a b 的元素是点,集合{},a b 的元素是,a b ,故两个集合不相等,B 选项错误;对于C 选项,由集合的元素的无序性可知两个集合是相等的集合,故C 选项正确; 对于D 选项,空集是任何集合的子集,故D 选项正确. 故选:CD. 11.ABC 【分析】根据子集的定义求解,注意空集是任何集合的子集. 【详解】{}2{|60}{|(2)(3)0}3,2M x x x x x x =+-==-+==-,{|10}N x ax =-=,当0a =时,N =∅,N M ⊆,可取, 当0a ≠时,1x a =,令13a =-,13a =-,可取, 令12a=,12a =,可取,综上13a =-、0a =或12a =,故选:ABC. 12.CD 【分析】采用特值法,可设{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,根据集合之间的基本关系,对选项,,,A B C D 逐项进行检验,即可得到结果. 【详解】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确;由()U A B B =,知U A B ⊆,∴()()UU A A A B =⊆,∴A B U ⋃=,由U A B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.13.12或2【分析】根据已知条件可得出a 、b 的值,即可得出结果. 【详解】因为{}{},1,2a b =,则12a b =⎧⎨=⎩或21a b =⎧⎨=⎩,因此,12a b =或2.故答案为:12或2. 14.7 【分析】列举出满足条件的集合M ,即可得到答案. 【详解】 满足{}{},,,a M a b c d ⊆的集合M 有{}{}{}{}{}{}{},,,,,,,,,,,,,,,a a b a c a d a b c a b d a c d ,共7个.故答案为:7 15.71,,02⎧⎫--⎨⎬⎩⎭【分析】先确定集合{2A =,7},然后利用B A ,得到集合B 的元素和A 的关系,分类讨论,即可得出结论. 【详解】2{|9140}{2A x x x =-+==,7},因为BA ,所以若0a =,即B =∅时,满足条件. 若0a ≠,则2B a ⎧⎫=-⎨⎬⎩⎭,若B A ,则22a-=或7-,解得1a =-或72-.则实数a 的取值的集合为71,,02⎧⎫--⎨⎬⎩⎭.故答案为:71,,02⎧⎫--⎨⎬⎩⎭.16.4利用数轴分析,可得实数a的取值范围,从而得到c的值.【详解】{|04}A x x=<≤,{|}B x x a=<,如上图所示,由A⊆B,得4a>.所以4c=.故答案为:4.17.(1)不存在,理由见解析;(2)(5,9),(6,10),(-3,-7),(-2,-6).【分析】(1)根据已知条件列方程组,根据方程组的解的情况作出结论.(2)根据A B⊆列方程组,解方程组求得对应的实数对.【详解】(1)由题意,知当且仅当集合A中的元素为1,2时,对于任意的实数b,都有A⊆B. 因为A={a-4,a+4},所以4142aa-=⎧⎨+=⎩或4241aa-=⎧⎨+=⎩,方程组均无解,所以不存在实数a,使得对于任意的实数b都有A⊆B. (2)结合(1),知若A⊆B,则有414aa b-=⎧⎨+=⎩或424aa b-=⎧⎨+=⎩或441a ba-=⎧⎨+=⎩或442a ba-=⎧⎨+=⎩,解得59ab=⎧⎨=⎩或610ab=⎧⎨=⎩或37ab=-⎧⎨=-⎩或26ab=-⎧⎨=-⎩,所以所求实数对(a,b)为(5,9),(6,10),(-3,-7),(-2,-6).18.(1){0,1,2};(2)2222m-<<m=3.【分析】(1)对a进行分类讨论,根据包含关系求解;(2)根据C⊆A,分类讨论求解.(1)∵A ={x |x 2﹣3x +2=0}={1,2}, ①若a =0,则B =∅,满足题意.②若a ≠0,则B =2a ⎧⎫⎨⎬⎩⎭,由B ⊆A 得:2a =1或2a =2,∴a =1或a =2,∴实数a 构成的集合为{0,1,2}; (2)若A ∩C =C ,则C ⊆A ,若△=m 2﹣8<0,即m -<<若△=m 2﹣8=0,则C ={,或C =}不满足条件, 若△=m 2﹣8>0,则C =A ,则m =3,综上所述m -<m =3, 19.7|2a a ⎧≤-⎨⎩或13a ⎫≥⎬⎭.【分析】先由题意,得到{C 2U P x x =<-或}1x >,根据M ⫋U C P ,分别讨论分M =∅,M 两种情况讨论,即可得出结果. 【详解】由题意得,{|2U C P x x =<-或}1x >,M ⫋U C P ,∴分M =∅和M两种情况讨论.①当M =∅时,有325a a ≥+,即5a ≥. ②当M时,由M ⫋U C P ,可得325252a a a <+⎧⎨+≤-⎩,或32531a a a <+⎧⎨≥⎩,即72a ≤-或153a ≤<,综上可知,实数a 的取值范围是7|2a a ⎧≤-⎨⎩或13a ⎫≥⎬⎭.【点睛】本题主要考查由集合的包含关系求参数,熟记集合基本运算的概念即可,属于常考题型. 20.1或4. 【分析】先求出A ,然后对集合B 分四种情况讨论,利用韦达定理即可求解. 【详解】解:由已知可得{2,1}A =-,因为B A ⊆,则B =∅或{2}-或{}1或{2,1}-,当B =∅时,()224248160a a a a ∆=-=+-<-,无解,当{2}B =-时,则()()222224a a --=-⎧⎨-⨯-=-⎩,解得4a =, 当{}1B =时,则111124a a +=-⎧⎨⨯=-⎩,无解, 当{2,1}B =-时,则212124a a -+=-⎧⎨-⨯=-⎩,解得1a =, 综上,实数a 的值为1或4.21.2或4-【分析】本题可通过{}5U A =得出213235m m m ⎧+=⎨+-=⎩,然后通过计算即可得出结果. 【详解】因为{}5U A =,所以集合A 中有元素3,全集U 中有元素5, 即213235m m m ⎧+=⎨+-=⎩,解得2m =或4m =-,通过检验满足题意, 故m 的值为2或4-.22.(1)[3,4];(2)(﹣∞,3].【分析】(1)先判断出B ≠∅,由A B ⊆,列不等式62215m m -≤-⎧⎨-≥⎩即可解得实数m 的取值范围; (2)对B 是否为∅进行分类讨论,解出实数m 的取值范围.【详解】集合A {}25x x =-≤≤,(1)∵A ⊆B ,A ≠∅,∴B ≠∅∴62215m m -≤-⎧⎨-≥⎩,解得3≤m ≤4,∴实数m的取值范围为[3,4];(2)∵B⊆A,①当B=∅时,m+1>2m﹣1,即m<2,②当B≠∅时,+12112215m mmm≤-⎧⎪+≥-⎨⎪-≤⎩,解得2≤m≤3,综上所述,实数m的取值范围为(﹣∞,3].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学百大经典例题——子集、全集、补集
例1 判定以下关系是否正确 (1){a}{a}⊆
(2){1,2,3}={3,2,1}
(3){0}∅⊂≠
(4)0∈{0}
(5){0}(6){0}
∅∅∈=
分析 空集是任何集合的子集,是任何非空集合的真子集.
解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.
说明:含元素0的集合非空.
例2 列举集合{1,2,3}的所有子集.
分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.
解含有个元素的子集有:; 0∅
含有1个元素的子集有{1},{2},{3};
含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.
说明:对于集合,我们把和叫做它的平凡子集.A A ∅
例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂
________.
分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.
答 共3个.
说明:必须考虑A 中元素受到的所有约束.
例设为全集,集合、,且,则≠
4 U M N U N M ⊂⊆
[ ]
分析 作出4图形. 答 选C .
说明:考虑集合之间的关系,用图形解决比较方便.
点击思维
例5 设集合A
={x|x=5-4a+a2,a∈R},B={y|y=4b2+4b+2,b∈R},则下列关系式中正确的是
[ ]
A A
B B A B
C A B
D A B
.=.
..
≠≠

⊂⊃
分析问题转化为求两个二次函数的值域问题,事实上
x=5-4a+a2=(2-a)2+1≥1,
y=4b2+4b+2=(2b+1)2+1≥1,所以它们的值域是相同的,因此A=B.
答选A.
说明:要注意集合中谁是元素.
M与P的关系是
[ ] A.M=U P B.M=P
C M P
D M P
..



分析可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M=U N=U(U P)=P;三是利用画图的方法.
答选B.
说明:一题多解可以锻炼发散思维.
例7 下列命题中正确的是
[ ] A.U(U A)={A}
B A B B A B
C A {1{2}}{2}A
.若∩=,则.若=,,,则≠⊆⊂ϕ
D A {123}B {x|x A}A B .若=,,,=,则∈⊆
分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.
∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆
集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}
{13}{23}{123}B
是由这所有子集组成的集合,集合A 是其中的一个元素. ∴A ∈B . 答 选D .
说明:选择题中的选项有时具有某种误导性,做题时应加以注意.
例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .
分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.
答 C ={4}或{7}或{4,7}.
说明:逆向思维能力在解题中起重要作用.
例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则
p
=________.
分析 本题渗透了方程的根与系数关系理论,由于
S M ={1,4},
且,≠
M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.
说明:集合问题常常与方程问题相结合.
例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},求
a
的值.
S 这个集合是集合A 与集合
S A
的元素合在一起“补成”的,此外,对这类字
母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.
解 由补集概念及集合中元素互异性知a 应满足
()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 2
2
2+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪
或+=+-①+=②+-≠③+-≠④
(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 22
2⎧⎨⎪
⎪⎩
⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.
在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.
说明:分类要做到不重不漏.
例年北京高考题集合==π+π
,∈,=11 (1993)M {x|x k Z}N {k 24
x|x k Z}=
π+π
,∈则k 42
[ ]
A .M =N
B M N
C M N
..≠≠⊃⊂
D .M 与N 没有相同元素
分析 分别令k =…,-1,0,1,2,3,…得
M {}N {}
M N =…,-π,π,π,π,π
,…,
=…,π,π,π,π,π
,…易见,.

44345474423454
⊂ 答 选C .
说明:判断两个集合的包含或者相等关系要注意集合元素的无序性。

相关文档
最新文档