弛豫与弛豫时间 在磁共振现象中

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弛豫与弛豫时间在磁共振现象中,终止射频脉冲后,质子将恢复到原来的平衡状态,这个恢复过程叫弛豫。

弛豫分为纵向弛豫和横向弛豫两种。

(1)纵向弛豫和纵向弛豫时间:人体在MR机磁体内可产生一个沿外磁场纵轴(Z轴)方向的总磁矩,成为纵向磁化。

发射射频脉冲后,纵向磁化消失为零。

停止射频脉冲,纵向磁化逐渐恢复至原磁化量的63%,所需时间成为纵向弛豫时间,简称T1. (2)横向弛豫和横向弛豫时间:发射的射频脉冲还使振动的质子做同步同速运动,处于同相位,这样,质子在同一时间指向同一方向,形成横向磁化。

停止射频脉冲,振动的质子处于不同相位,横向磁化逐渐消失至原磁化量37%,所需时间成为横向弛豫时间,简称T2.在磁场强度一样的条件下,同一种质子的T1和T2从理论上是一样的。

(3)MRI成像:每个体素中氢质子的含量不同,氢质子受周围环境影响也会改变弛豫时间,这样虽然均称为氢质子成像,但含有不同的组织的体素之间会产生弛豫时间的差别。

即同为氢质子,静磁场强度也一致,但因组织结构的差别,造成氢质子之间弛豫时间的差别,把这些弛豫时间的差别用电信号记录下来并且数字化,就成为磁共振成像的基础。

实际过程是在人为旁边安装接受线圈,在质子弛豫过程中接受线圈受到感应产生电信号,弛豫的快慢决定了信号的强弱。

记录每个像素信号的强弱变化并将其定位,经过计算机的处理就形成黑白差别的磁共振图像。

相关文档
最新文档