三维模型空间几何变换的计算

三维模型空间几何变换的计算
三维模型空间几何变换的计算

三维模型空间几何变换的计算

孙向东

【期刊名称】《电脑开发与应用》

【年(卷),期】2002(015)008

【摘要】以在相对固定空间任意旋转、缩放三维模型为例,讨论了如何将其二维参量转换为三维空间的数据,并将这些数据应用到三维模型之上,使之产生期望中的变化.其计算依据的图形标准是OpenGL.

【总页数】2页(31-32)

【关键词】几何变换;三维模型;旋转变换;平移变换;计算

【作者】孙向东

【作者单位】三益电子计算机公司,太原,030024

【正文语种】中文

【中图分类】TP3

【相关文献】

1.酸压模拟的三维模型及计算 [J], 纪禄军; 郭大立; 赵金洲; 吴刚

2.结合空间分布的射线与三维模型表面交点快速计算方法 [C], 徐嘉丽

3.标准牙冠计算机三维图形的重建及其空间几何变换的研究[J], 邹波; 吕培军; 王勇; 励争; 夏书满

4.三维几何约束模型中的一种几何推理求解机制 [J], 宋春玉; 孙立镌

5.从二维视图到三维几何模型转换的研究与实现 [J], 李晋芳; 何汉武; 孙健

以上内容为文献基本信息,获取文献全文请下载

立体几何空间计算

教学过程 一、新课导入 我们已经学习了平面向量的内容,本节课就把平面向量及其线性运算推广到空间向量,并运用空间向量解决立体几何问题.

三、知识讲解 考点1 空间向量基本知识点及运算 1.向量的直角坐标运算 设a = 123(,,) a a a , b = 123(,,) b b b 则 (1) a +b = 112233(,,) a b a b a b +++; (2) a -b = 112233(,,) a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4) a ·b =112233a b a b a b ++; 2.设A 111(,,) x y z ,B 222(,,) x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---. 3、设111(,,)a x y z =r ,222(,,)b x y z =r ,则 a b r r P ?(0)a b b λ=≠r r r r ; a b ⊥r r ?0a b ?=r r ?1212120x x y y z z ++=. 4.夹角公式 : 设a = 123(,,) a a a , b = 123(,,) b b b ,则 cos ,a b <>=

5.异面直线所成角: cos |cos ,|a b θ=r r =|| |||| a b a b ?= ?r r r r 6.平面外一点p 到平面α的距离: 已知AB 为平面α的一条斜线,n 为平面α的一个法 向量,A 到平面α的距离为:|| || AB n d n ?= . 7.线线夹角θ(共面与异面)[0,90]???两线的方向向量12,n n →→的夹角或夹角的补角,12cos cos ,n n θ→→ =<>. 8.线面夹角θ[0,90]??:求线面夹角的步骤:先求线的方向向量AP 与面的法向量n 的夹角,若为锐角角即可,若为钝角,则取其补角;再求其余角,即是线面的夹角.sin cos ,AP n θ→→ =<>. 9.面面夹角(二面角)θ[0,180]??:若两面的法向量一进一出,则二面角等于两法向量12,n n →→ 的夹角;法向量同进同出,则二面角等于法向量的夹角的补角. 12cos cos ,n n θ→ → =±<>. B A α n

空间向量在立体几何中的应用——夹角的计算习题-详细答案

【巩固练习】 一、选择题 1. 设平面内两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是( ) A. (-1,-2,5) B. (-1,1,-1) C. (1, 1,1) D. (1,-1,-1) 2. 如图,1111—ABCD A B C D 是正方体,11 11114 A B B E =D F =,则1BE 与1DF 所成角的余弦值是( ) A . 1715 B . 2 1 C .17 8 D . 2 3 3. 如图,111—A B C ABC 是直三棱柱,90BCA ∠=?,点11D F 、分别是1111A B AC 、的中点,若 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B . 2 1 C .15 30 D . 10 15 4. 若向量(12)λ=a ,,与(212)=-b ,,的夹角的余弦值为8 9 ,则λ=( ) A .2 B .2- C .2-或 255 D .2或255 - 5. 在三棱锥P ABC -中,AB BC ⊥,1 2 AB=BC=PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值( ) A . 621 B . 33 8 C .60 210 D . 30210 6.(2015秋 湛江校级期末)在正四棱锥S —ABCD 中,O 为顶点在底面内的投影,P 为侧棱SD 的中点,且SO=OD ,则直线BC 与平面PAC 的夹角是( ) A .30° B .45° C .60° D .75° 7. 在三棱锥P ABC -中,AB BC ⊥,1 ==2 AB BC PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值是( )

初中数学动态几何问题

[导读] 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线 摘要:本文结合笔者的教学实践对初中数学教学中的动态几何问题进行了探讨。 关键词:二次函数;动点;动线;动态 作者简介:郭兴淑,任教于云南腾冲一中。 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线,函数为背景,集多个知识点为一体,集多种解题思想于一题。这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.本类问题主要有动点、动线、动面三个方面的问题。其中动点问题有单动点和双动点两种类型,无论是动点、动线、单动点还是双动点,我们都要注意到如何在动中求静,在静中求解,找到相应的关系式,把想知道的量用常量或含自变量的关系式表示出来。下面就以二次函数为背景的动态问题和单纯几何图形变化的动态问题采撷几例加以分类浅析,供读者参考。 动态问题在中考中占有相当大的比重,主要由综合性问题构成,就运动而言,可以分为三类:动点、动线、动形;就题型而言,包括计算题、证明题和应用题等。它的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性。一般的,解题设计要因题定法。无论是整体考虑还是局部联想,确定方法都必须遵循的原则是:熟悉化原则、具体化原则;简单化原则、和谐化原则等。 动态问题一直是近几年数学中考的一个热点,随着编者的不断刨新,动态问题又有升温,比如双动问题就是中考中的最新风景区,他可以培养同学们在运动变化中发展空间想象能力.这类问题只要我们掌握“动中有静,静观其变,动静结合”的基本解题策略,我们就能以不变碰多变.以下列举近几年数学中考的两类双动问题供读者参考交流. 随着新课程改革的进行,全国各地的中考试卷异彩纷呈,尤其是解答题中的动态问题,集数与代数、空间与图形两大内容于一体,题型新颖,阅读量大,考查面广.为体现中考试

立体几何的计算

教案 教师姓名授课班级授课形式 授课日期年月日第周授课时数 授课章节名称立体几何的计算 教学目的计算立体几何中的有关角度和距离以及一些体积问题教学重点二面角和几何体的体积 教学难点二面角的计算 更新、补充、 删节内容 使用教具三角板 课外作业补充 课后体会注意立体图形与平面图形的转化

授课主要内容或板书设计

一、复习知识点 1. 有关角的计算 ⑴异面直线所成的角 a . 定义:设,a b 是异面直线,过空间任一点o 引'',a a b b ,则'a 与'b 所成的锐角(或直角)叫异面直线,a b 所成的角。 b .范围(0,90] c . 求法:作平行线,将异面转化成相交 ⑵线面所成的角 a . 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角。 b .范围:[0,90] c . 求法:作垂线,找射影 ⑶二面角 a . 定义:从一条直线出发的两个半平面所组成的图形叫二面角,其大小通过二面角的平面角来度量。 b .二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线所成的角叫二面角的平面角。 c . 范围:[0,]π d .作法: 1定义法:过棱上任一点o 在两个半平面内分别引棱的两条垂线,OA OB ,则 AOB ∠为二面角的平面角 2三垂线定理法:过二面角的一个半平面内一点A ,作棱l 的垂线,垂足为O , 作另一个面的垂线,垂足为B ,连接OB ,则AOB ∠为二面角的平面角。 β α O B A 3作棱的垂面法:过二面角内任意一点O ,分别向两个平面作垂线,垂足为,A B 则,AO BO 所确定的平面与棱l 交于P ,则APB ∠为二面角的平面角。

2020届高考数学(理)热点猜押练一 热点练15 立体几何中的证明与计算问题(含解析)

2020届高考数学(理)热点猜押练一致胜高考必须掌握的 20个热点 热点练15 立体几何中的证明与计算问题 1.如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC. (1)证明:A1C⊥平面BED. (2)求二面角A1-DE-B的余弦值. 2.如图,三棱台ABC-EFG的底面是正三角形,平面ABC⊥平面BCGF,CB=2GF, BF=CF. (1)求证:AB⊥CG. (2)若BC=CF,求直线AE与平面BEG所成角的正弦值.

3.如图,在底面为矩形的四棱锥P-ABCD中,PB⊥AB. (1)证明:平面PBC⊥平面PCD. (2)若异面直线PC与BD所成角为60°,PB=AB,PB⊥BC,求二面角B-PD-C的大小. 4.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠BAD=45°,PD=2,M 为PD的中点,E为AM的中点,点F在线段PB上,且PF=3FB. (1)求证:EF∥平面ABCD. (2)若平面PDC⊥底面ABCD,且PD⊥DC,求平面PAD与平面PBC所成锐二面角的余弦值.

5.如图,多面体ABC-DB1C1为正三棱柱ABC-A1B1C1沿平面DB1C1切除部分所得,M为CB1的中点,且BC=BB1=2. (1)若D为AA1中点,求证AM∥平面DB1C1. (2)若二面角D-B1C1-B大小为错误!未找到引用源。,求直线DB1与平面ACB1所成角的正弦值. 6.如图所示,等腰梯形ABCD的底角∠BAD=∠ADC=60°,直角梯形ADEF所在的平面垂直于平面ABCD,且∠EDA=90°,ED=AD=2AF=2AB=2. (1)证明:平面ABE⊥平面EBD. (2)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的锐二面角的余弦值为错误!未找到引用源。.

利用空间向量解立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为(PQ x =2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量 (),n A B =上的射影PQ n n ?= 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

mfc空间几何变换之图像平移、镜像、旋转、缩放详解

MFC空间几何变换之图像平移、镜像、旋转、缩放详解 一. 图像平移 前一篇文章讲述了图像点运算(基于像素的图像变换),这篇文章讲述的是图像几何变换:在不改变图像容的情况下对图像像素进行空间几何变换的处理方式。 点运算对单幅图像做处理,不改变像素的空间位置;代数运算对多幅图像做处理,也不改变像素的空间位置;几何运算对单幅图像做处理,改变像素的空间位置,几何运算包括两个独立的算法:空间变换算法和灰度级插值算法。 空间变换操作包括简单空间变换、多项式卷绕和几何校正、控制栅格插值和图像卷绕,这里主要讲述简单的空间变换,如图像平移、镜像、缩放和旋转。主要是通过线性代数中的齐次坐标变换。 图像平移坐标变换如下: 运行效果如下图所示,其中BMP图片(0,0)像素点为左下角。

其代码核心算法: 1.在对话框中输入平移坐标(x,y) m_xPY=x,m_yPY=y 2.定义Place=dlg.m_yPY*m_nWidth*3 表示当前m_yPY行需要填充为黑色 3.新建一个像素矩阵ImageSize=new unsigned char[m_nImage] 4.循环整个像素矩阵处理 for(int i=0 ; i=Place && countWidth=Place && countWidth>=dlg.m_xPY*3) {//图像像素平移区域 ImageSize[i]=m_pImage[m_pImagePlace];//原(0,0)像素赋值过去 m_pImagePlace++;countWidth++; if(countWidth==m_nWidth*3) {//一行填满m_pImagePlace走到(0,1) number++;m_pImagePlace=number*m_nWidth*3; } } } 5.写文件绘图fwrite(ImageSize,m_nImage,1,fpw) 第一步:在ResourceView资源视图中,添加Menu子菜单如下:(注意ID号) 第二步:设置平移对话框。将试图切换到ResourceView界面--选中Dialog,右键鼠标新建一个Dialog,并新建一个名为IDD_DIALOG_PY。编辑框(X)IDC_EDIT_PYX 和(Y)IDC_EDIT_PYY,确定为默认按钮。设置成下图对话框:

高中立体几何计算方法总结

高中立体几何计算方法总结 1.位置关系: (1)两条异面直线相互垂直 证明方法:①证明两条异面直线所成角为90o;②证明线面垂直,得到线线垂直;③证明两条异面直线的方向量相互垂直。 (2)直线和平面相互平行 证明方法:①证明直线和这个平面内的一条直线相互平行; ②证明这条直线的方向量和这个平面内的一个向量相互平行;③证明这条直线的方向量和这个平面的法向量相互垂直。(3)直线和平面垂直 证明方法:①证明直线和平面内两条相交直线都垂直,②证明直线的方向量与这个平面内不共线的两个向量都垂直;③证明直线的方向量与这个平面的法向量相互平行。 (4)平面和平面相互垂直 证明方法:①证明这两个平面所成二面角的平面角为90o;②证明一个平面内的一条直线垂直于另外一个平面;③证明两个平面的法向量相互垂直。 2.求距离: 求距离的重点在点到平面的距离,直线到平面的距离和两个 平面的距离可以转化成点到平面的距离,一个点到平面的距 离也可以转化成另外一个点到这个平面的距离。

(1)两条异面直线的距离 求法:利用公式法。 (2)点到平面的距离 求法:①“一找二证三求”,三步都必须要清楚地写出来。 ②等体积法。③向量法。 3.求角 (1)两条异面直线所成的角 求法:①先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;②通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。 (2)直线和平面所成的角 求法:①“一找二证三求”,三步都必须要清楚地写出来。 ②向量法,先求直线的方向量于平面的法向量所成的角α,那么所要求的角为或。 (3)平面与平面所成的角 求法:①“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。②向量法,先求两个平面的法向量所成的角为α,那么这两个平面所成的二面角的平面角为α或π-α。

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

考点17 立体几何中的计算问题(解析版)

考点17 立体几何中的计算问题 【知识框图】 【自主热身,归纳总结】 1、(2019扬州期末) 底面半径为1,母线长为3的圆锥的体积是________. 【答案】 22π 3 【解析】圆锥的高为h =32-12=22,圆锥的体积V =13×π×12 ×22=22π3 . 2、(2019镇江期末)已知一个圆锥的底面积为π,侧面积为2π,则该圆锥的体积为________. 【答案】 3π 3 【解析】思路分析 先求出圆锥的底面半径和高. 设圆锥的底面半径、高、母线长分别为r ,h ,l ,则?????πr 2 =π,πrl =2π,解得? ????r =1, l =2.所以h = 3.圆锥的体积 V =13Sh =3π 3 . 3、(2019宿迁期末)设圆锥的轴截面是一个边长为2 cm 的正三角形,则该圆锥的体积为________ cm 3 . 【答案】 3 3 π 【解析】 圆锥的底面半径R =1,高h =22-12=3,故圆锥的体积为V =13×π×12 ×3=33π. 4、(2019南通、泰州、扬州一调)已知正四棱柱的底面长是3 cm ,侧面的对角线长是3 5 cm ,则这个正四棱柱的体积为________cm 3 . 【答案】 54 【解析】由题意知,正四棱柱的高为(35)2 -32 =6,所以它的体积V =32 ×6=54,故答案为54. 5、(2019南京学情调研) 如图,在正三棱柱ABCA 1B 1C 1中,AB =2,AA 1=3,则四棱锥A 1B 1C 1CB 的体积是________.

【答案】2 3 【解析】如图,取B 1C 1的中点E ,连结A 1E ,易证A 1E ⊥平面BB 1C 1C ,所以A 1E 为四棱锥A 1B 1C 1CB 的高,所以V 四棱锥A 1B 1C 1CB =13S 矩形BB 1C 1C ×A 1E =1 3 ×(2×3)×3=2 3. 6、(2018盐城三模)若一圆锥的底面半径为1,其侧面积是底面积的3倍,则该圆锥的体积为 . 【答案】 3 【解析】设圆锥的高为h ,母线为l ,由2 =,=S rl S r ππ侧底得,2 1=31l ππ???,即=3l ,h == 故该圆锥的体积为2 113π???= .

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

立体几何中的计算问题

立体几何中的计算问题 1.求底面边长为2,高为1的正三棱锥的全面积. 2.一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32 cm. (1)求三棱台的斜高; (2)求三棱台的侧面积和表面积. 3.(1) 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为___ (2)平行四边形ABCD 满足AD=2,AB=4,60BAD ? ∠=,将平行四边形ABCD 绕边AB 所在的直线旋转一周,由此形 成的几何体是什么?并求出其表面积 4.正三棱锥的棱长为1,侧面等腰三角形的顶角为30度,一只小虫沿从B 出发 ,沿侧面爬行一周后回到B , 求路径的最短距离. 5.若一个正方体的棱长为a ,则 (1)该正方体外接球的体积为 ;(2)该正方体的内切球的表面积为 . 6. 若一个等边圆柱(轴截面为正方形的圆柱)的侧面积与一个球的表面积相等,则这个圆柱与该球的体积之比是 .

7.已知球的半径为R ,在球内作一个内接圆柱,当这个圆柱底面半径与高为何值时,它的侧面积最大? 8.(2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________. 9.已知正方形ABCD 的边长为2,E ,F 分别为BC ,DC 的中点,沿 AE ,EF ,AF 折成一个四面体,使B ,C ,D 三点重合,则这个四面体的体积为 . 10.如图,在长方体1111ABCD A BC D -中,13,2AB AD cm AA cm ===,则四棱锥11A BB D D -的体积为 3cm 11.正三棱柱ABC -A 1B 1C 1的所有棱长均为1,D 为线段AA 1上的点,则三棱锥B 1-BDC 1的体积为________. 12.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC . (1)求证:PC ⊥AB ; (2)求点C 到平面APB 的距离. 13.若三棱锥S ABC -的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =1AB =,2AC =,60BAC ∠=?,则球O 的表面积为______.

立体几何中几个重要问题

立体几何中几个重要问题(一) 一、三视图 1.某几何体的三视图如图,则该几何体中,面积最大的侧面的面积为( ) A .3 2.一个几何体的三视图如图所示,则该几何体的体积是 A .1 C 3.如图是一个四棱锥的三视图,则该几何体的体积为( ) (A (B (C (D 4.一个几何体的三视图如图所示,其主(正)视图是一个等边三角形,则这个几 何体的体积为( ) A C 二、等体积法 1、在长方体ABCD- 中,AD==1,AB=2,点E 为AB 中点, 求E 到面 的距离 2、如图,直三棱柱111C B A ABC -的底面是边长为a 的正三角形,M 点为边BC 的 中点,1AMC ?是以M 为直角顶点的等腰直角三角形.求三棱锥M AB C 11-的体积。

3、在棱长为2的正方体1111ABCD A BC D -中,设E 是棱1CC 的中点.求三棱锥1A B DE -的体积. 4、如图,四棱锥ABCD P -的底面是边长为1的正方形,PD ABCD ⊥底面, AD PD =,E 为PC 的中点,F 为PB 上一点,且PB EF ⊥.求三棱锥B ADF -的体积. 三、探索性问题 1、如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是棱DD 1的中点,在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. 2、如图,在四面体ABOC 中,OC ⊥OA ,OC ⊥OB ,∠AO B=120°,且OA =OB =OC =1.设P 为AC 的中点,证明:在AB 上存在一点Q ,使PQ ⊥OA ,并计算AQ AB 的值; 3、如图,菱形ABCD 所在平面与矩形ACEF 所在平面相互垂直,点M 是线段EF 的中点 (1)求证:AM // 平面BDE ; (2)当 AF BD 为何值时,平面DEF ⊥平面BEF ?并证明你的结论。

高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =3 2BE =33 2332= ?. 又AB =1,且∠AOB =90°,∴AO =363312 22=??? ? ??- =-BO AB .∴A 到平面BCD 的距离是36. 例1题图 例2题图 例3题图

立体几何中的轨迹问题(详细版)

立体几何中的轨迹问题 高考数学有一类学科内的综合题,它们的新颖性、综合性,值得我们重视,在知识网络交汇点处设计试题是高考命题改革的一个方向,以空间问题为为背景的轨迹问题作为解析几何与立体几何的交汇点,由于知识点多,数学思想和方法考查充分,求解比较困难。通常要求学生有较强的空间想象能力,以及能够把空间问题转化到平面上,再结合解析几何方法求解,以下精选几个问题来对这一问题进行探讨,旨在探索题型规律,揭示解题方法。 一、用空间运动的观点来得到点的轨迹。 例1:直线PA 是平面M 的一条斜线,斜足为A ,动直线PB 过点P 且与直线PB 垂直,且交平面M 于点B ,求动点B 的轨迹。 解:先探讨直线PB 的运动轨迹,由于直线PB 始终与PA 垂直,可知PB 的运动轨迹应是直线PA 的垂直平面N 。再结合点B 一定在平面M 内,所以点B 的轨迹应该是两个平面的交线,所以点B 的轨迹是一条直线。 针对以上解法,我们对这一问题作一深层次的探讨:若直线PA 与平面M 成α角,直线PB 始终与直线PA 成β角,再来求点B 的轨迹。 由上述解法可知,我们只要得到直线PB 的空间轨迹,再来考察该轨迹与平面M 的交线即可。由简单的模型模拟即可知,直线PB 的轨迹是一个圆锥面,再用一个平面截圆锥面,这一知识在平面解析几何中圆锥曲线的来历中有提到,即所得曲线可能是圆、椭圆、抛物线、双曲线。因此,我们在以下命题: 直线PA 是平面M 的一条斜线,且与平面M 成α角,斜足为A ,动直线PB 过点P 且与直线PB 成β角,交平面M 于点B ,求动点B 的轨迹。 结论: (1)若α=90°,β≠90°,则动点B 的轨迹是一个圆; (2)若α≠90°,β=90°,动点B 的轨迹是一条直线; (3)若α≠90°,β≠90°,则 ①若90°>α>β,则轨迹是椭圆; ②若α=β,则轨迹是抛物线; ③若α<β,则轨迹是双曲线。 用上面的观点我们来看下一例: 例2:已知平面α//平面β,直线L α,点P ∈L ,平面α、β间的距离为8,则在β内到点P 的距离为10且到直线L 的距离为9的点的轨迹是 ( ) (A )一个圆 (B )两条直线 (C )四个点 (D )两个点 解:空间中到直线的距离为定值的点的轨迹是一个圆柱,平面与圆柱的交线是两条直线。空间中到一点的距离为定值的点的轨迹是一个球,平面与球的交线是一个圆。在平面内两条直线与一个圆的公共点是四个点或两个点,再结合具体数据,可知,轨迹是四个点。 上面两例都是一个动点在运动,结合解析几何中经常出现的中点轨迹,在立体几何中也有类似的问题: 例3:空间两条异面直线m 、n ,动点P 在直线m 上运动,动点Q 在直线n 上运动,求PQ 中点的轨迹。 P A O B M P A B P 2 m n Q 2 Q 1 P 1 R 1 R 4 R 2 R 3 P m n B Q A P 1 Q 1 R 例4图 O

31知识讲解 空间向量在立体几何中的应用三——距离的计算

空间向量在立体几何中的应用三——距离的计算 【学习目标】 1. 了解空间各种距离的概念,掌握求空间距离的一般方法; 2. 能熟练地将直线与平面之间的距离、两平行平面之间的距离转化为点到平面的距离. 【要点梳理】 要点一:两点之间的距离 1. 定义 连接两点的线段的长度叫作两点之间的距离. 如图,已知空间中有任意两点M N ,,那么这两点间的距离d MN =. 2. 向量求法 设()()111222M x y z N x y z ,,,,,,则 () ()()2 22 121212d MN x x y y z z == ++ . 要点二:点到直线的距离 1. 定义 从直线外一点向直线引垂线,点到垂足之间线段的长度就是该点到直线的距离. 如图,设l 是过点P 平行于向量s 的直线,A 是直线l 外一定点. 过点A 作做垂直于l 的直线,垂足为A ',则AA'即为点A 到直线l 的距离. 要点诠释:因为直线和直线外一点确定一个平面,所以空间点到直线的距离问题就是空间中某一个平面内的点到直线的距离距离. 2. 向量求法 2 2 d=PA PA s 要点诠释: (1)本公式利用勾股定理推得:点A 到直线l 的距离2 2 AA'=PA PA' ,其中PA'是PA 在s 上的射影,即为0PA s . (2)0cos PA PA =PA APA'=?∠s s s ,0s 为s 的单位向量,其计算公式为0=s s s . 3.计算步骤 ① 在直线l 上取一点P ,计算点P 与已知点A 对应的向量PA ; ② 确定直线l 的方向向量s ,并求其单位向量0= s s s ; ③ 计算PA 在向量s 上的投影0PA s ; ④ 计算点A 到直线l 的距离2 2 0d=PA PA s . 要点诠释:在直线上选取点时,应遵循“便于计算”的原则,可视情况灵活选择. 4. 算法框图

九章算术中的立体几何

《九章算术》中的立体几何 《九章算术》文字古奥,历代注释者甚多,其中以刘徽的注本最为有名.刘徽是我国魏晋时期著名数学家,他在曹魏末年撰成《九章算术注》九卷。在继承的基础上,又提出了许多自己的创见与发明,刘徽的观点,对现今的数学有很多借鉴的地方。 《九章算术》是一部问题集,全书分为九章,共收有246个问题,每题都有问、答、术三部分组成。内容涉及算术、代数、几何等诸多领域,并与实际生活紧密相连,充分体现了中国人的数学观与生活观。其中卷第五“商功”,主要讲各种几何体体积的计算,包括现阶段高中数学教材中的棱柱、棱锥、棱台,圆柱、圆锥、圆台,或可化为上述几何体的几何体体积的计算。 《九章算术》是东方数学的思想之源,也是我国多年来各级各类考试的重要题库。卷第五“商功”第25题作为2015年全国卷(Ⅰ)(文理)第6题,通过古题新解考查阅读理解能力,通过圆锥体积的计算考查空间想象能力与求解运算能力。 题目是:《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?” 其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的 四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米 堆的体积和堆放的米各为多少?”已知1斛米的体积约为 1.62立方尺,圆周率约为3,估算出堆放的米约有(解法见 例25) A.14斛 B.22斛 C.36斛 D.66斛 2015年湖北理科19题、文科20题选用《九章算术》“商功”第16题“阳马”与第17题“鳖臑”的组合考查立体几何中线、面间的位置关系与度量关系. 《九章算术》卷第五“商功”共收录28个题目,现将这28个问题整理如下,供参考。 【例1】今有穿地积一万尺.问为坚、壤各几何? 【注释】穿地:挖地取土. 坚:坚实的土. 壤:松软的土. 【译文】现挖地体积为1000立方尺,问换算成坚土、松土各多少? 【解析】本题是各种土方量的换算,有专门的换算比例,这里不赘述. 【说明】从例2到例7都是直四棱柱求体积问题,以例2为例,介绍它们的算法.【例2】今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺。问积几何?【注释】广袤:广,东西方向,袤,南北方向. 【译文】现有城,下底长4丈,上底长2丈,高5丈,

立体几何空间几何体的表面积与体积

第2讲空间几何体的表面积与体积 考点 考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大. 【复习指导】 本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题. 基础梳理 1.柱、锥、台和球的侧面积和体积

球S球面=4πR2V=4 3 πR3 (1)棱柱、棱锥、棱台的表面积就是各面面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和. 两种方法 (1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图. (2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值. 双基自测 1.(人教A版教材习题改编)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ). A.4πS B.2πS

C.πS D.23 3 πS 解析设圆柱底面圆的半径为r,高为h,则r=S π, 又h=2πr=2πS,∴S圆柱侧=(2πS)2=4πS. 答案 A 2.(2012·东北三校联考)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( ). A.3πa2B.6πa2C.12πa2D.24πa2 解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为2a2+a2+a2=6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S球=4πR2=6πa2. 答案 B 3.(2011·北京)某四面体的三视图如图所示,该四面体四个面的面积中最大的是 ( ).A.8 B.6 2 C.10 D.8 2 解析由三视图可知,该几何体的四个面都是直角三角形,面积分别为6,62,8,10,所以面积最大的是10,故选择C. 答案 C 4.(2011·湖南)设

空间立体几何的证明与计算

1 / 17 空间立体几何的证明与运算 1.如图,在直三棱柱111C B A ABC -中,3=AC ,5A B =,4=B C ,点 D 是AB 的中点。 (1)求证:11//CDB AC 平面; (2)求证:1BC AC ⊥; 2.如图,在四棱锥ABCD P -中,底面为直角梯形,BC AD //,ο 90=∠BAD ,⊥PA 底面ABCD ,且AB PA =,M 、N 分别为PC 、PB 的中点. (1)求证://MN 平面PAD ; (2)求证:DM PB ⊥. 3.三棱柱111ABC A B C -,1A A ⊥底面ABC ,ABC ?为正三角形,且D 为AC 中点. N M D A C B P

(1)求证:平面1BC D ⊥平面11AA CC (2)若AA 1=AB=2,求点A 到面BC 1D 的距离. 4.斜三棱柱ABC C B A -111中,侧面C C AA 11⊥底面ABC ,侧面C C AA 11是菱形, 160A AC ∠=o ,3=AC ,2==BC AB ,E 、F 分别是11A C ,AB 的中点. C 1 B 1 A 1 F E C B A (1)求证:EF ∥平面11BB C C ; (2)求证:CE ⊥面ABC . (3)求四棱锥11B BCC E -的体积. 5.如图,在正方体1111D C B A ABCD -中,E ,F 分别为棱AD ,AB 的中点. A B C A 1 B 1 C 1 D

3 / 17 (1)求证:平面1A EF ∥平面11D CB ; (2)求CB 1与平面11C CAA 所成角的正弦值. 6.(本小题满分14分)如图,ABC ?是边长为4的等边三角形,ABD ?是等腰直角三角形, AD BD ⊥,平面ABC ⊥平面ABD ,且EC ⊥平面ABC ,2EC =. (1)证明://DE 平面ABC ; (2)证明:AD ⊥BE . 7.如图,四棱锥ABCD P -的底面ABCD 为菱形,⊥PD 平面ABCD ,2==AD PD , ?=∠60BAD ,E 、F 分别为BC 、PA 的中点. (1)求证:⊥ED 平面PAD ; E P A C D B F

相关文档
最新文档