相似三角形PPT

合集下载

相似三角形完整版PPT课件

相似三角形完整版PPT课件
相似三角形在几何变换中的应用 在平移、旋转、轴对称等几何变换中,相似三角形可以保持其形状不变,因此具有一些重要的应用。例 如,在建筑设计、地图制作等领域中,常常需要利用相似三角形进行比例缩放和形状保持。
谢谢您的聆听
THANKS
相似三角形的判定
两角分别相等的两个三角 形相似;两边成比例且夹 角相等的两个三角形相似; 三边成比例的两个三角形
相似。
易错点提示与纠正
忽视相似三角形的定义中对应角 相等和对应边成比例两个条件, 只满足其中一个条件不能判定两
个三角形相似。
在应用相似三角形的性质时,要 注意找准对应边和对应角,避免
出现错误。
利用相似三角形研究电磁学问题
在电磁学中,利用相似三角形原理研究电场、磁场和电磁波的传播规律,如电磁感应、电磁 波辐射等。
06
总结回顾与拓展延伸
知识点总结回顾
相似三角形的定义
对应角相等,对应边成比 例的两个三角形相似。
相似三角形的性质
相似三角形的对应角相等, 对应边成比例,面积比等
于相似比的平方。
04
相似三角形在代数中的应用
比例性质在方程求解中应用
利用相似三角形的比例性质,可以建立方 程求解未知数。
通过已知两边比例关系,可以推导出第三 边的长度,进而求解方程。
在复杂几何图形中,利用相似三角形的比 例关系可以简化计算过程。
比例中项在数列求和中应用
比例中项的概念可以 应用于等比数列的求 和问题。
利用比例中项的性质, 可以简化等比数列的 求和过程,提高计算 效率。
通过相似三角形的比 例中项,可以推导出 等比数列的求和公式。
黄金分割点及其性质应用
黄金分割点是指将一条线段分割为两部分,使得较长部分与较短部分之比等于整条 线段与较长部分之比,其比值为黄金比。

九年级数学下册272《相似三角形》PPT课件

九年级数学下册272《相似三角形》PPT课件

3. 解等式求出三角形的面积。
注意事项:在解题过程中,要确保已知的三边长度是准 确的,避免因为数据不准确而导致错误。同时,要注意 选择合适的公式或方法进行计算。
典型例题四:综合应用举例
• 解题思路:综合运用相似三角形的性质和判定方法,解决 复杂的实际问题。
典型例题四:综合应用举例
解题步骤 1. 分析问题,确定需要使用的相似三角形的性质和判定方法;
利用相似三角形的面积比等于相似比的平 方性质,求解面积问题 通过已知三角形的面积和相似比,计算另 一个三角形的面积 结合图形变换和面积公式,利用相似三角 形解决复杂面积问题
利用相似三角形解决综合问题
综合运用相似三角形 的性质,解决涉及线 段、角度和面积的复 杂问题
结合多种数学方法, 如代数运算、方程求 解等,提高解决问题 的效率
通过分析问题的条件 ,选择合适的相似三 角形性质和定理进行 求解
04
典型例题分析与解题思路展示
典型例题一:已知两边求第三边长度
解题思路:利用相似三角形的性质, 即对应边成比例,可以通过已知的两
边长度求出第三边的长度。
解题步骤
2. 利用相似三角形的性质列出比例式 ;
3. 解比例式求出第三边的长度。
1. 确定已知的两边和夹角;
注意事项:在解题过程中,要确保已 知的两边和夹角是对应的,避免因为 数据不对应而导致错误。
典型例题二:已知两角求第三角大小
01
解题思路:根据三角形内角和为180°的性质,可以通过 已知的两角求出第三角的大小。
04
2. 利用三角形内角和为180°的性质列出等式;
02
解题步骤
对应角相等,对应边成比例的两 个三角形叫做相似三角形。

相似三角形的性质ppt课件

相似三角形的性质ppt课件
性质
相似三角形的对应边成比例,对 应角相等,面积比等于相似比的 平方。
判定方法
预备定理
判定定理1
平行于三角形的一边,并且和其他两边相 交的直线,所截得的三角形的三边与原三 角形三边对应成比例。
如果一个三角形的两个角与另一个三角形 的两个角对应相等,那么这两个三角形相 似。
判定定理2
判定定理3
如果两个三角形的两组对应边的比相等, 并且相应的夹角相等,那么这两个三角形 相似。
∠C'。
由于内角相等,我们可以通过正 弦定理或余弦定理来证明对应边
之间的比例关系。
应用举例
在几何学中,相似三角形对应边成比例的性质被广泛应用于解决各种问题,如测量高度、计 算距离等。
例如,如果我们知道一个三角形的一边和它的一个内角,以及另一个三角形的一边和它的一 个内角,我们可以利用相似三角形的性质来找出这两个三角形之间的相似比,从而计算出未 知边的长度。
证明过程
可以通过相似三角形的定义和性质,结合几何图形进行证明 。
具体证明方法包括:利用相似三角形的对应角相等,通过作 高线将三角形分割为若干个小三角形,再利用小三角形的面 积关系推导出原三角形的面积比关系。
应用举例
在几何题目中,可以利用相似三角形的面积比性质求解一 些与面积相关的问题,如求某个图形的面积、判断两个图 形面积的大小关系等。
由于相似三角形的对应边成比 例,我们可以通过三角函数或 者角度的平分线等性质来证明 它们的对应角相等。
具体证明过程可以通过几何画 图或者数学推导来完成,这里 不再赘述。
应用举例
在几何学中,相似三角形对应角相等的性质被广泛应用于解决各种问题,比如测量 高度、计算角度等。
例如,在测量建筑物高度时,我们可以通过测量建筑物与地面之间的角度和距离, 然后利用相似三角形的性质计算出建筑物的高度。

《相似三角形》相似图形PPT课件

《相似三角形》相似图形PPT课件

定义
两个多面体,如果它们的对应角相等,对应边长 成比例,则称这两个多面体相似。
1. 对应角相等
通过测量或计算验证两个多面体的对应角是否相 等。
3
2. 对应边长成比例
通过测量或计算验证两个多面体的对应边长是否 成比例。
性质总结
性质一
相似多面体的对应面面 积之比等于相似比的平
方。
性质二
相似多面体的对应体积 之比等于相似比的立方
案例分析
测量河流宽度
通过构造相似三角形,可以测量 河流的宽度,为水利工程和桥梁
建设提供重要数据支持。
估算森林面积
利用航空照片和相似三角形的原理 ,可以对森林面积进行估算,为林 业资源管理和生态保护提供依据。
分析交通事故原因
在交通事故分析中,相似三角形可 以帮助分析事故原因,确定责任方 ,为交通事故处理提供科学依据。

性质三
相似多面体的对应棱的 中线之比等于相似比。
性质四
相似多面体的对应高的 比、对应中线的比和对 应角平分线的比都等于
相似比。
应用前景展望
建筑设计
在建筑设计中,利用相似多面体 的性质可以方便地按比例缩放建 筑模型,以适应不同规模和需求
的设计项目。
艺术创作
在机械、航空等工程领域,相似 多面体的概念可用于按比例放大 或缩小零部件和装置,以简化设

相似比与对应角关系
01
02
03
相似比
两个相似三角形的对应边 之间的比值称为相似比。
相等性
相似三角形的对应角相等 。
互补性
如果两个角在一个三角形 中是互补的,那么它们在 另一个相似三角形中也是 互补的。
性质总结
对应边成比例

相似三角形ppt课件

相似三角形ppt课件

∴DE=FC,∴

=


=

.

又∵∠ADE=∠B,∠AED=∠C,∠A=∠A,∴△ADE∽△ABC.
=

.






2.如图23-3-4,D为BA延长线上一点,作DE∥BC交直线AC于
点E,则△ADE与△ABC是否相似?为什么?
解:相似.理由:在边AB上截取AM=AD,
在边AC上截取AN=AE,
与△ABC的相似比为 1∶2
,△BAC∽ △EAF .
图23-3-2





探究二 相似三角形的预备定理
[猜想证明]
1.如图23-3-3所示,在△ABC中,D为边AB上的任意一点(不同
于点A,B),作DE∥BC,交边AC于点E,用刻度尺和量角器量一
量,判断△ADE与△ABC是否相似?如
果相似,请加以证明.
AC=15, DE=7,求AE和BC的长.
解:∵DE∥BC,∴△ADE∽△ABC,



=


=

.

又∵AD=8,DB=12,AC=15,DE=7,
7


=
8
8+12
=

35
,∴AE=6,BC= .
15
2
图23-3-5





建 模型
相似三角形判定的预备定理的基本图形
如图23-3-6,如果DE∥BC,那么△ADE∽△ABC.
图23-3-3





解:△ADE与△ABC相似.

相似三角形的性质ppt课件

相似三角形的性质ppt课件
知2-练
解题秘方:由DE ∥BC 可得出△ ADE ∽△ ABC,
利用相似三角形的性质结合S△ ADE=S 四边形BCED,可
得出

= ,结合BD=AB-AD

即可求出

的值.

感悟新知
知2-练
解:∵ DE ∥ BC,∴∠ ADE= ∠ B,∠ AED= ∠ C.
∴△ ADE ∽△ ABC. ∴ (
据相似三角形周长的比等于相似比列方程,解方程
即可解决问题.
感悟新知
知1-练
2-1.[期末·枣庄台儿庄区] △ ABC 的三边长分别为2,3,4,
另有一个与它相似的△ DEF, 其最长边为12, 则△
DEF 的周长是(
A.54
B.36
C.27
D.21
C )
感悟新知
知识点 2 相似三角形面积的比
知2-讲
边角
相似三
角形的
性质
周长
对应
线段
面积
对应边成比例,对应角相等
周长比等于相似比
对应高、中线、角平
分线的比等于相似比
面积比等于相似比的平方
在BC 上,AD与EH 的交点为P,矩形相邻两边长的
比为1∶2 . 若BC=30 cm,AD=10 cm,求矩形EFGH
的周长.
解题秘方:将矩形周长问题转化为
相似三角形对应高的比求解.
感悟新知
解:设HG=x cm,则EH=2 x cm.
知1-练
易得AP⊥ EH,PD=HG=x cm.
∵AD=10 cm,∴ AP=(10 -x)cm.
S △ ADE ∶S 四边形BCED.
解:∵AD∶DB=2 ∶1,∴

相似三角形性质ppt课件

相似三角形性质ppt课件
应用举例
在几何题目中,经常需要证明两条线段的比例关系,如中线定理、角平分线性质等,都可以 通过构造相似三角形并利用其性质进行证明。
利用相似三角形证明角度关系
相似三角形的性质
相似三角形的对应角相等,即若两个三角形相似,则它们的对应角相等。
证明角度关系
通过构造相似三角形,利用相似三角形的性质来证明角度之间的相等或互补关系。例如,若要证明两个角相等,可以构造 包含这两个角的两个相似三角形,然后根据相似三角形的性质推导出这两个角相等。
感和立体感的景观效果。
案例分析:实际问题解决策略
01
案例一
利用相似三角形测量远处山的高度。通过测量山脚下的影子 长度和已知高度的物体,可以计算出山的高度。这种方法被 广泛应用于地理测量和户外探险等领域。
02 03
案例二
在建筑设计中,利用相似三角形原理实现建筑立面的视觉效 果优化。通过调整建筑立面的形状和比例,可以使其在视觉 上更加和谐和美观。这种方法被广泛应用于建筑设计、城市 规划和景观设计等领域。
性质
相似三角形的对应边成比例,对应 角相等,面积比等于相似比的平方。
判定方法
01
02
03
04
预备定理
平行于三角形一边的直线截其 他两边所在的直线,截得的三
角形与原三角形相似。
SSS相似
三边对应成比例,则两个三角 形相似。
SAS相似
两边对应成比例且夹角相等, 则两个三角形相似。
AA相似
两角对应相等,则两个三角形 相似。
在实际应用中,我们可以通过测量两个三角形的对应角来判断它们是否相似。
对应边成比例
相似三角形的对应边成比例, 即如果两个三角形相似,那么 它们的对应边之间的比值相等。

相似三角形ppt课件

相似三角形ppt课件
注意事项
角边判定定理要求一个三角形的两条边与另一个 三角形的两条边成比例,并且这两个三角形有一 个对应的角相等,如果这些条件不满足,则不能 判定两个三角形相似。
03
相似三角形的应用
在几何图形中的应用
解决几何证明问题
相似三角形常被用于证明各种几何关 系和定理,如勾股定理、毕达哥拉斯 定理等。
理解几何图形的性质
面积比等于相似比的平方
两个相似三角形的面积比等于它们的相似比的平方,即 (AB:DE)^2=(BC:EF)^2=(CA:FD)^2。
相似三角形的分类
根据用途分类
根据相似三角形在几何学中的应 用,可以将相似三角形分为标准 型、等腰型、直角型等类型。
根据形状分类
根据两个相似三角形的形状,可 以将它们分为锐角三角形、直角 三角形和钝角三角形。
△ABC∽△A'B'C'。
边边判定定理的证明
总结词
通过比较两个三角形的对应边,如果两个三角形有三组对应边成比例,则这两个三角形相 似。
详细描述
在两个三角形ABC和A'B'C'中,如果AB/A'B'=BC/B'C'=AC/A'C',则根据边边判定定理, △ABC∽△A'B'C'。
证明过程
首先,由于AB/A'B'=AC/A'C',根据交叉相乘性质,我们可以得到∠BAC=∠B'A'C'。再由 于BC/B'C'=BA/B'A',根据交叉相乘性质,我们可以得到∠ACB=∠A'C'B'。因此,根据 AA相似判定定理,△ABC∽△A'B'C'。

相似三角形的性质ppt课件

相似三角形的性质ppt课件
一般地,我们有: 相似三角形对应线段的比等于相似比.
新知讲解
探究
如图,△ABC ∽△A′B′C′,相似比为 k,它们对应周长的比
是多少? A
A'
B
C
B'
C'
新知讲解
因为 △ABC ∽△A'B'C',相似比为 k,那么
AB BC CA k, A'B' B'C ' C ' A'
因此 AB=k A'B',BC=kB'C',CA=kC'A', 从而
新知讲解
解:1
CD C ' D'
AB A' B '
,C 'D'
8 cm
2
CABC C A' B'C '
AB 1 20 A'B' 2 CA'B'C'
CA'B'C' =40 cm
3
SABC S A' B'C '
AB A' B'
2
,
1 4
SABC 64
SABC 16 cm2
∴BC∥AD,BC=AD.
∴△BEF∽△DAF. ∵BE= 1 EC,
2
∴BE∶DA=BE∶BC=1∶3.
∴△BEF的周长与△AFD的周长之比为1∶3. (2)由(1)可知△BEF与△AFD的相似比为 1
3
∴S△BEF∶S△AFD=1∶9. 又∵S△BEF=6 cm2,∴S△AFD=54 cm2.
课堂总结
∴ AE : EC=2:3, 则 AE : AC =2 : 5, ∴ S△ADE : S△ABC = 4 : 25,∴ S△ABC = 25.

相似三角形PPT课件

相似三角形PPT课件

THANKS
感谢观看
利用相似三角形的性质,通过已知三 角形的面积和相似比求解未知三角形 的面积。
通过构造相似三角形,使得已知三角 形和未知三角形分别对应相似三角形 的对应边和对应高,从而求解未知三 角形的面积。
对于三维几何体,可以利用相似三角 形的性质求解其体积。例如,对于两 个相似的棱锥,其体积之比等于其对 应边长之比的立方。
1 2
练习1
已知△ABC和△A'B'C'中,AB=6cm,BC=8cm, AC=10cm,A'B'=12cm,B'C'=16cm, A'C'=20cm。求证:△ABC∽△A'B'C'。
练习2
已知△ABC中,∠C=90°,CD⊥AB于D, AC=6cm,BC=8cm,求CD的长。
3
练习3
已知△ABC和△DEF中,∠A=∠D=90°,AB=AC, DE=4cm,DF=6cm。求证:△ABC∽△DEF并求 出它们的相似比。
05
拓展:全等三角形与相似 三角形关系
全等三角形定义及性质回顾
01
全等三角形的定义:两个三角形如果三边及三角分别对应相 等,则称这两个三角形为全等三角形。
02
全等三角形的性质
03
对应边相等;
04
对应角相等;
05
面积相等;
06
周长相等。
全等三角形与相似三角形联系和区别
联系
全等三角形是相似三角形的特例,即 相似比为1:1的情况;
项。
定理证明
通过构造相似三角形,利用相似 三角形的性质证明。
应用举例
求解直角三角形中的边长、角度 等问题。

25.5 相似三角形的性质课件(共24张PPT)

25.5 相似三角形的性质课件(共24张PPT)
小结1相似三角形的性质定理1:相似三角形对应高的比、对应中线的比、对应角平分线的比,都等于相似比.
例题示范
知识点2 相似三角形的性质定理2问题3 △ABC的周长和△A1B1C1的周长的比与它们的相似比有什么关系?请说明理由.
求证:相似三角形周长的比等于相似比.
证明:设△ABC∽△A1B1C1,相似比为k,
2.若△ABC∽△A′B′C′ ,它们的周长分别为60 cm和72 cm,且AB=15 cm,B′C′=24 cm,求BC,AC,A′B′,A′C′的长.
解:∵△ABC∽△A′B′C′ ,它们的周长分别为60 cm和72 cm, ∴ , ∵AB=15 cm,B′C′=24 cm, ∴BC=20 cm, AC=25 cm, A′B′=18 cm,A′C′=30 cm.
结论:相似三角形对应高的比等于相似比.
思考:把上图中的高改为中线、角平分线,那么它们对应中线的比,对应角平分线的比等于多少?问题2 图中△ABC和△A′B′C′相似,AD,A′D′分别为对应边上的中线,BE,B′E′分别为对应角的角平分线,那么它们之间有什么关系呢?
(2)已知:两个三角形相似比为k,即 .求证: .
问题引入
如图,△ABC∽△A′B′C′,相似比为k.AD与A'D',AE与A'E'分别为BC,B'C'边上的高和中线,AF与A'F'分别为∠BAC=∠B'A'C'的平分线.(1)AD和A'D'的比与相似比之间有怎样的关系?请说明理由.(2)AE和A'E'的比、AF和A'F'的比分别与相似比有怎样的关系?请说明理由.
第二十五章 图形的相似

《相似三角形的性质》PPT课件

《相似三角形的性质》PPT课件
《相似三角形的性质》PPT 课件
目录
• 相似三角形基本概念 • 相似三角形性质探究 • 相似三角形在几何证明中应用 • 相似三角形在解决实际问题中应用 • 拓展:全等三角形与相似三角形联系
与区别
01
相似三角形基本概念
定义及判定方法
定义
两个三角形如果它们的对应角相等,那 么这两个三角形相似。
AAA相似
01
利用相似三角形对应角相等 的性质,可以证明两个角相
等。
02
通过构造相似三角形,将待 证相等的两个角作为对应角 ,从而证明角度相等关系。
03
相似三角形中,若已知两角 对应相等,则第三角也必然 相等,这一性质可用于证明
复杂角度相等关系。
证明图形形状和大小关系
利用相似三角形形状相同的性质 ,可以证明两个图形形状相同。
01
04
对应角相等;
全等三角形的性质
02
05
面积相等;
对应边相等;
03
06
周长相等。
全等与相似关系探讨
联系 全等三角形是相似三角形的特例,即
相似比为1:1的情况;
全等和相似都涉及到两个三角形的形 状和大小关系。
区别
全等要求两个三角形完全重合,而相 似只要求形状相同,大小可以不同;
全等三角形的对应边和对应角都相等 ,而相似三角形只要求对应角相等, 对应边成比例。
02
相似三角形性质探究
对应角相等性质
01Biblioteka 0203性质描述
相似三角形的对应角相等 。
证明方法
通过三角形的相似定义和 角的对应关系进行证明。
应用举例
在几何问题中,利用相似 三角形的对应角相等性质 ,可以解决角度相关的问 题。

相似三角形的性质PPT通用课件

相似三角形的性质PPT通用课件
比例
相等
1、相似三角形对应边成____,对应角______.
2、相似三角形对应边上的高、对应边上的中线、
相似比
对应角平分线的比都等于________.
相似比
3、相似三角形周长的比等于________,
相似三角形面积的比等于______________.
当堂训练
1.已知△ABC∽△DEF,BG、EH分别是△ABC和 △DEF的
求它们的相似比. 1∶4
1∶4
(2) △ADE的周长︰△ABC的周长=_______.
A

SADE
.
(3)
_______
D
E
S
ABC
(4)
SADE
S四边形BCED

1
15
B
C
7、如图,在 ABCD中,若E是AB的中点,
1:2
则(1)∆AEF与∆CDF的相似比为______.
AE 1
线AD=40cm,要把它加工成正方形零件,使正方
形的一边在BC上,其余两个顶点分别在AB,AC上
(1)△ ASR与△ ABC相似吗?为什么?
(2)求正方形SPQR的面积。
A
S
B
P
E R
D
Q
C
A
例题解析
(1)△ASR与△ABC相似吗?为什么?
40
(2)求正方形PQRS的面积.
分析:(1) △ASR∽△ABC.理由是:
100厘米、40厘米
———————。
(2)它们的面积之和是58平方厘米,这
两个三角形的面积分别是——————
50平方厘米、8平方厘米
——。
(1)与(2)的相似比=______

相似三角形复习-ppt

相似三角形复习-ppt

相似三角形的性质
相似三角形对应边对应成比例,对应角相等。
相似三角形对应高线、角平分线、中线之比等于相似比,周长之比等于相似比,面积之比等于相似比的平方。
如图,DE∥BC,CD和BE相交于点O, AD:DB=2:3,则△DOE与△BOC的周长之比为 ,面积之比为 .
如图,在△ABC中,AD:DB=1:2,DE∥BC,若△ABC的面积为9,则四边形DBCE的面积为 .
不能用三点定型法确定相似三角形(要用等比代换或等积代换)
变式练习2
如图,▱ABCD中,M是AB上的一点,连接CM并延长交DA的延长线于P,交对角线BD于N,求证:CN²=MN•NP.
当用三点定型法确定的三角形不想似时,要用等比代换或作辅助线构造相似。
如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证:
△AED∽△CBM;
AE•CM=AC•CD.
拓展Байду номын сангаас伸
已知:如图,在梯形ABCD中,AD∥BC,AB=CD=3,点E在BD上,且满足BE•BD=9.求BC的长度。
反 思
谢谢大家 再见
汇报时间
汇报人姓名
精讲点拨
小结
证明等积式时,可以先将等积式变为比例式,确定要证明的相似三角形,然后求证。
有相等的边,有时通过换边来证明相似。
求证第二个问题时,一定要考虑第一个问题的结论。
变式练习1:如图,在△ABC中,已知∠A=90°,AD⊥BC于D,E为直角边AC的中点,过D,E作直线交AB的延长线于F.求证:
母子型
(四)一线三等角型(K子型) 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景
一线三直角型( K子型)

相似三角形的判定ppt

相似三角形的判定ppt

THANKS FOR WATCHING
感谢您的观看
两角对应相等,则两三角形相似。
总结相似三角形的判定方法及应用
• 两边对应成比例且夹角相等,则两三角形相似。
总结相似三角形的判定方法及应用
应用
在几何图形中,利用相似三角形可以求解线段长度、角度大小等问题。
在物理、工程等领域,相似三角形的应用也十分广泛,如利用相似三角 形测量高度、距离等。
展望相似三角形在数学领域的发展前景
需要注意的是,必须 是两个对应的角分别 相等,而不是任意两 个角相等。
此判定方法基于角的 相等性,无需考虑三 角形的边长。
两边成比例且夹角相等的两个三角形相似
如果两个三角形的两边成比例,并且 夹角相等,则这两个三角形相似。
需要注意的是,必须是两边成比例且 夹角相等,而不是任意两边和任意夹 角。
此判定方法同时考虑了边长和角度的 因素。
定义上的联系
相似三角形和全等三角形都是基于三角形的形状和大小进行比较的概念。全等 三角形是形状和大小都完全相同的三角形,而相似三角形则是形状相同但大小 不一定相同的三角形。
性质上的联系
相似三角形和全等三角形都具有一些共同的性质。例如,它们都遵循三角形的 内角和为180°的规则,以及对应角相等、对应边成比例等性质。
三边成比例的两个三角形相似
如果两个三角形的三边成比例,则这两 个三角形相似。
此判定方法仅考虑三角形的边长,无需 考虑角度。
需要注意的是,必须是三边成比例,而 不是任意两边或一边。同时,由于浮点 数计算的精度问题,在实际应用中需要 设定一定的误差范围来判断三边是否成
比例。
03 相似三角形的应用
测量高度和距离
求解角度问题

25.3 相似三角形课件(共18张PPT)

25.3 相似三角形课件(共18张PPT)
SSS, SAS, ASA, AAS
知识点1 相似三角形的有关概念
∠A=∠A',∠B=∠B',∠C=∠C',
如图,在△ABC和△A'B'C'中,如果
即△ABC与△A'B'C'相似.△ABC与△A'B'C'的相似比为k.
对应角相等、对应边成比例的的两个三角形叫做相似三角形.相似三角形对应边的比叫做它们的相似比.
新知引入
相似用符号“∽”表示,读作“相似于”.△ABC与△A'B'C'相似记作“△ABC∽△A'B'C'”,读作“△ABC相似于△A'B'C'”.
若表示为△ABC∽△DEF,一般A与D,B与E,C与F分别对应.
例题解析
例 如图,△AEF∽△ABC.(1)若AE=3,AB=5,EF=2.4,求BC的长.(2)求证:EF//BC.
解:∵DE⊥AC,BC⊥AC, ∴DE∥BC, ∴△ADE∽△ABC, ∴ , ∴ , ∴AD=7×55=385 cm, ∴梯子长AB=AD+BD=385+55=440 cm.
3.已知△ABC∽△ , ∠A=50°,∠B=95°,则∠ 等于( ) A.95° B.50° C.35° D.25°4. 若△ABC∽△ ,且AB=1, , ,则△ABC与△ 的相似比k为_____, △ 与△ABC的相似比 为______.
课堂小结
2.用平行线判定三角形相似的定理: 平行于三角形一边的直线和其他两边(或它们的延长线)相交,所截得的三角形与原三角形相似.
1.对应角相等、对应边成比例的两个三角形叫做相似三角形. 相似三角形对应边的比叫做它们的相似比.

相似三角形ppt教学课件完整版

相似三角形ppt教学课件完整版
在摄影测量学中,通过拍摄地面的照片,并利用射影几何的原理进行解析,可以精确地测量 出地面点的三维坐标,为地图制作和地形分析提供重要数据。
计算机视觉中的应用
在计算机视觉领域,射影几何被广泛应用于图像匹配、三维重建、摄像机标定等方面。通过 对图像进行射影变换和处理,可以实现图像的自动识别和场景的三维重建。
典型例题解析
解析
根据全等三角形的定义,两个三 角形如果三边分别相等,则这两 个三角形全等。因此,可以直接
得出△ABC≌△DEF。
2. 例2
已知两个相似三角形ABC和DEF, 其中
AB/DE=BC/EF=CA/FD=2/3, 求∠A和∠D的度数关系。
解析
根据相似三角形的性质,对应角 相等。因此,∠A=∠D。同时, 由于对应边成比例,可以得出两 个三角形的形状相同但大小不同。
对应角相等 面积相等
周长相等
相似与全等关系辨析
相似之处
都有对应边的关系
相似与全等关系辨析
不同之处
全等三角形可以完全重合,而相似三角形 不一定能完全重合
全等要求三边三角完全相等,相似只要求 对应边成比例、对应角相等
相似三角形可以有不同的形状和大小,只 要满足相似条件即可
水利工程中的水流分析
利用相似三角形的原理,可以模拟和分析水流在不同条件下的流速、 流量和水压等参数,为水利工程的设计和施工提供重要依据。
相似三角形与全等三角形关
04
系探讨
全等三角形定义及性质回顾
全等三角形的定义:两个三角形如果 三边及三角分别相等,则称这两个三
角形全等。
全等三角形的性质
对应边相等
相似三角形ppt教学 课件完整版
目录
• 相似三角形基本概念与性质 • 相似三角形在几何证明中的应用 • 相似三角形在解决实际问题中的应

相似三角形的性质一课件

相似三角形的性质一课件

角边相似
如果一个三角形的两个角与另一个三 角形的一对对应角相等,并且这两个 角的夹边成比例,则这两个三角形相 似。
如果两个三角形的三组对应边成比例 ,则这两个三角形相似。
性质与定理
对应角相等
相似三角形对应角相等,即 $angle A_1 = angle A_2, angle B_1 = angle B_2, angle C_1 = angle C_2$。
对应边成比例
如果两个三角形相似,则它们的对应边长之间存在一定的比例关系。
这个比例称为相似比,是判定两个三角形是否相似的重要依据。
对应边之间的比例关系可以用数学公式表示,即 a/b = c/d = ... = k,其中 a, b, c, d, ... 是对应边的长度,k 是相似比。
面积比等于相似比的平方
BIG DATA EMPOWERS TO CREATE A NEW ERA
相似三角形的性质一ppt课

• 相似三角形的定义 • 相似三角形的性质 • 相似三角形的应用 • 相似三角形的判定定理 • 相似三角形的性质定理 • 相似三角形的综合应用
目录
CONTENTS
01
相似三角形的定义
BIG DATA EMPOWERS TO CREATE A NEW
应用。
在数学竞赛中的应用
相似三角形是数学竞赛中常见的知识点之一,对于提高学生的数学竞赛 成绩有着重要的作用。
在数学竞赛中,相似三角形常常与其它知识点结合,形成综合性题目, 考察学生的数学综合素质。
掌握相似三角形的性质和判定方法,对于解决数学竞赛中的难题和压轴 题至关重要。
THANKS
感谢观看
04
相似三角形的判定定理
BIG DATA EMPOWERS TO CREATE A NEW

相似三角形的判定全ppt课件

相似三角形的判定全ppt课件

2024/1/27
5
相似三角形性质总结
对应边成比例
相似三角形的对应边之比等于相似比。
对应高、中线、角平分线成比例
相似三角形的对应高、中线、角平分线之 比也等于相似比。
周长比等于相似比
相似三角形的周长之比等于相似比。
2024/1/27
面积比等于相似比的平方
相似三角形的面积之比等于相似比的平方 。
6
02
相似三角形的判定全ppt课件
2024/1/27
1
目 录
2024/1/27
• 相似三角形基本概念及性质 • 判定方法一:两边成比例且夹角相等 • 判定方法二:三边成比例 • 判定方法三:直角三角形中斜边和一直角边成
比例 • 综合运用及拓展延伸 • 课堂小结与作业布置
2
01
相似三角形基本概念及性质
2024/1/27
判定方法一:两边成比例且夹角 相等
2024/1/27
7
定理内容阐述
01
02
03
定理描述
如果两个三角形有两边成 比例,并且夹角相等,则 这两个三角形相似。
2024/1/27
定理条件
两个三角形中,任意两边 长度之比等于另两边长度 之比,且这两边所夹的角 相等。
定理
8
18
05
综合运用及拓展延伸
2024/1/27
19
不同判定方法之间的联系与区别
角角角(AAA)相似
三个内角分别相等,则两个三角形相 似。此方法简单易行,但需注意AAA 相似不能推出边长成比例。
边角边(BAB)相似
两边成比例且夹角相等,则两个三角 形相似。此方法结合了边的长度和角 的大小,较为常用。

《相似三角形的性质和判定》PPT课件

《相似三角形的性质和判定》PPT课件

全等三角形是特殊的相似三角形,当相似比为1时性质探究
对应角相等
01
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似

02
性质
相似三角形的对应角相等,即 如果∠A = ∠A',∠B = ∠B',
则∠C = ∠C'。
03
示例
通过测量和比较两个三角形的 对应角度,可以判断它们是否
相似。
对应边成比例
03
定义
性质
示例
两个三角形如果它们的对应边成比例,则 称这两个三角形相似。
相似三角形的对应边成比例,即如果 AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
通过测量和比较两个三角形的对应边长, 可以判断它们是否相似。
面积比与边长比关系
01
平行线截割定理证明
平行线截割定理应用
在解决相似三角形问题时,可以利用 平行线截割定理来寻找相似三角形的 对应边。
通过相似三角形的性质,可以证明对 应线段之间的比例关系。
三角形中位线定理
三角形中位线定理内容
三角形的中位线平行于第三边,且等于第三边的一半。
三角形中位线定理证明
通过相似三角形的性质和平行线截割定理,可以证明三角形中位线 与第三边的关系。
01
更高层次相似三角形知识
02
相似多边形的性质和判定方 法
03
相似三角形与相似多边形之 间的关系和联系
拓展延伸:介绍更高层次相似三角形知识
• 相似三角形在几何变换中的应用,如平移、旋转、对 称等
拓展延伸:介绍更高层次相似三角形知识
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fra bibliotek相似三角形
E
E
F
M
F N
G
G
若G为BC中点,EG交AB于点F, 且EF:FG=2:3,
试求AF:FB的值.
添平行线构造相似三角形的基本图形。
基本图形2
“A”字型 当∠ADE= ∠C 时,
⊿ADE∽ ⊿ACB.
基本图形2
A F
B
C
添加一个条件使得⊿⊿ABCCFF∽∽⊿⊿ABBACC..
基本图形2
BD 即:
3
BA
m 13 m

3

13
4 5

m
4
解得: m 125 36
相似的基本图形
(1)
A
D
E
E
D
(2)
A
A (3)
DE
B
C
DE∥BC
A (4)
B
C
DE∥BC
C
(5)
BD ∠BAD=∠C
C
A
DB
∠ACB=90°,
AB2=BD·BC
CD⊥AB
B
C
E
(6)
D
A
C B ∠D=∠C
问题:
E的则、三EA角F、=形_B_相为5_似_顶_,点_ 则的C三E角=_形__和5中_.6以_寻数或_找学E_2、或基思1C本想2、型F为顶点
D
A
A
F
C
EE
F
C B
E
E
B
2.已知:D为BC上一点, ∠B= ∠C= ∠EDF=60°, BE=6 , CD=3 , CF=4 ,
则AF=___7____
A
相似
相似三角形
回顾与反思
判定两个三角形相似的方法:
1.定义:三角对应相等,三边对应成比例的两个三 角形相似。 2.平行三角形一边的直线和其他两边相交(或两边的延 长线),所构成的三角形与原三角形相似. 3.三边对应成比例的两个三角形相似。 4.两边对应成比例且夹角相等的两个三角形相似。
5. 两角对应相等的两个三角形相似。
用一用
y
PP
B(-3,0) Q O Q
tan∠ABC=
A
D
C(1,0) x
3 4
(1)当PQ∥AD时,⊿BPQ∽ ⊿BAD
则 BP BQ BA BD
即:
m 5

3 13 m 4
3 13
4
解得:m 25 9
有公共角∠B, “A”型相似
(2)当PQ⊥BD时,⊿BPQ∽ ⊿BDA
则 BP BQ
如图,在正方形ABCD中,E为BC上任意一点 (与B、C不重合)∠AEF=90°.观察图形:
((12))若△EA为BEBC与的△中E点CF,是连否结相AF似,图?中并有证哪明些你相的似结论。
三角形?△ABE∽ △ECF ∽ △AEF
A
D
A
D
F
B
E
C
F
B
E
C
A
△ABE∽ △ECF((2)1)点点EE为为BBCC上上任任意意一一点点,
A AA
当∠BCF= ∠A 时, ⊿BCF∽ ⊿BAC.
F FF
.O
BB
CC
(1) 则若⊿BCA=6C,FA∽F=5⊿,你AB能C求∽出⊿BFC的BF长吗?
(2) BC是圆O的切线,切点为C.
(3) 移动点A,使AC成为⊙O的直径,你还能 得到哪些结论?
BF=4
结论:1、⊿ACF∽ ⊿ABC∽ ⊿CBF
2、CD²=AD×BD BC²=BD×AB AC²=AD×AB
用一用
(1)请在x轴上找一点D,使得⊿BDA与⊿BAC相似 (不包含全等),并求出点D的坐标;
(2)在(1)的条件下,如果P、Q分别是BA、BD上 的动点,连结PQ,设BP=DQ=m,
问:是否存在这样的m,使得⊿BPQ与⊿BDA相似? 如存在,请求出m的值;若不存在,请说明理由。
yA
B(-3,0) O
tan∠ABC=
D
C(1,0) x
3
4
(1)∵⊿BDA∽⊿BAC
∴∠CAD=∠ABC
3
∴tan∠CAD=∠ABC= ∵BC=4
4
∴AC=BC·tan ∠ABC=3 ∴CD=AC·tan ∠CAD=3×
3
=
4
9 4
∴OD=OC+CD=1+ 9 = 13 44
∴D( 13 ,0) 4
E
(1)试确定CP=3时点E的位置; B
PH C
(2)若设CP=x,BE=y,试写出y关 于自过变D量作xD的H⊥函B数C于关H系,式,并求出自 变量由x的题取意值,范得围CH.=3,
y 3又∴从而CPxP与11E=03H与1x2重B2友重合情,合23提x醒:158要善于构造基本图形,对你
回顾与反思
相似三角形的性质:
1.相似三角形对应角相等,对应边成比例。
2 .相似三角形对应高线比,对应中线比,对应角平分线 比等于相似比。 3.相似三角形周长比等于相似比,面积比等于相 似比的平方。
练一练
基本图形1
E M
DN
平行法
M
N
H
过D作DH∥EC交BC延长线于点H (1)试找出图中的相似三角形?⊿ADE∽ ⊿ABC ∽ ⊿DBH (2)若AE:AC=1:2,则AC:DH=__2_:_3___; 若⊿ABC的周长为4,则⊿BDH的周长为__6___. 若⊿ABC的面积为4,则⊿BDH的面积为___9__.
E F
B
D
C
如图,已知抛物线与x轴交于A、B
X=4
两点,与y轴交于C点,且A(2,0),C(0,3) y (1)求此抛物线的解析式;
(2)抛物线上有一点P,满足 ∠PBC=90°,求点P的坐标; (3)在(2)的条件下,问在y轴
3
C
2
OA
P
6
B
Qx
上是否存在点E,使得以A、O、E
为顶点的三角形与⊿PBC相似?若
若若∠∠BB==∠∠CC==α6,0∠°A, EF=
F ∠∠CA,则EF△= A∠BEC,与则△AEBCEF与
的△关E系C还F的成关立系吗还?成立吗?
说明理由
B
E
C
A
A
A
FF F
α66α00°°
BBB
αα6600°°
EEE
6α6α00°°
CCC
变1式.矩:形.直AB角C梯D中形,AB把CDFA中沿,∠ABF=对9折0°,,C使BD=与14, CCFB=4边, 上AB的=点6, EC重F∥合A,B若,在A善注边D于意=C在分1B0复类上, A杂 讨找B图 论一=形 的8点, E,使以
的解题会起到事半功倍的效果!
存在,求出点E的坐标;若不存在,
请说明理由.
相似基本图形 的运用
方程思想 整体思想 转化思想 分类思想
已知相似图形直接求 构造相似图形间接求
学会从复杂图形中分解出基本图形
A
D
例1如图,梯形ABCD中,AD∥BC,
∠ABC=90°,AD=9,BC=12,AB=10,
在线段BC上任取一点P,作射线 PE⊥PD,与线段AB交于点E.
相关文档
最新文档