时间序列中的ARMA模型

合集下载

时间序列arma模型建立的流程

时间序列arma模型建立的流程

时间序列arma模型建立的流程时间序列ARMA模型建立的流程1. 引言时间序列分析是一种对时间序列数据进行建模、预测和分析的统计方法。

ARMA模型是一种常用的时间序列模型,它可以描述时间序列数据中的自相关和移动平均关系。

本文将从数据准备、模型选择、参数估计和模型诊断等方面,介绍建立时间序列ARMA模型的完整流程。

2. 数据准备1.收集时间序列数据,确保数据具有一定的观测频率,并且包含足够的历史观测值。

2.对数据进行可视化分析,绘制时间序列图和自相关图,初步了解数据的趋势和周期性。

3. 模型选择1.确定时间序列数据是否平稳。

对于非平稳数据,需要进行差分运算,直到得到平稳的时间序列数据。

2.根据平稳时间序列数据的自相关和偏自相关图,选择合适的ARMA模型阶数。

通过观察自相关图的截尾性和偏自相关图的截尾性,确定ARMA(p, q)模型中的p和q。

4. 参数估计1.通过最大似然估计或最小二乘法,估计ARMA模型中的参数。

最大似然估计假定模型误差服从正态分布,而最小二乘法假定误差服从零均值正态分布。

2.通过估计的参数,建立ARMA模型。

5. 模型诊断1.对残差进行自相关和偏自相关分析,验证模型的残差序列是否为纯随机序列,即不存在自相关和异方差性。

2.对模型的残差序列进行Ljung-Box检验,验证残差的独立性。

3.对模型的残差序列进行正态性检验,验证模型的残差是否符合正态分布。

4.对模型的残差序列进行异方差性检验,验证模型的残差是否存在异方差现象。

6. 模型评估和预测1.使用信息准则(如AIC、BIC)评价模型的拟合程度。

较小的AIC和BIC值表示模型的拟合程度较好。

2.使用估计的ARMA模型对未来的数据进行预测,得到预测值和置信区间。

7. 结论建立时间序列ARMA模型的流程包括数据准备、模型选择、参数估计和模型诊断等环节。

通过该流程,我们能够对时间序列数据进行建模和预测,为相关领域的决策提供科学依据。

以上为时间序列ARMA模型建立的流程,希望对读者有所帮助。

时间序列中的ARMA模型

时间序列中的ARMA模型
件期望是相等旳,若设为u,则得到 :
c u=
1 (1 2 ... p)
旳无条
7
ARIMA模型旳概念
Yt-u=1(Yt-1-u)+ 2(Yt-2-u)+...+p(Yt-p-u)+vt
0=1 1+ 2 2+...+p p+ 2 1=1 0+ 2 1+...+ p p-1
……
p=1 p-1+ 2 p-2+...+ p 0
(1
2
1
1≤j≤22q ... q2 )
0 j>q
j>q时,ACF(j)=0,此现象为截尾,是MA(q)过程旳一种特征
如下图:
18
ARMA模型旳辨认
MA(2)过程
yt =0.5ut-1 0.3ut2 ut
19
ARMA模型旳辨认
⑵ AR(p)过程旳偏自有关函数
j p 时,偏自有关函数旳取值不为0 j>q 时,偏自有关函数旳取值为0 AR(p)过程旳偏自有关函数p阶截尾 如下图:
32
ARMA模型旳预测
二. 基于MA过程旳预测
过程 结论:
MA (2) 过程仅有2期旳记忆力
33
ARMA模型旳预测
三. 基于ARMA过程旳预测
结合对AR过程和MA过程进行预测 ARMA模型一般用于短期预测
34
五、实例:ARMA模型在金融数 据中旳应用
数据: 1991年1月到2023年1月旳我国货币供
3
ARIMA模型旳概念
2.MA(q)过程旳特征
1. E(Yt)=u
2.
var(Yt)
(1
2

arma模型(自回归移动平均)数学公式

arma模型(自回归移动平均)数学公式

arma模型(自回归移动平均)数学公式ARMA模型是一种常用的时间序列分析方法,它结合了自回归(AR)和移动平均(MA)模型,用于描述时间序列数据的动态特征。

在ARMA模型中,每个观测值被认为是过去观测值的线性组合,其中包括自回归项和移动平均项。

ARMA模型的数学公式可以表示为:y_t = c + ϕ_1*y_(t-1) + ϕ_2*y_(t-2) + ... + ϕ_p*y_(t-p) + ε_t - θ_1*ε_(t-1) - θ_2*ε_(t-2) - ... - θ_q*ε_(t-q)其中,y_t表示时间序列的观测值,c为常数,ϕ_1, ϕ_2, ..., ϕ_p 为自回归系数,ε_t为满足白噪声条件的随机误差,θ_1, θ_2, ..., θ_q为移动平均系数。

ARMA模型的阶数分别为p和q,分别表示自回归项和移动平均项的阶数。

ARMA模型的核心思想是利用过去观测值的线性组合来预测未来观测值。

自回归项描述了当前观测值与过去观测值之间的线性关系,移动平均项描述了当前观测值与过去误差项之间的线性关系。

通过调整自回归系数和移动平均系数的取值,我们可以得到不同的ARMA模型,从而适应不同时间序列数据的特点。

ARMA模型的建立可以通过多种方法,其中一种常用的方法是最大似然估计。

该方法通过最大化观测数据出现的概率来确定模型的参数。

具体而言,我们需要估计自回归系数、移动平均系数和误差项的方差。

通过最大似然估计,我们可以得到最优的参数估计值,从而建立起准确的ARMA模型。

ARMA模型在时间序列分析中具有广泛的应用。

首先,ARMA模型可以用于时间序列数据的预测和预测不确定性的度量。

通过拟合ARMA模型,我们可以根据过去观测值来预测未来观测值,并得到相应的置信区间。

其次,ARMA模型可以用于时间序列数据的平滑和去除季节性因素。

通过去除ARMA模型的季节性分量,我们可以得到更平滑的时间序列数据,从而更好地分析其长期趋势。

ARMA模型

ARMA模型
随机项 ut 是相互独立的白噪声序列,且服从均值为0、
方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0

ARMAARIMA模型介绍及案例分析

ARMAARIMA模型介绍及案例分析

ARMAARIMA模型介绍及案例分析AR、MA和ARIMA是时间序列分析中常见的模型,用于分析和预测时间序列数据的特征和趋势。

下面将对这三种模型进行介绍,并提供一个案例分析来展示它们的应用。

自回归模型(AR)是一种基于过去的观测值来预测未来观测值的模型。

它基于一个假设:未来的观测值可以由过去的观测值的线性组合来表示。

AR模型的一般形式可以表示为:y_t=c+ϕ_1*y_(t-1)+ϕ_2*y_(t-2)+...+ϕ_p*y_(t-p)+ε_t其中,y_t表示时间t的观测值,c是常数项,ϕ_1至ϕ_p是自回归系数,p是自回归阶数,ε_t是误差项。

AR模型的关键是确定自回归阶数p和自回归系数ϕ。

移动平均模型(MA)是一种基于过去的误差项来预测未来观测值的模型。

它基于一个假设:未来的观测值的误差项可以由过去的误差项的线性组合来表示。

MA模型的一般形式可以表示为:y_t=c+ε_t+θ_1*ε_(t-1)+θ_2*ε_(t-2)+...+θ_q*ε_(t-q)其中,y_t表示时间t的观测值,c是常数项,ε_t是误差项,θ_1至θ_q是移动平均系数,q是移动平均阶数。

MA模型的关键是确定移动平均阶数q和移动平均系数θ。

自回归移动平均模型(ARIMA)结合了AR和MA模型的特点,同时考虑了时间序列数据的趋势性。

ARIMA模型一般形式可以表示为:y_t=c+ϕ_1*y_(t-1)+ϕ_2*y_(t-2)+...+ϕ_p*y_(t-p)+ε_t+θ_1*ε_(t-1)+θ_2*ε_(t-2)+...+θ_q*ε_(t-q)其中,y_t表示时间t的观测值,c是常数项,ϕ_1至ϕ_p是自回归系数,p是自回归阶数,ε_t是误差项,θ_1至θ_q是移动平均系数,q是移动平均阶数。

ARIMA模型的关键是确定自回归阶数p、移动平均阶数q和相关系数ϕ和θ。

下面举一个电力消耗预测的案例来展示AR、MA和ARIMA模型的应用:假设有一段时间内的电力消耗数据,我们想要用AR、MA和ARIMA模型来预测未来一段时间内的电力消耗。

arma模型的数学表达式

arma模型的数学表达式

arma模型的数学表达式摘要:1.ARMA 模型的概述2.ARMA 模型的数学表达式3.ARMA 模型的应用正文:一、ARMA 模型的概述自回归滑动平均模型(ARMA)是一种常用的时间序列分析方法,主要用于拟合和预测具有线性趋势的时间序列数据。

ARMA 模型是由自回归模型(AR)和滑动平均模型(MA)组合而成的,可以同时对时间序列数据中的长期依赖关系和短期依赖关系进行建模。

二、ARMA 模型的数学表达式ARMA 模型的数学表达式分为两个部分:自回归部分(AR)和滑动平均部分(MA)。

1.自回归部分(AR)自回归模型主要描述时间序列数据中的长期依赖关系,其数学表达式为:X_t = c + Φ1X_{t-1} + Φ2X_{t-2} +...+ ΦpX_{t-p} + ε_t其中,X_t 表示时间序列数据在t 时刻的取值,c 为常数项,Φ1、Φ2、...、Φp 为自回归系数,ε_t 为误差项。

2.滑动平均部分(MA)滑动平均模型主要描述时间序列数据中的短期依赖关系,其数学表达式为:X_t = μ+ θ1ε_{t-1} + θ2ε_{t-2} +...+ θqε_{t-q}其中,X_t 表示时间序列数据在t 时刻的取值,μ为常数项,θ1、θ2、...、θq 为滑动平均系数,ε_{t-1}、ε_{t-2}、...、ε_{t-q}为误差项。

将自回归部分和滑动平均部分相结合,即可得到ARMA 模型的数学表达式:X_t = c + Φ1X_{t-1} + Φ2X_{t-2} +...+ ΦpX_{t-p} + μ+ θ1ε_{t-1} + θ2ε_{t-2} +...+ θqε_{t-q}其中,c、μ为常数项,Φ1、Φ2、...、Φp、θ1、θ2、...、θq 分别为自回归系数和滑动平均系数,ε_t、ε_{t-1}、ε_{t-2}、...、ε_{t-q}为误差项。

三、ARMA 模型的应用ARMA 模型广泛应用于金融、经济学、气象学等领域的时间序列数据分析和预测。

ARMA模型介绍

ARMA模型介绍

ARMA模型介绍ARMA模型(Autoregressive Moving Average model)是时间序列分析中常用的一种模型,用于描述和预测随时间变化的数据。

ARMA模型结合了自回归(AR)和移动平均(MA)两种模型的特点,可以较好地描述时间序列数据的变化趋势。

ARMA模型的核心思想是:当前时刻的观测值可以通过历史观测值和随机误差的线性组合来表示。

具体地说,AR部分考虑了当前时刻和过去几个时刻的观测值之间的关系,而MA部分则考虑了当前时刻和过去几个时刻的随机误差之间的关系。

在AR模型中,当前时刻的观测值与过去几个时刻的观测值之间存在线性关系。

AR模型的阶数(p)表示过去几个时刻的观测值被考虑进来。

对于AR(p)模型,数学表达式如下:yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et其中,yt表示当前时刻的观测值,c表示常数项,φ1, φ2, ... ,φp表示对应的回归系数,et表示当前时刻的随机误差。

在MA模型中,当前时刻的观测值与过去几个时刻的随机误差之间存在线性关系。

MA模型的阶数(q)表示过去几个时刻的随机误差被考虑进来。

对于MA(q)模型,数学表达式如下:yt = c + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-q其中,yt表示当前时刻的观测值,c表示常数项,θ1, θ2, ... ,θq表示对应的回归系数,et表示当前时刻的随机误差。

yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-qARMA模型可以用于时间序列的拟合和预测。

通过将模型与已有数据进行拟合,可以得到模型的参数估计值。

然后,利用这些参数估计值,可以预测未来的观测值。

ARMA模型适用于没有明显趋势和季节性的时间序列数据。

平稳时间序列分析-ARMA模型

平稳时间序列分析-ARMA模型

1 0 1 2
所以,平稳AR(2)模型的协方差函数递推公式为
0
1 2 (1 2 )(1 1 2 )(1 1
2
)
2
1
1 0 1 2
k
1 k1 2 k2,k
2
4、自相关系数
(1)自相关系数的定义:
k
k 0
特别
0 1
(2)平稳AR(P)模型的自相关系数递推公式:
k 1k 1 2 k 2 p k p
例3.5:— (3)xt xt1 0.5xt2 t
自相关系数呈现出“伪周期”性
例3.5:— (4)xt xt1 0.5xt2 t
自相关系数不规则衰减
6、偏自相关函数
自相关函数ACF(k)给出了Xt与Xt-k的总体 相关性,但总体相关性可能掩盖了变量间完全 不同的相关关系。
例如,在AR(1) 中,Xt与Xt-2间有相关性可 能主要是由于它们各自与Xt-1间的相关性带来 的:
对于非中心化序列
xt 0 1xt1 2 xt2
p xt p t
作变换
1 1
0
p
yt xt
则原序列即化为中心化序列
yt 1 yt1 2 yt2 p yt p t
所以,以后我们重点讨论中心化时间序列。
AR模型的算子表示
令 (B) 11B 2B2 p B p
则 AR( p) 模型可表示为
平稳AR(1)模型的传递形式为
xt
t 1 1B
i0
(1B)i t
1i ti
i0
Green函数为 Gj 1 j , j 0,1,
平稳AR(1)模型的方差为
Var(xt )
G2jVar(t )
j0

如何建立ARMA和ARMA模型如何进行模型的拟合与选择

如何建立ARMA和ARMA模型如何进行模型的拟合与选择

如何建立ARMA和ARMA模型如何进行模型的拟合与选择如何建立ARMA模型及进行模型的拟合与选择ARMA模型(自回归滑动平均模型)是一种常用的时间序列模型,可以帮助我们对数据进行预测和分析。

本文将介绍如何建立ARMA模型以及进行模型的拟合与选择。

一、ARMA模型的介绍ARMA模型是一种线性平稳时间序列模型,由自回归部分(AR)和滑动平均部分(MA)组成。

AR部分使用过去时间点的观测值作为自变量进行预测,MA部分使用过去时间点的误差项作为自变量进行预测。

ARMA模型的最一般形式为ARMA(p, q),其中p代表AR部分的阶数,q代表MA部分的阶数。

二、建立ARMA模型的步骤1. 检验时间序列的平稳性ARMA模型要求时间序列是平稳的,即均值和方差保持不变。

可以通过绘制时间序列的图形、计算移动平均和自相关函数等方法来检验平稳性。

若发现非平稳性,则需要进行差分处理,直到得到平稳序列。

2. 确定模型的阶数通过观察自相关图(ACF)和偏自相关图(PACF),可以确定AR部分和MA部分的阶数。

ACF反映了序列与其滞后之间的关系,PACF则消除了中间滞后的干扰,更准确地显示滞后与序列之间的关系。

根据图形上截尾的特点,可以确定合适的阶数。

3. 估计模型参数利用最大似然估计或解方程组等方法,对ARMA模型进行参数估计。

最大似然估计是大多数情况下的首选方法,它通过最大化样本的对数似然函数,寻找最适合数据的参数估计值。

4. 模型检验和诊断对估计得到的模型进行检验和诊断,主要包括残差的自相关性检验、白噪声检验、模型拟合优度检验等。

如果模型不符合要求,需要重新调整模型的阶数或其他参数。

三、模型拟合与选择的方法1. 拟合优度准则模型的拟合优度准则可以用来衡量模型的优劣程度。

常见的拟合优度准则包括AIC(赤池信息准则)、BIC(贝叶斯信息准则)等。

这些准则基于模型的似然函数和模型参数的数量,从而在模型选择时提供一个客观的评估指标。

ARMA模型

ARMA模型

ARMA模型ARMA模型概述ARMA 模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。

在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。

ARMA模型三种基本形式[1]1.自回归模型(AR:Auto-regressive);自回归模型AR(p):如果时间序列y t满足其中εt是独立同分布的随机变量序列,且满足:E(εt) = 0则称时间序列为y t服从p阶的自回归模型。

或者记为φ(B)y t = εt。

自回归模型的平稳条件:滞后算子多项式的根均在单位圆外,即φ(B) = 0的根大于1。

2.移动平均模型(MA:Moving-Average)移动平均模型MA(q):如果时间序列y t满足则称时间序列为y t服从q阶移动平均模型;移动平均模型平稳条件:任何条件下都平稳。

3.混合模型(ARMA:Auto-regressive Moving-Average)ARMA(p,q)模型:如果时间序列y t满足:则称时间序列为y t服从(p,q)阶自回归滑动平均混合模型。

或者记为φ(B)y t = θ(B)εt 特殊情况:q=0,模型即为AR(p),p=0,模型即为MA(q),ARMA模型的基本原理将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。

一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析,其中Y是预测对象的观测值,e为误差。

作为预测对象Yt受到自身变化的影响,其规律可由下式体现,误差项在不同时期具有依存关系,由下式表示,由此,获得ARMA模型表达式:。

时间序列分析中的自回归移动平均模型研究论文素材

时间序列分析中的自回归移动平均模型研究论文素材

时间序列分析中的自回归移动平均模型研究论文素材自回归移动平均模型(ARMA)是一种常用的时间序列分析方法,被广泛应用于经济、金融和社会科学等领域。

本文旨在探讨ARMA模型的研究素材,包括相关理论、应用案例和计算方法等方面的内容。

以下是对ARMA模型的研究素材的详细讨论。

一、ARMA模型的理论基础ARMA模型是自回归模型(AR)和移动平均模型(MA)的结合,它基于两个主要的假设:一是时间序列的值与过去的值相关,即自回归项;二是时间序列的值与随机误差项相关,即移动平均项。

ARMA 模型的数学表达式可表示为:\[Y_t = c + \varphi_1Y_{t-1} + \varphi_2Y_{t-2} + \ldots +\varphi_pY_{t-p} + \varepsilon_t - \theta_1\varepsilon_{t-1} -\theta_2\varepsilon_{t-2} - \ldots - \theta_q\varepsilon_{t-q}\]其中,\(Y_t\)表示时间序列的值,\(c\)表示截距,\(\varphi_i\)和\(\theta_i\)表示自回归系数和移动平均系数,\(\varepsilon_t\)表示白噪声误差项。

二、ARMA模型的应用案例ARMA模型在实际应用中具有广泛的用途。

以下是一些典型的ARMA模型应用案例:1. 股票价格预测ARMA模型可以用于预测股票价格的走势。

通过对历史股票价格数据进行ARMA模型的参数估计,可以预测未来一段时间内的股票价格变化趋势,为投资者提供决策参考。

2. 经济数据分析ARMA模型可以用于分析经济数据的周期性和趋势性。

通过对经济指标的ARMA建模,可以揭示经济变量之间的关系,为宏观经济政策的制定提供依据。

3. 疫情传播模型ARMA模型可以用于建立疫情传播模型,对疫情的发展趋势进行预测。

通过对病例数、传染率等数据进行ARMA建模,可以评估疫情的爆发和扩散情况,为疫情防控提供科学依据。

ARMA算法整理

ARMA算法整理

ARMA算法整理ARMA(自回归移动平均模型)算法是时间序列分析中经典的预测模型之一,它通过分析和拟合时间序列数据的自回归和移动平均部分,来预测未来的观测值。

ARMA算法整理如下。

1.自回归模型自回归模型是根据过去观测值的线性组合来预测未来观测值。

AR(p)模型中的p表示模型中包含p个滞后项,模型的公式如下:Y_t=c+Σ(φ_i*Y_t-i)+ε_t其中,Y_t是时间序列的观测值,c是常数,φ_i是自回归系数,ε_t是误差项。

2.移动平均模型移动平均模型是根据过去观测值的线性组合来预测未来观测值,与自回归模型不同的是,移动平均模型使用的是滞后项的误差项的线性组合。

MA(q)模型中的q表示模型中包含q个滞后误差项,模型的公式如下:Y_t=μ+Σ(θ_i*ε_t-i)+ε_t其中,Y_t是时间序列的观测值,μ是常数,θ_i是移动平均系数,ε_t是误差项。

3.自回归移动平均模型自回归移动平均模型(ARMA)是自回归模型和移动平均模型的结合,它同时利用了过去观测值和滞后误差项来预测未来观测值。

ARMA(p,q)模型中,p表示自回归模型中的滞后项数,q表示移动平均模型中的滞后误差项数,模型的公式如下:Y_t=c+Σ(φ_i*Y_t-i)+Σ(θ_i*ε_t-i)+ε_t其中,Y_t是时间序列的观测值,c是常数,φ_i是自回归系数,θ_i是移动平均系数,ε_t是误差项。

4.参数估计与模型识别ARMA模型的参数估计可以通过最大似然法或最小二乘法来进行。

而模型的选择和识别可以通过观察ACF(自相关函数)和PACF(偏自相关函数)的表现来进行,通常,ACF截尾于一些延迟阶数p,而PACF截尾于一些延迟阶数q,这时可以选择ARMA(p,q)模型。

5.模型拟合与预测一旦选择了合适的ARMA模型,可以对时间序列数据进行模型拟合和预测。

拟合过程中会估计出模型的参数,然后使用估计的参数进行预测。

预测的结果可以用于短期预测和长期趋势分析。

经济学实证研究中的时间序列分析方法比较

经济学实证研究中的时间序列分析方法比较

经济学实证研究中的时间序列分析方法比较时间序列分析是经济学实证研究中一种常用的方法,它对经济数据的时间变化进行建模和预测。

然而,由于经济学数据的特殊性和复杂性,选择合适的时间序列分析方法至关重要。

本文将比较几种常见的时间序列分析方法,包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)、广义自回归条件异方差模型(GARCH)、ARIMA模型和向量自回归模型(VAR)。

ARMA模型是最基本的时间序列分析方法之一。

它假设数据的未来观测值是过去观测值的线性组合,同时考虑了残差项的随机性。

ARMA模型适用于平稳时间序列数据,其主要优点是简单易懂、计算效率高。

然而,ARMA模型无法应对非平稳时间序列数据和异方差性的存在。

ARCH模型是针对ARMA模型的不足提出的改进方法,它考虑了数据的条件异方差性。

ARCH模型假设数据的条件方差是过去观测误差的加权和,可用于对金融市场波动性进行建模。

然而,ARCH模型无法处理高度异方差的数据,且对时间序列结构的假设限制较多。

GARCH模型是ARCH模型的扩展,考虑了条件异方差和波动性的长期记忆。

GARCH模型在金融领域得到广泛应用,能够更好地对金融市场的波动进行建模。

然而,GARCH模型对参数估计的要求较高,对数据的拟合效果较为敏感。

ARIMA模型是一种广泛应用于短期时间序列预测的方法,包括自回归、差分和移动平均三个部分。

ARIMA模型能够适应一定程度的非平稳数据,并考虑了序列的趋势和季节性变化。

然而,ARIMA模型对数据具有一定的处理要求,在应用时需要仔细选择阶数和滞后期。

VAR模型是多变量时间序列分析的方法,适用于多个相关变量之间的关系分析与预测。

VAR模型的优点在于能够捕捉不同变量之间的动态联动关系,可以考虑更多的信息。

然而,VAR模型对变量之间的相关性和滞后期的选择有一定要求,模型的估计和解释较为复杂。

综上所述,经济学实证研究中的时间序列分析方法有多种选择,每种方法都有其适用的场景和局限性。

自回归滑动平均模型

自回归滑动平均模型

自回归滑动平均模型自回归滑动平均模型(ARMA)是一种常用的时间序列模型,用于预测未来值的方法。

它结合了自回归模型(AR)和滑动平均模型(MA),能够更好地捕捉时间序列数据的特征。

自回归模型是基于过去的观察值来预测未来值的模型。

它假设未来值和过去值之间存在相关性,即当前值与之前的若干值相关联。

自回归模型将过去的观察值作为自变量,当前值作为因变量,通过调整自变量系数来预测未来值。

滑动平均模型是通过给定的窗口大小,在当前值与其前面若干值的线性组合的基础上,对未来值进行预测的模型。

滑动平均模型认为当前值的变动由之前几个值的加权平均引起,权重通过最小化预测误差来确定。

ARMA模型结合了自回归模型和滑动平均模型的优点,既可以捕捉时间序列数据的历史趋势,也可以考虑数据的随机波动。

ARMA模型的一般形式为ARMA(p,q),其中p是自回归模型的阶数,q是滑动平均模型的阶数。

使用ARMA模型进行预测时,首先需要确定模型的阶数。

可以通过观察自相关函数(ACF)和偏自相关函数(PACF)来确定。

ACF和PACF可以展现数据的相关性和延迟效应,根据它们的曲线图可以估计出ARMA模型的阶数。

确定了模型的阶数后,就可以使用最小二乘法或极大似然法来估计模型的系数。

然后,可以利用估计出的系数进行模型的拟合和预测。

如果模型的残差序列与随机序列相似,说明模型的预测效果较好。

总之,自回归滑动平均模型是一种常用的时间序列预测方法,它综合考虑了过去观察值的相关性和随机波动,可以较好地捕捉时间序列数据的特征。

但在使用ARMA模型进行预测时,需要注意选择适当的阶数,并根据模型的残差序列来评估预测效果。

自回归滑动平均模型(ARMA)是时间序列分析中的一种重要工具,常用于预测未来的数值或观测序列。

该模型结合了自回归(AR)和滑动平均(MA)两种模型的优点,既能考虑序列的历史信息,又能捕捉随机波动的特征,使得预测结果更加准确和可靠。

在ARMA模型中,自回归(AR)部分用于描述当前值与历史值之间的相关性,滑动平均(MA)部分用于描述当前值与误差(即残差)之间的相关性。

时间序列ARMA模型

时间序列ARMA模型

ARMA (p,q )时间序列模型1、 ARMA 模型的构建:①AIC 定阶准则:选p , q,使得2^min()ln 2(1)AIC n p q εσ=+++ (1)其中:n 是样本容量;2^εσ是2εσ的估计,与p , q 有关。

若当^^,p p q q ==时, 式(1)达到最小值,则认为序列是ARMA (^,p ^q ) 当ARMA (^,p ^q )序列含有未知参数μ时,模型为()()(),t t B X B ϕμθε-= (2)这时应选取p,q ,使得2^min()ln 2(2)AIC n p q εσ=+++ (3)②ARMA 模型的参数估计一般使用MATLAB 工具箱给出相关参数估计。

方法有有炬估计、逆函数估计、最小二乘法、最大似然估计等。

③ARMA 模型的2χ检验若拟合模型的残差记为^t ε,即t ε的估计值。

记^^12^1,1,2,,,n k tt kt k n tt k L εεηε-+====∑∑ (4)则2χ检验统计量是221(2)Lk k n n n kηχ==+-∑(5)L 是^t ε自相关函数的拖尾数。

检验的假设是0:0,k H ρ=当k L ≤时; 1:H 对某些,0k k L ρ≤≠。

在0H 成立时,若样本容量n 充分大,2χ近似于2()L r χ-分布,其中r 是估计的模型参数个数。

2χ检验法:给定显著性水平α,查表的上α分位数2()L r αχ-,当22()L αχχ≥时拒绝0H ,认为t ε非白噪声,模型检验未通过;而当22()L r αχχ≤-时,接受0H ,认为t ε是白噪声,模型通过检验。

2、 ARMA (p,q )序列的预报时间序列的m 步预报,是根据1{,,}k k X X - 的取值对未来k+m 时刻的随机变量k m X +(m>0)做出估计。

估计量记作1,,k k X X - 的线性组合。

^^^^12()(1)(2)(),.k k k k p X m X m X m X m p m p ϕϕϕ=-+-++-> (6)计算递推式为:^1112^^212^^^^121^^^^12(1),(2)(1),()(1)(2)(1),()(1)(2)(),.k k k k p p k k k k p p k k k k k p p k k k k p X X X X X X X X X p X p X p X X X m X m X m X m p m p ϕϕϕϕϕϕϕϕϕϕϕϕϕ--+-+-=+++=+++=-+-+++=-+-++->(7)关于MA (q )序列{,0,1,2,}t X t =±± 的预报,有^()0,.k X m m q =>因此,只需讨论^(),1,2,,k X m m q = 。

时间序列--ARMA模型的特性

时间序列--ARMA模型的特性

j0
i 1
所以,齐次方程解是由衰减指数项、多项式、衰 减正弦项,以及这些函数旳组合混合生成旳。
上述过程中计算Gi 并不方便,通常通过解方程 n 1n1 2n2 ...n 0 得到其根为:i,i 1,2,...,n 。 由于 n 1n1 2n2 ...n 0 的根与 11B 2B2 nBn 0 的根互为倒数,因此 i Gi 。
k期滞后协方差为:
k
E( X tK (1 X t1
2 X t2
L n Xtn
t
))
1 k1 2 k2 L n k n
从而有自有关函数 :
k 1k1 2k2 ... n kn
可见,不论k有多大, k旳计算均与其1到n阶滞后 旳自有关函数有关,所以呈拖尾状。
假如AR(n)是平稳旳,则|k|递减且趋于零。
则 (B)G(B) (B)

* j
j
0,
,
0 jn jn
* l
0l,,
0lm lm
则 (B)G(B) (B) 化为
* j
B
j
Gk
Bk
l*Bl
j0
k0
l0
比较等式两边B旳同次幂旳系数,可得
l
*jGl j
* l
,
l
1, 2,3,...
j0
由上式,格林函数可从 l 1 开始依次递推算出。
二、ARMA模型旳逆函数
• ARMA(n,m)模型逆函数通用解法 对于ARMA(n,m)模型旳逆函数求解模型格林函数
求解措施相同。

I (B) 1 I j Xt j , I0 1
j 1
则平稳序列 Xt旳逆转形式 at Xt I j Xt可j 表达为 j 1

马尔可夫区制转移arma模型

马尔可夫区制转移arma模型

马尔可夫区制转移arma模型马尔可夫区制转移(ARMA)模型是一种经济和金融时间序列分析常用的模型。

它的基本思想是通过分析当前时间点和过去时间点的关系,来预测未来时间点的值。

ARMA模型的构建基于两个关键概念:自回归(AR)和移动平均(MA)。

马尔可夫区制转移(AR)模型通过分析过去时间点对当前时间点的影响来预测未来时间点。

它基于一个假设,即未来的值是过去值的线性组合。

如果我们用Y表示时间序列的观测值,AR模型可以表示为:Y_t = c + φ_1 * Y_t-1 + φ_2 * Y_t-2 + ... + φ_p * Y_t-p + ε_t其中,Y_t是时间点t的观测值,c是常数,φ_1, φ_2, ...,φ_p是参数,p是模型的延迟数量,ε_t是误差项。

当p等于1时,AR模型称为AR(1)模型;当p等于2时,AR模型称为AR(2)模型,依此类推。

移动平均(MA)模型是用来描述观测值与白噪声误差项的线性组合之间的关系。

MA模型的基本假设是,当前时间点的观测值是过去时间点的误差项的线性组合。

如果我们用Y表示时间序列的观测值,MA模型可以表示为:Y_t = μ + ε_t + θ_1 * ε_t-1 + θ_2 * ε_t-2 + ... +θ_q * ε_t-q其中,Y_t是时间点t的观测值,μ是均值,ε_t是误差项,θ_1, θ_2, ..., θ_q是参数,q是误差项的延迟数量。

当q等于1时,MA模型称为MA(1)模型;当q等于2时,MA模型称为MA(2)模型,依此类推。

ARMA模型将AR和MA模型结合起来。

ARMA(p, q)模型可以表示为:Y_t = c + φ_1 * Y_t-1 + φ_2 * Y_t-2 + ... + φ_p * Y_t-p + ε_t + θ_1 * ε_t-1 + θ_2 * ε_t-2 + ... + θ_q * ε_t-qARMA模型可以通过最小二乘法或极大似然法来估计参数。

基于时间序列的arma模型

基于时间序列的arma模型

基于时间序列的arma模型
基于时间序列的ARMA模型
时间序列分析是一种重要的统计学方法,它可以用来研究随时间变化的数据。

ARMA模型是一种常用的时间序列模型,它可以用来预测未来的数据趋势。

ARMA模型是由自回归模型(AR)和移动平均模型(MA)组成的。

自回归模型是指当前值与前一时刻的值之间存在相关性,移动平均模型是指当前值与前一时刻的误差之间存在相关性。

ARMA模型可以用来描述时间序列数据的自相关和随机性。

ARMA模型的建立需要确定两个参数:AR阶数和MA阶数。

AR阶数是指自回归模型中使用的滞后项的数量,MA阶数是指移动平均模型中使用的滞后项的数量。

这两个参数的选择需要通过模型拟合和模型检验来确定。

ARMA模型的预测可以通过模型的参数估计和历史数据来实现。

预测的精度取决于模型的参数估计和历史数据的质量。

如果历史数据存在异常值或缺失值,预测的精度会受到影响。

ARMA模型在实际应用中有广泛的应用,例如金融市场预测、气象预测、股票价格预测等。

ARMA模型的优点是可以用来预测未来的数据趋势,缺点是对于非线性时间序列数据的拟合效果不佳。

ARMA模型是一种基于时间序列的预测模型,它可以用来预测未来的数据趋势。

在实际应用中,需要根据数据的特点选择合适的ARMA模型,并通过模型拟合和模型检验来确定模型的参数和预测精度。

arma模型通俗理解

arma模型通俗理解

Arma模型通俗理解什么是ARMA模型?ARMA模型是时间序列分析中的一种建模方法,它是自回归移动平均模型(ARMA)的组合。

ARMA模型结合了自己的历史数据和随机误差来预测未来的数值。

AR和MA模型的概念在理解ARMA模型之前,我们需要先了解自回归(AR)和移动平均(MA)模型。

自回归(AR)模型自回归模型基于历史数据的线性组合来预测未来的数值。

它假设未来的值是过去值的加权和,其中权重由自回归系数确定。

自回归模型的公式为:x(t) = c + φ1 * x(t-1) + φ2 * x(t-2) + … + φp * x(t-p) + ε(t),其中φ1, φ2, …, φp为自回归系数,ε(t)为误差项,c为常数。

移动平均(MA)模型移动平均模型基于随机误差的线性组合来预测未来的数值。

它假设未来的值是过去误差的加权和,其中权重由移动平均系数确定。

移动平均模型的公式为:x(t) = μ + θ1 * ε(t-1) + θ2 * ε(t-2) + … + θq * ε(t-q) + ε(t),其中θ1,θ2, …, θq为移动平均系数,ε(t)为误差项,μ为均值。

ARMA模型ARMA模型是自回归模型和移动平均模型的结合,它综合了过去的数值和随机误差来预测未来的数值。

ARMA模型可以表示为ARMA(p, q),其中p和q分别为自回归和移动平均阶数。

ARMA模型的公式为:x(t) = c + φ1 * x(t-1) + φ2 * x(t-2) + … + φp * x(t-p) + θ1 * ε(t-1) + θ2 * ε(t-2) + … + θq *ε(t-q) + ε(t),其中φ1, φ2,…, φp为自回归系数,θ1, θ2, …, θq 为移动平均系数,c为常数,ε(t)为误差项。

如何估计ARMA模型的参数?ARMA模型的参数估计可以通过最小二乘法或最大似然法进行。

通过这些方法,可以找到使得模型拟合数据最好的参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
ARIMA模型的概念
一. 移动平均过程 1. 移动平均(MA)过程的表示:

Yt=u+ t+ 1 t-1+ 2 t-2+...+ q t-q
其中u为常数项,为白噪音过程 引入滞后算子L,原式可以写成:
Yt=u+ iLi t+ t 或者 Yt=u+ (L) t
i=1
4
3.自协方差
ARIMA模型的概念
二. 自回归(AR)过程 1.自回归(AR)过程表示为:

Yt=c+1Yt-1+ 2Yt-2+...+ pYt-p+vt 其中为 vt 为白噪音过程
引入滞后算子,则原式可写成
(L)Yt=c+vt
其中
(L)=1- 1L- 2L2 -...- pLp
10
ARIMA模型的概念
3.ARMA(p, q)过程的特征

E(Yt)= 1)
c 1 ( 1 2 ... p)

2)ARMA(p, q)过程的方差和协方差
11
ARIMA模型的概念
四. AR、MA过程的相互转化



结论一:平稳的AR(p)过程可以转化为一个MA(∞)过程, 可采用递归迭代法完成转化 结论二:特征方程根都落在单位圆外的 MA(q)过程具 有可逆性 平稳性和可逆性的概念在数学语言上是完全等价的, 所不同的是,前者是对AR过程而言的,而后者是对 MA过程而言的。

其中 ut 为零均值白噪音过程
Yt+1=c+ 1Yt+ 2Yt-1+ut+1

……
Yt+2=c+ 1Yt+1+ 2Yt+ut+2
31
ARMA模型的预测

在t时刻,预测 Yt+1 的值: ft,1=E(Yt+1 It) = c+ 1Yt-1+ 2Yt-2 在t时刻,预测 Yt+2 的值:
12
二、Box-Jenkins方法论

建立回归模型时,应遵循节俭性 (parsimony)的原则 博克斯和詹金斯(Box and Jenkins)提出了 在节俭性原则下建立ARMA模型的系统 方法论,即Box-Jenkins方法论

13
Box-Jenkins方法论
Box-Jenkins方法论 的步骤:
23
ARMA模型的识别
⑷ARMA(p,q)过程的自相关函数和偏自相 关函数

ARMA过程的自相关函数和偏自相关函数都是 拖尾的 如下图:

24
ARIMA模型的识别
y t =0.5y t-1 0.5u t-1 u t
25
ARMA模型的识别
3. 利用自相关函数、偏自相关函数对 ARMA模型进行识别


步骤1:模型识别 步骤2:模型估计 步骤3:模型的诊断检验 步骤4:模型预测
14
三、ARMA模型的识别、估计、诊断、预测
(一).ARMA模型的识别 1. 识别ARMA模型的两个工具:



自相关函数(autocorrelation function,简记为 ACF); 偏自相关函数(partial autocorrelation function,简 记为PACF) 以及它们各自的相关图(即ACF、PACF相对 于滞后长度描图)。
35
ARMA模型的估计
36
利用ARMA模型进行预测

用dynamic方法估计2003年1月到2005年1月的w2
37
利用ARMA模型进行预测

利用“static”方法估计2004年1月到2005年1月的w2
38

⑴通过ADF检验,来判断序列过程的平稳性; ⑵利用自相关函数、偏自相关函数以及它们的 图形来确定p, q的值。
26
(二)ARMA模型的估计
ARMA模型的估计方法:

矩估计 极大似然估计 非线性估计 最小二乘估计
27
(三)ARMA模型的诊断
一. 诊断的含义 二. 诊断的方法 三. 检验统计量
ARMA模型的概念和构造
1
一、ARIMA模型的基本内涵
一、ARMA模型的概念 自回归移动平均模型(autoregressive moving average models,简记为ARMA模 型),由因变量对它的滞后值以及随机 误差项的现值和滞后值回归得到。 包括移动平均过程(MA)、自回归过程 (AR)、自回归移动平均过程 (ARMA)。
q
(L)=1+ 1L+ 2L2 ... qLq
3
ARIMA模型的概念
2.MA(q)过程的特征 1. E(Yt)=u

2.
var(Yt) (1 1 2
2
2
... q 2 ) 2

①当k>q时 k =0 k =( k 1 k+1 2 k+2 ... q q-k) 2 ②当k<q时 对于任意的,MA(q)是平稳的。
j=0 1 1≤j≤q ACF( j) ( j 1 j+1 2 j+2 ... q q-j) (1 12 2 2 ... q 2 ) 0 j>q

j>q时,ACF(j)=0,此现象为截尾,是MA(q)过程的一个特征 如下图:
……
2
1= 1 0+ 2 1+...+ p p-1
p=1 p-1+ 2 p-2+...+ p 0

将上述p+1个方程联立,得到所谓的Yule-Walker方程 组,共p+1个方程,p+1个未知数,得出AR(p)过程 的方差及各级协方差。
8
ARIMA模型的概念
三. 自回归移动平均(ARMA)过程
1. ARMA过程的形式
Yt=c+1Yt-1+ 2Yt-2+...+ pYt-p+ 1 t-1+ 2 t-2+...+ q t-q+ t 其中 t 为白噪音过程。

若引入滞后算子,可以写成
(L)Yt=c+ (L) t

其中
(L)=1- 1L- 2L2 -...- pLp
15
ARMA模型的识别
2. 自相关函数和偏自相关函数的概念
①自相关函数 j j 0 , 过程 Y t的第j阶自相关系数即 自相关函数记为ACF(j) 。 ②偏自相关函数

* j 度量了消除中间滞后项影响 偏自相关系数
后两滞后变量之间的相关关系。偏自相关函数 记为PACF(j)
20
ARMA模型的识别
y t =0.5y t-1 u t
21
ARMA模型的识别
y t =y t-1 u t
22
ARMA模型的识别
⑶AR(p)过程的自相关函数以及MA(q)过程的偏
自相关函数


平稳的AR(P)过程可以转化为一个MA(∞)过程,则 AR(P)过程的自相关函数是拖尾的 一个可逆的MA(q)过程可转化为一个AR(∞)过程,因 此其偏自相关函数是拖尾的。
18
ARMA模型的识别

y t =0.5u t-1 0.3u t 2 u t
MA 2 ( ) 过 程
19
ARMA模型的识别
⑵ AR(p)过程的偏自相关函数


j p 时,偏自相关函数的取值不为0
j>q 时,偏自相关函数的取值为0
AR(p)过程的偏自相关函数p阶截尾 如下图:


Box和Pierce提出的Q统计量 Ljung和Box(1978)提出的LB统计量。
28
ARIMA模型的诊断
1. Q统计量
m 2

ˆ Q=n k k=1 分布 其中n为样本容量,m为滞后长度
ˆ LB=n(n+2) (
k=1 m 2
2 (m) ,近似服从 (大样本中)
2. LB统计量

E(vt) =0, Yt、Yt-1、Yt-2、...Yt-p 的无条
件期望是相等的,若设为u,则得到 :
u=
c 1 ( 1 2 ... p)
7
ARIMA模型的概念
Yt-u=1(Yt-1-u)+ 2(Yt-2-u)+...+ p(Yt-p-u)+vt
0= 1 1+ 2 2+...+ p p+
5
ARIMA模型的概念
2. AR(p)过程平稳的条件
如果特征方程:
1- 1Z- 2Z2 -...- pZp 0
的根全部落在单位圆之外,则该AR(p)过程是 平稳的
6
ARIMA模型的概念
3. AR(p)过程的特征

E(Yt)=c+1E(Yt-1)+ 2E(Yt-2)+...+ pE(Yt-p)+E(vt)
2

Hannan-Quinn 信息准则 HQIC=log( 2 ) 2k log(log T) ˆ
T

ˆ 2 为残差平方, 其中
的个数,T为样本容量。
k=p+q+1 是所有估计参数
30
ARMA模型的预测
一. 基于AR模型的预测

以平稳的AR(2)过程为例:
Yt=c+ 1Yt-1+ 2Yt-2+ut
相关文档
最新文档