小学奥数 约数与倍数(一).学生版
高斯小学奥数五年级上册含答案_第10讲_约数与倍数
第十讲约数与倍数在前面的章节,我们学习了数论中的整除和质数合数等知识.有关约数与倍数的知识.约数和倍数的定义是这样的:对整数a 和b ,如果a |b ,我们就称a 是b 的约数(因数),b 是a 的倍数.根据定义,我们很容易找到一个数的所有约数,例如对12:因为12 1 12 2 6 3 4 ,可知12可以被1、2、3、4、6、12整除,那么它的约数有 1、2、3、4、6、12,共6个.从上面12的分拆可以看出,约数具有“ 成对出现”的特征,也就是:最大约数对应最 小约数、第二大约数对应第二小约数等. 所以在写一个数的所有约数时,可以逐对写出.另 外如果计算较大约数不太方便,可以转而计算与其成对的较小约数.例题1. 12345654321的第三大约数是多少?「分析」第三大约数有点大,那我们可以先求出第三小的约数,12345678987654321的第二大约数是多少?从上面的分析知,可以通过枚举的方法逐对写出一个数的所有约数, 从而可就算出它的约数个数.但是对很大的数,例如 20120000,用枚举来计算个数便很麻烦,所以我们要采用新的方法计算.以72为例,首先采用枚举可知 72共12个约数,分别为1、72; 2、36; 3、24; 4、18;6、12; 8、9.因为72的约数能整除72,而72的所有质因数也都能整除 72,所以对72进 行质因数分解,有: 72 23 32,那么72的所有约数应当由若干个 2与若干个3构成.显 然,2有0个到3个共4种选择;3有0个到2个共3种选择,根据乘法原理,72的约数共4 3 12个,见下表(注意20 1、30 1 ):从72的这个例子,我们可以总结出计算约数个数的一个简单做法:今天,我们来学习数论中再根据它计算第三大的约数.约数个数等于指数加再相乘例题2.下列各数分别有多少个约数?23, 64, 75, 225,720.「分析」熟练掌握约数个数的计算公式即可.下列各数分别有多少个约数?18, 47, 243, 196, 450.例题3. 3600有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?「分析」约数既然能整除3600 ,那说明约数一定包含在3600的因数中•我们知道4 2 23600 2 3 5,那么3600的所有约数一定是由若干个2、若干个3和若干个5组成的.如果约数是3的倍数,那么它至少要含有多少个3?3456共有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数,所以平方数有奇数个约数,根据上面关于约数个数的知识我们可以知道,有奇数个约数的数一定是平方数,有偶数个约数的数一定不是平方数.前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .7222122231 02 03 0320301 21 302 22304 23 308 31 20 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?722212223前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .1 02 03 0320301 21 302 22304 23 308 3120 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122230 01 02 03 0前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .30 20 301 21 302 22 304 23 308 3120 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?。
小学五年级奥数题大全及答案(更新版)
⼩学五年级奥数题⼤全及答案(更新版)⼩学五年级奥数题⼤全及答案五年级奥数1、⼩数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与⾯积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1⼩数的巧算(⼀)年级班姓名得分⼀、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89?4.68+4.68?6.11+4.68=_____.7、计算 17.48?37-17.48?19+17.48?82=_____.8、计算 1.25?0.32?2.5=_____.9、计算 75?4.7+15.9?25=_____.10、计算 28.67?67+32?286.7+573.4?0.05=_____.⼆、解答题11、计算 172.4?6.2+2724?0.3812、计算 0.00...0181?0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下⾯有两个⼩数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a?b,a÷b.1.2⼩数的巧算(⼆)年级班姓名得分⼀、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)?8=_____.4、计算 34.5?8.23-34.5+2.77?34.5=_____.5、计算 6.25?0.16+264?0.0625+5.2?6.25+0.625?20=_____.6、计算 0.035?935+0.035+3?0.035+0.07?61?0.5=_____.7、计算 19.98?37-199.8?1.9+1998?0.82=_____.8、计算 13.5?9.9+6.5?10.1=_____.9、计算 0.125?0.25?0.5?64=_____.10、计算 11.8?43-860?0.09=_____.⼆、解答题11、计算32.14+64.28?0.5378?0.25+0.5378?64.28?0.75-8?64.28?0.125?0.537812、计算 0.888?125?73+999?313、计算 1998+199.8+19.98+1.99814、下⾯有两个⼩数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a?b, a÷b.2.1数的整除性(⼀)年级班姓名得分⼀、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上⼀个数字,使这个数能被11整除,⽅格内应填_____.3、能同时被2、3、5整除的最⼤三位数是_____.4、能同时被2、5、7整除的最⼤五位数是_____.5、1⾄100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知⼀个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1⾄1991号的1991名同学排成⼀⾏,从左向右1⾄11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1⾄11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1⾄11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第⼀个⼈的最初编号是_____号.⼆、解答题1、173□是个四位数字.数学⽼师说:“我在这个□中先后填⼊3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学⽼师先后填⼊的3个数字的和是多少?12、在1992后⾯补上三个数字,组成⼀个七位数,使它们分别能被2、3、5、11整除,这个七位数最⼩值是多少?13、在“改⾰”村的⿊市上,⼈们只要有⼼,总是可以把两张任意的⾷品票换成3张其他票券,也可以反过来交换.试问,合作社成员⽡夏能否将100张黄油票换成100张⾹肠票,并且在整个交换过程中刚好出⼿了1991张票券?14、试找出这样的最⼩⾃然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(⼆)年级班姓名得分⼀、填空题1、⼀个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个⼗⼀位数能被36整除,那么这个数的个位上的数最⼩是_____.3、下⾯⼀个1983位数33…3□44…4中间漏写了⼀个数字(⽅框),已知这991个 991个个多位数被7整除,那么中间⽅框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,⽽且⽐这个两位数⼤1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、⼀个⼩于200的⾃然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个⾃然数是_____.7、任取⼀个四位数乘3456,⽤A表⽰其积的各位数字之和,⽤B表⽰A的各位数字之和,C表⽰B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从⼩到⼤排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最⼤的是_____.10、所有数字都是2且能被66……6整除的最⼩⾃然数是_____位数.100个⼆、解答题11、找出四个互不相同的⾃然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最⼤的数与最⼩的数的和尽可能的⼩,那么这四个数⾥中间两个数的和是多少?12、只修改21475的某⼀位数字,就可知使修改后的数能被225整除,怎样修改?13、500名⼠兵排成⼀列横队.第⼀次从左到右1、2、3、4、5(1⾄5)名报数;第⼆次反过来从右到左1、2、3、4、5、6(1⾄6)报数,既报1⼜报6的⼠兵有多少名?14、试问,能否将由1⾄100这100个⾃然数排列在圆周上,使得在任何5个相连的数中,都⾄少有两个数可被3整除?如果回答:“可以”,则只要举出⼀种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(⼀)年级班姓名得分⼀、填空题1在⼀位的⾃然数中,既是奇数⼜是合数的有_____;既不是合数⼜不是质数的有_____;既是偶数⼜是质数的有_____.2、最⼩的质数与最接近100的质数的乘积是_____.3、两个⾃然数的和与差的积是41,那么这两个⾃然数的积是_____.4、在下式样□中分别填⼊三个质数,使等式成⽴.□+□+□=505、三个连续⾃然数的积是1716,这三个⾃然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果⾃然数有四个不同的质因数, 那么这样的⾃然数中最⼩的是_____.8、9216可写成两个⾃然数的积,这两个⾃然数的和最⼩可以达到_____.9、从⼀块正⽅形的⽊板上锯下宽为3分⽶的⼀个⽊条以后,剩下的⾯积是108平⽅分⽶.⽊条的⾯积是_____平⽅分⽶.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从⼩到⼤排列,第⼆个数应是_____.⼆、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本⾝为约数.已知⼀个长⽅形的长和宽都是质数个单位,并且周长是36个单位.问这个长⽅形的⾯积⾄多是多少个平⽅单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学⽣1430⼈参加团体操,分成⼈数相等的若⼲队,每队⼈数在100⾄200之间,问哪⼏种分法?14、四只同样的瓶⼦内分别装有⼀定数量的油,每瓶和其他各瓶分别合称⼀次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(⼆)年级班姓名得分⼀、填空题1、在1~100⾥最⼩的质数与最⼤的质数的和是_____.2、⼩明写了四个⼩于10的⾃然数,它们的积是360.已知这四个数中只有⼀个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表⽰为AB,那么A?B?AB=_____.4、有三个学⽣,他们的年龄⼀个⽐⼀个⼤3岁,他们三个⼈年龄数的乘积是1620,这三个学⽣年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某⼀个数,与它⾃⼰相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第⼀组数____________;第⼆组数是____________.9、有_____个两位数,在它的⼗位数字与个位数字之间写⼀个零,得到的三位数能被原两位数整除.10、主⼈对客⼈说:“院⼦⾥有三个⼩孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩⼦的年龄吗?”客⼈想了⼀下说:“我还不能确定答案。
奥数最大公约数与最小公倍 数例题、练习及答案
最大公约数与最小公倍数(一)教学目标:1.通过学生对应用题的条件与问题的全面分析,培养学生发现问题和解决问题的意识。
2.通过比较与辨析,使学生进一步理解和掌握“最大公约数和最小公倍数”应用题的解题规律。
3.培养学生的合作交流意识和创新意识,发展学生的空间观念与想像力。
教学过程:一、基本概念知识1.公约数和最大公约数①如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。
②如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
例如:12的约数有:1,2,3,4,6,12; 18的约数有:1,2,3,6,9,18。
自然数的最大公约数通常用符号()表示,例如,12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。
(8,12)=4,(6,9,15)=3。
2.公倍数和最小公倍数 ③如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。
在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。
例如:12的倍数有:12,24,36,48,60,72,84,… 18的倍数有:18,36,54,72,90,…自然数的最小公倍数通常用符号[]表示,例如12和18的公倍数有:36,72,….其中36是12和18的最小公倍数,记作[12,18]=36。
[8,12]=24,[6,9,15]=90。
3.互质数如果两个数的最大公约数是1,那么这两个数叫做互质数。
常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。
用短除法求若干个数的最大公约数与最小公倍数的区别:求个数的最大公约数:(1)必须每次都用个数的公约数去除;(2)一直除到个数的商互质(但不一定两两互质);(3)个数的最大公约数即为短除式中所有除数的乘积。
求个数的最小公倍数:(1)必须先用(如果有)个数的公约数去除,除到个数没有除去1以外的公约数后,在用个数的公约数去除,除到个数没有除1以外的公约数后,再用个数的公约数去除,如此继续下去,为保证这一条,每次所用的除数均可选质数;(2)只要有两个数(被除数)能被同一数整除,就要继续除,一定要除到个数的商两两互质为止;(3)个数的最小公倍数即为短除式中,所有除数和最后两两互质的商的乘积。
五年级奥数最大公约数和最小公倍数的比较和应用
最大公约数和最小公倍数的比较和应用最大公约数与最小公倍数的应用比较在整除的应用当中,最大公约数和最小公倍数的应用最为广泛,也是最重要的部分。
一道应用题,到底是用最大公约数解题还是用最小公倍数解题,学生最容易混乱。
不妨试用下面这种土方法判断下,问题就会迎刃而解了。
判断法则:如果题目已知总体,求部分,一般用最大公约数解题,先求出总体的最大公约数,再依题意解答;如果题目已知部分,求总体,一般用最小公倍数解题,先求出部分的最小公倍数,再依题意解答。
对比例子(一)1.把一张长60厘米,宽40厘米的长方形纸板剪成边长是整数厘米数的小正方形,且无剩余,最少可以剪成多少块?分析:正方形是在长方形里面剪,所以长方形是总体,正方形是部分。
题目告诉你了长方形的长与宽,告诉了总体,求的是小正方形,求部分,所以用最大公约数解题。
具体分析:由于题中求剪后无剩余,所以小正方形的边长必须是60和40的公约数。
又因为求最少剪多少块,就要求小正方形的边长最大,所以小正方形的边长一定是60和40的最大公约数。
(60,40)=20 -------这就是小正方形的边长。
(60÷20)×(40÷20)=6(块)或用面积计算:(60×40)÷(20×20)=6(块)2.用长5CM,宽3CM的长方形硬纸片摆成一个正方形(中间无空隙),至少要用几个长方形硬纸片?分析:多个长方形摆成正方形,所以正方形是总体,长方形是部分。
题目告诉你了长方形的长与宽,即告诉了部分,求正方形,即求总体,所以用最小公倍数解题。
具体分析:由于拼摆后正好一个正方形,所以正方形的边长必须是长方形的长与宽的公倍数,又因为要用最少的长方形来摆,所以正方形的边长一定是最小的公倍数。
〔5,3〕=15 CM------这就是正方形的边长(15÷5)×(15÷3)=15(个)长方形或用面积计算:(15×15)÷(5×3)=15(个)对比例子(二)1.一长方体木块,长56CM,宽40CM,高24CM,把它锯成尽可能大,且大小相同的正方体,且无剩余,能锯成多少块?分析:小正方体是从长方体中锯出来的,长方体就是总体,小正方体为部分。
(小学奥数)约数与倍数(一)
1. 本講主要對課本中的:約數、公約數、最大公約數;倍數、公倍數、最小公倍數性質的應用。
2. 本講核心目標:讓孩子對數字的本質結構有一個深入的認識,例如:(1)約數、公約數、最大公約數;倍數、公倍數、最小公倍數的內在關係;(2)整數唯一分解定理:讓學生自己初步領悟“任何一個數字都可以表示為...⨯⨯⨯☆☆☆△△△的結構,而且表達形式唯一”一、 約數、公約數與最大公約數概念(1)約數:在正整數範圍內約數又叫因數,整數a 能被整數b 整除,a 叫做b 的倍數,b 就叫做a 的約數;(2)公約數:如果一個整數同時是幾個整數的約數,稱這個整數為它們的“公約數”;(3)最大公約數:公約數中最大的一個就是最大公約數;(4)0被排除在約數與倍數之外1. 求最大公約數的方法①分解質因數法:先分解質因數,然後把相同的因數連乘起來.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的約數,然後相乘.例如:2181239632,所以(12,18)236=⨯=; ③輾轉相除法:每一次都用除數和餘數相除,能夠整除的那個餘數,就是所求的最大公約數.用輾轉相除法求兩個數的最大公約數的步驟如下:先用小的一個數除大的一個數,得第一個餘數;再用第一個餘數除小的一個數,得第二個餘知識點撥教學目標5-4-1.約數與倍數(一)數;又用第二個餘數除第一個餘數,得第三個餘數;這樣逐次用後一個餘數去除前一個餘數,直到餘數是0為止.那麼,最後一個除數就是所求的最大公約數.(如果最後的除數是1,那麼原來的兩個數是互質的).例如,求600和1515的最大公約數:15156002315÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公約數是15.2. 最大公約數的性質①幾個數都除以它們的最大公約數,所得的幾個商是互質數;②幾個數的公約數,都是這幾個數的最大公約數的約數;③幾個數都乘以一個自然數n ,所得的積的最大公約數等於這幾個數的最大公約數乘以n .3. 求一組分數的最大公約數先把帶分數化成假分數,其他分數不變;求出各個分數的分母的最小公倍數a ;求出各個分數的分子的最大公約數b ;b a即為所求. 4. 約數、公約數最大公約數的關係(1)約數是對一個數說的;(2)公約數是最大公約數的約數,最大公約數是公約數的倍數二、倍數的概念與最小公倍數(1)倍數:一個整數能夠被另一整數整除,這個整數就是另一整數的倍數(2)公倍數:在兩個或兩個以上的自然數中,如果它們有相同的倍數,那麼這些倍數就叫做它們的公倍數(3)最小公倍數:公倍數中最小的那個稱為這些正整數的最小公倍數。
小学奥数 数论 约数与倍数 完全平方数及应用(一).题库版
1.学习完全平方数的性质; 2. 整理完全平方数的一些推论及推论过程3. 掌握完全平方数的综合运用。
一、完全平方数常用性质 1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能被a 整除。
2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9. 性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6.完全平方数的个位数字为6时,其十位数字必为奇数。
7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是知识点拨教学目标5-4-4.完全平方数及应用(一)完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
五年级奥数专题 约数、倍数、完全平方数(学生版)
学科培优数学“约数、倍数、完全平方数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,所以重点在于一些性质的应用,完全平方数在考试中经常出现,所以对于平方差公式还有一些主要性质一定要记住.知识梳理一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。
即若(,),(,),=⨯=⨯那么(,)1a b=A a a bB b a b(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
即(,)[,]⨯=⨯a b a b a b(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍二、约数个数与所有约数的和(1)求任一整数约数的个数:一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
(2)求任一整数的所有约数的和:一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
三、完全平方数常用性质1.主要性质●完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
●在两个连续正整数的平方数之间不存在完全平方数。
●完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
●若质数p整除完全平方数2a,则p能被a整除。
2.一些推论●任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
●一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
●自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
(完整版)小学奥数第9讲约数与倍数(含解题思路)
9、约数与倍数【约数问题】例1 用1155个同样大小的正方形拼成一个长方形,有______种不同的拼法。
(上海市第五届小学数学竞赛试题)讲析:不论拼成怎样的长方形,它们的面积都是1155。
而长方形的面积等于长乘以宽.所以,只要将1155分成两个整数的积,看看有多少种方法。
一般来说,约数都是成对地出现。
1155的约数共有16个。
16÷2=8(对)。
所以,有8种不同的拼法。
例2 说明:360这个数的约数有多少个?这些约数之和是多少?(全国第三届“华杯赛”决赛第一试试题)讲析:将360分解质因数,得360=2×2×2×3×3×5=23×32×5。
所以,360的约数个数是:(3+1)×(2+1)×(1+1)=24(个)这24个约数的和是:例3 一个数是5个2,3个3,2个5,1个7的连乘积。
这个数当然有许多约数是两位数,这些两位的约数中,最大的是几?(全国第一届“华杯赛”决赛第一试试题)讲析:这个数是2×2×2×2×2×3×3×3×5×5×7。
把两位数从99、98、……开始,逐一进行分解:99=3×3×11; 98=2×7×7;97是质数; 96=2×2×2×2×2×3。
发现,96是上面数的约数.所以,两位数的约数中,最大的是96.例4 有8个不同约数的自然数中,最小的一个是______。
(北京市第一届“迎春杯"小学数学竞赛试题)讲析:一个自然数N,当分解质因数为:因为8=1×8=2×4=2×2×2,所以,所求自然数分解质因数,可能为:27,或23×3,或2×3×5,……不难得出,最小的一个是24。
(完整版)约数和倍数(小学奥数)
(十六)约数和倍数例1.边长1米的正方体2100个,堆成了一个实心的长方体,它的高是10米,长、宽都大于高。
问长方体的长与宽的和是几米?例2.正整数a乘以120,得到一个完全平方数,a的最小值是多少?例3.有一个电子钟,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子钟响铃又亮灯。
问:下一次响铃又亮灯是几点钟?例4.四个小孩的年龄依次相差1岁,他们年龄的乘积是5040,他们的年龄和是多少岁?例5.一个数是5个2,3个3,2个5,1个7的连乘积。
这个数有许多约数是两位数,这些两位的约数中,最大的是几?例6.两个自然数的最大公约数是7,最小公倍数是420。
已知其中一个自然数是42,那么另一个自然数是多少?例7. 说明:360这个数的约数有多少个?这些约数的和是多少?例8.求100以内恰好有8个约数(包括1和它本身)的所有自然数。
例9.已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。
例10.在100以内与77互质的所有奇数之和是多少?练习1. 求720的所有约数的个数。
2. 正整数a乘以378,得到的最小完全平方数是多少?3. 能被2,3,4,5,6,7,8,9,10这九个数整除的最大的六位数是多少?4. 50以内最小质数与最大质数之和是多少?5. 将长为6厘米、宽为4厘米、高为8厘米的长方体积木,叠成最小的正方体,最少要用积木多少块?6. 长96厘米、宽72厘米的长方形白纸裁成同样大小的正方形且无剩余,至少可以裁成多少块?7. 求50以内约数最多的自然数。
8.小红每隔5分钟发一封电子邮件,小明每隔9分钟发一封电子邮件,小丽每隔12分钟发一封电子邮件,今天上午8点三人同时发出电子邮件,下一次同时发电子邮件是什么时间?9. A,(A+4),(A+6),(A+10),(A+12),(A+16),(A+22)均为质数,那么A是多少?10. 求5040的所有约数的和。
小学奥数知识总结手册—约数与倍数.doc
小学奥数知识总结手册—约数与倍数
约数与倍数
约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:
1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;
18的约数有:1、2、3、6、9、18;
那么12和18的公约数有:1、2、3、6;
那么12和18最大的公约数是:6,记作=6;
求最大公约数基本方法:
1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小
的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;
18的倍数有:18、36、54、72……;
那么12和18的公倍数有:36、72、108……;
那么12和18最小的公倍数是36,记作[12,18]=36;
最小公倍数的性质:
1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法。
小学奥数第594讲 约数、倍数、完全平方数
学科培优数学“约数、倍数、完全平方数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,所以重点在于一些性质的应用,完全平方数在考试中经常出现,所以对于平方差公式还有一些主要性质一定要记住.知识梳理一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。
即若(,),(,),=⨯=⨯那么(,)1a b=A a a bB b a b(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
即(,)[,]⨯=⨯a b a b a b(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍二、约数个数与所有约数的和(1)求任一整数约数的个数:一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
(2)求任一整数的所有约数的和:一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
三、完全平方数常用性质1.主要性质●完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
●在两个连续正整数的平方数之间不存在完全平方数。
●完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
●若质数p整除完全平方数2a,则p能被a整除。
2.一些推论●任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
●一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
●自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
小学奥数数论题型:约数与倍数
小学奥数数论题型:约数与倍数
1.28的约数之和是多少?
2.一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24这个两位数是多少?
3.两个自然数的和是50,它们的公约数是5,则这两个数的差是多少?
4.用长是9公分、高是7公分的长方形木块叠成一正方体,至少需要这种长方体木块多少块?
5.张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得_元钱利润,那么他必须卖出苹果多少个?
6.一个公共汽车站,发出五路车,这五路车为每隔3、5、9、_、_分钟发一次,第一次同时发车以后,多少分钟又同时发第二次?
7.饲养员给三群猴子分花生,如只分给第一群,每只猴子可得_粒;如只分给第二群,每只猴子可得_5粒;如只分给第三群,每只猴子可得_粒,那么平均给三群猴子,每只猴可得花生多少粒?
8.一块长48公分、宽42公分的布。
不浪费边角料,能剪出的正方形布片多少块?
9.这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是多少?
_.把26,33,34,35,63,85,91,_3分成若干组,要求每一组中任意两个数的公约数是1,那么至少要分成多少组?
小学奥数数论题型:约数与倍数.到电脑,方便收藏和打印:。
小学奥数-精讲-约数与倍数PPT
问答互动环节设计思路
自动评分
利用课件的自动评分功能,对学生的测验结果进行客观评价。
反馈与建议
根据学生的测验成绩和表现,提供针对性的反馈和建议,帮助学生改进学习方法。
设计测验题目
根据教学目标和内容,设计合理的测验题目,检验学生学习效果。
测验反馈机制构建策略
导航菜单优化建议
清晰明了
确保导航菜单清晰明了,方便学生快速找到所需内容。
例2
答案揭秘
第一群只数:5、10、15……
第二群只数:4、8、12……
第三群只数:3、6、9……
三群总只数:12、24、36……
60÷12=5 120÷24=5……
花生总数:60、120、180 ……
答:每只猴子可得5粒花生。
举一反三
练习1
用945个同样大小的正方形拼成一个长方形,有______种不同的拼法。
图片选择与处理
为图片添加必要的标注和说明文字,帮助观众更好地理解和记忆图片内容。
图片标注与说明
将多张图片进行排版和组合,形成具有逻辑关系和视觉冲击力的图表或画廊效果。
图片排版与组合
图片编辑与美化方法
选用通用的音频视频格式,确保课件能够在不同设备和平台上正常播放。
音频视频格式选择
对音频视频素材进行必要的剪辑、合并、添加字幕等处理,提高课件的观赏性和实用性。
从第一次同时发车到第二次同时发车 的时间是3,5,9,15和10的最小公倍数。
规 律 总 结
练习2
9,15和10的最小公倍数是90, 所以3,5,9,15和10的最小公倍数也是90。 从第一次同时发车后90 分钟又同时发第二次车。
参 考 答 案
方法
应用
小学生奥数公约数与最小公倍数、数的整除问题练习题
小学生奥数公约数与最小公倍数、数的整除问题练习题1.小学生奥数公约数与最小公倍数练习题篇一1、用自然数a去除498,450,414,得到相同的余数,a最大是多少?分析与解:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。
498-450=48,450-414=36,498-414=84。
所求数是(48,36,84)=12。
2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?爷爷和小明的年龄随着时间的推移都在变化,但他们的年龄差是保持不变的。
爷爷的年龄现在是小明的7倍,说明他们的年龄差是6的倍数;同理,他们的年龄差也是5,4,3,2,1的倍数。
由此推知,他们的年龄差是6,5,4,3,2的公倍数。
[6,5,4,3,2]=60,爷爷和小明的年龄差是60的整数倍。
考虑到年龄的实际情况,爷爷与小明的年龄差应是60岁。
所以现在小明的年龄=60÷(7-1)=10(岁),爷爷的年龄=10×7=70(岁)。
2.小学生奥数公约数与最小公倍数练习题篇二一、求下面各组数的公约数60和4827和2108、8和16816和4216和4816、7和9075和3290和460、16和7272和3212和1015、6和684和648和486、12和3612和1636和8416、144和459和12020和1502、21和4二、求下面各组数的最小公倍数60和1820和1210、14和11250和624和3236、56和4012和1880和9628、24和7270和1058和2128、12和10528和7036和4236、56和3060和725和1642、21和10045和18120和120100、60和43.小学生奥数数的整除问题练习题篇三如果多位数能被7整除,那么○内的数字是()。
考点:数的整除特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。
2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=; ②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=; ③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,知识点拨教学目标5-4-1.约数与倍数(一)后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15. 2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。
1. 求最小公倍数的方法①分解质因数的方法;例如:2313711=⨯⨯,22252237=⨯⨯,所以[]22231,252237112772=⨯⨯⨯=;②短除法求最小公倍数; 例如:2181239632,所以[]18,12233236=⨯⨯⨯=; ③[,](,)a b a b a b ⨯=. 2. 最小公倍数的性质①两个数的任意公倍数都是它们最小公倍数的倍数.②两个互质的数的最小公倍数是这两个数的乘积.倍数是较大的数.3. 求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数a ;求出各个分数分母的最大公约数b ;b a 即为所求.例如:35[3,5]15[,]412(4,12)4== 注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:[]()1,414,4232,3⎡⎤==⎢⎥⎣⎦ 4. 倍数、公倍数、最小公倍数的关系(1)倍数是对一个数说的;(2)最小公倍数是公倍数的约数,公倍数是最小公倍数的倍数三、最大公约数与最小公倍数的常用性质1. 两个自然数分别除以它们的最大公约数,所得的商互质。
如果m 为A 、B 的最大公约数,且A ma =,B mb =,那么a b 、互质,所以A 、B 的最小公倍数为mab ,所以最大公约数与最小公倍数有如下一些基本关系:①A B ma mb m mab ⨯=⨯=⨯,即两个数的最大公约数与最小公倍数之积等于这两个数的积;②最大公约数是A 、B 、A B +、A B -及最小公倍数的约数.2. 两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
即(,)[,]a b a b a b ⨯=⨯,此性质比较简单,学生比较容易掌握。
3. 对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数例如:567210⨯⨯=,210就是567的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍例如:678336⨯⨯=,而6,7,8的最小公倍数为3362168÷=性质(3)不是一个常见考点,但是也比较有助于学生理解最小公倍数与数字乘积之间的大小关系,即“几个数最小公倍数一定不会比他们的乘积大”。
四、求约数个数与所有约数的和1. 求任一整数约数的个数数(次数)加1后所得的乘积。
如:1400严格分解质因数之后为32⨯⨯,所以它的约数有(3+1)×(2+1)257×(1+1)=4×3×2=24个。
(包括1和1400本身)约数个数的计算公式是本讲的一个重点和难点,授课时应重点讲解,公式的推导过程是建立在开篇讲过的数字“唯一分解定理”形式基础之上,结合乘法原理推导出来的,不是很复杂,建议给学生推导并要求其掌握。
难点在于公式的逆推,有相当一部分常考的偏难题型考察的就是对这个公式的逆用,即先告诉一个数有多少个约数,然后再结合其他几个条件将原数“还原构造”出来,或者是“构造出可能的最值”。
2.求任一整数的所有约数的和一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
如:33=⨯⨯⨯,所以21000所有约数的和为2100023572323(1222)(13)(1555)(17)74880++++++++=此公式没有第一个公式常用,推导过程相对复杂,需要许多步提取公因式,建议帮助学生找规律性的记忆即可。
例题精讲模块一、求最大公约数【例 1】把一张长1米3分米5厘米、宽1米5厘米的纸裁成同样大小的正方形纸块,而没有剩余,问:能裁成最大的正方形纸块的边长是多少?共可裁成几块?【巩固】一个房间长450厘米,宽330厘米.现计划用方砖铺地,问需要用边长最大为多少厘米的方砖多少块(整块),才能正好把房间地面铺满?【例 2】将一个长和宽分别是是1833厘米和423厘米的长方形分割成若干修正在方形,则正方形最少是()个。
(A)78 (B)7 (C)5 (D)6【例 3】如图,某公园有两段路,AB=175米,BC=125米,在这两段路上安装路灯,要求A、B、C三点各设一个路灯,相邻两个路灯间的距离都相等,则在这两段路上至少要安装路灯___个.【例 4】把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友?【例 5】有336个苹果,252个桔子,210个梨,用这些水果最多可以分成多少份同样的礼物?在每份礼物中,三样水果各多少?【巩固】教师节那天,某校工会买了320个苹果、240个桔子、200个鸭梨,用来慰问退休的教职工,问用这些果品,最多可以分成多少份同样的礼物(同样的礼物指的是每份礼物中苹果、桔子、鸭梨的个数彼此相等)?在每份礼物中,苹果、桔子、鸭梨各多少个?模块二、约数【例 6】2004的约数中,比100大且比200小的约数是。
【例 7】过冬了,小白兔只储存了180只胡萝卜,小灰兔只储存了120棵大白菜,为了冬天里有胡萝卜吃,小灰兔用十几棵大白菜换了小白兔的一些胡萝卜,这时他们储存的粮食数量相等,则一棵大白菜可以换__________只胡萝卜。
【例 8】一个自然数,它的最大的约数和次大的约数的和是111,这个自然数是________.【例 9】一个两位数有6个约数,且这个数最小的3个约数之和为10,那么此数为几?【例 10】如果你写出12的所有约数,1和12除外,你会发现最大的约数是最小约数的3倍.现有一个整数n,除掉它的约数1和n外,剩下的约数中,最大约数是最小约数的15倍,那么满足条件的整数n有哪些?模块三、公约数与最大公约数综合【例 11】马鹏和李虎计算甲、乙两个两位数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是______.【例 12】用2、3、4、5、6、7这六个数码组成两个三位数A和B,那么A、B、540这三个数的最大公约数最大可能是___________.【例 13】现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?【例 14】10个非零不同自然数的和是1001,则它们的最大公约数的最大值是多少?【巩固】100个非0自然数的和等于2006,那么它们的最大公约数最大可能值是()。
【例 15】三个两两不同的正整数,和为126,则它们两两最大公约数之和的最大值为.【例 16】用19这九个数码可以组成362880个没有重复数字的九位数,求这些数的最大公约数.【例 17】少年宫手工组的小朋友们做工艺品“猪娃娃”。
每个人先各做一个纸“猪娃娃”;接着每2个人合做一个泥“猪娃娃”;然后每3个人合做一个布“猪娃娃”;最后每4个人合做一个电动“猪娃娃”。
这样下来,一共做了100个“猪娃娃”,由此可知手工组共有个小朋友。
【例 18】一根长为L的木棍,用红色刻度线将它分成m等份,用黑色刻度将它分成n等份(m>n)。
(1)设x是红色与黑色刻度线重合的条数,请说明:x+1是m和n的公约数;(2)如果按刻度线将该木棍锯成小段,一共可以得到170根长短不等的小棍,其中最长的小棍恰有100根。
试确定m和n的值。