高等代数第八章_λ-矩阵(北大版)
高等代数(北大版)第8章习题参考答案

第八章 —矩阵1. 化下列矩阵成标准形1) 2)3) 4)5)6)解 1)对矩阵作初等变换,有A= B,B即为所求。
2)对矩阵作初等变换,有A= B,B即为所求。
3)因为的行列式因子为1=1, 2 =, 3 = ,所以1 = 1,2 = = ,3 = = ,从而A= B,B即为所求。
4)因为的行列式因子为1=1, 2 =, 3 = , 4 = ,所以1 = 1,2 = = ,3 = = ,4 = = ,从而A= B,B即为所求。
5)对矩阵作初等变换,有A= B,B即为所求。
6)对矩阵作初等变换,有A,在最后一个行列式中3=1, 4 =, 5 = ,所以1 =2 =3 =1,4 = =,5 = =。
故所求标准形为B= 。
2.求下列矩阵的不变因子:1) 2)3) 4)5)解 1)所给矩阵的右上角的二阶子式为1,所以其行列式因子为1=1, 2 =1, 3 = ,故该矩阵的不变因子为1 =2 =1,3 =。
2)因为所给矩阵的右上角的三阶子式为-1,所以其行列式因子为3 =2 =1=1,4 =,故矩阵的不变因子为1 =2 =3 =1,4 =。
3)当时,有4 = = ,且在矩阵中有一个三阶子式= ,于是由,3 = 1,可得3 = 1,故该矩阵的不变因子为1 =2 =3 =1,4 = 。
当时,由1=1, 2 =1, 3 = , 4 = ,从而1 =2 =1,3 = ,4 = = 。
4)因为所给矩阵的左上角三阶子式为1,所以其行列式因子为1=1, 2 =1, 3 =1, 4 = ,从而所求不变因子为1 =2 =3 =1,4 = 。
5)因为所给矩阵的四个三阶行列式无公共非零因式,所以其行列式因子为3 =1,4 = ,故所求不变因子为1 =2 =3 =1,4 = 。
3.证明:的不变因子是,其中= 。
证因为n = ,按最后一列展开此行列式,得n == ,= ,因为矩阵左下角的阶子式= ,所以= 1,从而1=2 = … = = 1,故所给矩阵的不变因子为1 =2 = … = = 1,= = ,即证。
λ-矩阵标准形的求法

λ-矩阵标准形的求法戴泽俭;陈侃【摘要】本文探讨λ矩阵的标准形的几种常用的求法.并通过例子加以说明.【期刊名称】《巢湖学院学报》【年(卷),期】2010(012)006【总页数】3页(P113-115)【关键词】λ-矩阵;标准形;不变因子【作者】戴泽俭;陈侃【作者单位】巢湖学院数学系,安徽巢湖,238000;巢湖学院数学系,安徽巢湖,238000【正文语种】中文【中图分类】O151.21矩阵的标准形是λ矩阵理论中一项重要而基础的内容,求λ矩阵的标准形具有很强的灵活性和技巧性。
本文探讨几种常用的求λ矩阵的标准形的方法.最后一个矩阵即为所求的标准形。
例4 设A(λ)是一个五阶λ-矩阵,秩为4,初等因子为解由A(λ)的秩为4,故可由A(λ)的初等因子得出A(λ)的不变因子为:解从A(λ)的最后一行开始,每行乘λ后往上一行加,得其中 f(λ)= λn+a1λn-1+ …an-1λ +an-1,* 表示一些未写出的元素。
从中可得出 A(λ)的 n 阶行列式因子Dn(λ)=f(λ) .又 A(λ)的左下角的 n-1 阶子式等于(-1)n-1,故 D1(λ)=D2(λ)=…=Dn-1(λ)=1,于是根据行列式因子和不变因子的关系得:λ-矩阵标准形的求法灵活多样,实际中我们往往视具体情况采取比较简洁的方法,以上例子的其他解法,这里就不再一一赘述了。
【相关文献】[1]北京大学数学系.高等代数(第三版)[M].北京:高等教育出版社,2003.[2]同济大学应用数学系.线性代数(第五版)[M].北京:高等教育出版社,2007.[3]姚慕生.高等代数[M].上海:复旦大学出版社,2002.[4]钱吉林.高等代数题解精粹[M].北京:中央民族大学出版社,2002.[5]张禾瑞等.高等代数(第四版)[M].北京:高等教育出版社,1999.。
高等代数课件(北大版)第八章 λ-矩阵§8.5

等价. 然后对 D1 ( ) 重复上述讨论.
2012-9-22§8.5 初等因子
数学与计算科学学院
如此继续进行,直到对角矩阵主对角线上元素所含
1 的方幂是按逆升幂次排列为止.
再依次对 2 , , r 作同样处理. 最后便得到与 D ( ) 等价的对角阵 D ( ).
结论2、两个同级数字矩阵相似
它们有相同的初等因子.
可见:初等因子和不变因子都是矩阵的相似不变量.
2012-9-22§8.5 初等因子
数学与计算科学学院
三、初等因子的求法
1、(引理1)若多项式 f 1 ( ), f 2 ( ) 都与 g 1 ( ), g 2 ( ) 互素,则
f 1 ( ) g 1 ( ),
2
2, 1, 1
得A的不变因子为:
d 3 ( x ) ( 1) ( 2),
2
d 2 ( x ) d 1 ( x ) 1.
2012-9-22§8.5 初等因子
数学与计算科学学院
结论1、若两个同级数字矩阵有相同的不变因子,
则它们就有相同的初等因子; 反之,若它们有相同的初等因子,则它们就有 相同的不变因子.
d 1 ( x ) ( 1 ) d 2 ( x ) ( 1 )
k 11
( 2 )
k 12
( r )
k1 r
, , .
k 21
( 2 )
k 22
( r )
k2 r
d n ( x ) ( 1 )
kn1
( 2 )
f ( ) | f 2 ( ) g 2 ( ),
(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即
,
则
。
因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而
,
令
,
则
。
由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设
。
其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换
,
使得
。
下面证明 。采用反证法。设 ,考虑线性方程组
,
该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是
,
上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以
。
同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有
。
即证。
5.设 是反对称矩阵,证明: 合同于矩阵
。
设 的秩为 ,作非退化线性替换 将原二次型化为标准型
,
其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即
,
这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使
,
即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。
(完整word版)高等代数教案北大版第八章

讲课内容教课时数教课目的教课要点教课难点教课方法与手段教学过程第八章λ-矩阵第一讲λ-矩阵2 学时讲课种类讲解法与练习法使学生认识-矩阵的观点,以及-矩阵和数字矩阵的关系,基本掌握-矩阵秩的判断,可逆的条件,以及求逆矩阵。
-矩阵秩的判断,可逆的条件,以及求逆矩阵。
求 -矩阵的逆矩阵启迪式讲解,议论,练习n 阶矩阵A与对角阵相像的充要条件是A有 n 个线性没关的特点向量.那么当只有 m( m n) 个线性没关的特点向量时, A与对角阵是不相像的.对这类情况 ,我们“退而求其次” ,找寻“几乎对角的”矩阵来与A相像 .这就引出了矩阵在相像下的各样标准型问题 .Jordan 标准型是最靠近对角的矩阵而且其相关的理论包括先前相关与对角阵相像的理论作为特例 .其他 , Jordan 标准型的宽泛应用波及到 Hamilton-Cayley 定理的证明 ,矩阵分解 ,线性微分方程组的求解等等 .因为Jordan 标准型的求解与特点多项式相关,而从函数的角度看,特点多项式其实是特别的函数矩阵(元素是函数的矩阵),这就引出对-矩阵的研究 .一、- 矩阵及其标准型定义 1称矩阵 A() ( f ij ()) 为-矩阵 ,此中元素f ij ( )(i1,2,L, m; j 1,2,L , n)为数域 F 上对于的多项式 .定义 2称 n 阶-矩阵A() 是可逆的,假如有A B B A I n并称 B( ) 为A() 的逆矩阵.反之亦然.定理 1 矩阵A() 可逆的充要条件是其队列式为非零的常数,即det( A( )) c0 .证明:( 1)充足性设A=d 是一个非零的数. A*表示A() 的伴随矩阵 ,则d1A*也是一个-矩阵 ,且有A d 1 A* d 1 A*A I所以,A( ) 是可逆的.(2) 必需性设A() 有可逆矩阵B() ,则A B I两边取队列式有A B I1因为 A与 B都是多项式 ,而它们的乘积为1,所以它们都是零次多项式 ,即都是非零常数 .证毕 .例题 1判断-矩阵2 +121A=11能否可逆 .解固然2 +121A=1=201A( ) 是满秩的,但A不是非零常数 ,因此A() 是不行逆的.注意与数字矩阵不一样的是满秩矩阵未必是可逆的.这么定义可逆是有必要的 ,可逆的实质就是要保证变换的矩阵能够经过非零常数的倒数逆回去.定义3假如矩阵A() 经过有限次的初等变换化成矩阵B() ,则称矩阵A( ) 与B()等价,记为A B定理2矩阵A()与B() 等价的充要与条件是存在可逆矩阵P、Q,使得B P A Q证明因为 A B, 所以A() 能够经过有限次初等变换变为B() ,即存在初等矩阵P( ),P( ),L ,P( )12s与初等矩阵Q1 ( ), Q2 ( ),L ,Q t ( )使得B( ) P( )P( )L P( )A( )Q( )Q( )L Q( )12s12t令P( ) P1 ( )P2 ( )L P s () ,Q( ) Q1( )Q2 ( )L Q t ( )就是所要求的-矩阵 .它们都是初等矩阵的乘积,进而使可逆的 .证毕 .定义 4矩阵 A() 的所有非零k阶子式的首一(最高次项系数为1)最大公因式 D k称为 A() 的k阶队列式因子.定理 2等价矩阵拥有同样的秩和同样的各级队列式因子.证明设-矩阵A( )经过一次行初等变换化为了B() ,f () 与 g( ) 分别是A( )与B() 的 k 阶队列式因子.需要证明f( )= g().分3种状况议论:( 1)A( )i , j B( ),此时,B() 的每个 k 阶子式或许等于A( ) 的某个k 阶子式,或许与A( ) 的某个阶子式反号,所以 , f ()是B() 的k阶子式的公因子 ,进而f ()| g() .(2)A( )i(c)B( ) ,此时,B( )的每个k阶子式或许等于A( )的某个 k 阶子式,或许等于 A() 的某个 k 阶子式的c倍.所以,f()是B() 的 k 阶子式的公因式 ,进而f()|g( ) .(3)A( )i j( )行与 j行的阶子式和B( ) ,此时,B( )中那些包括i那些不包括 i 行的 k 阶子式都等于A() 中对应的 k 阶子式; B() 中那些包括 i 行但不包括 j 行的 k 阶子式,按 i 行分红两个部分,而等于A( )的一个k阶子式与另一个 k 阶子式的( ) 倍的和,,也就是A() 的两个 k 阶子式的线性组合,所以,f( ) 是的k阶子式公因式进而 f( )| g().,对于列变换, 能够同样地议论.总之 , A() 经过一系列的初等变换变为B() ,那么f()|g() .又因为初等变换的可逆性, B( )经过一系列的初等变换能够变为 A() ,进而也有g( )| f() .当 A( ) 所有的阶子式为零时, B() 所有的 k 阶子式也就等于零;反之亦然.故 A() 与 B( ) 又同样的各阶队列式因子,进而有同样的秩.证毕.既然初等变换不改变队列式因子,所以 ,每个-矩阵与它的标准型有完整相同的队列式因子.而求标准型的矩阵是较为简单的,因此 ,在求一个-矩阵的队列式因子时 ,只需求出它的标准型的队列式因子即可.议论、练习与作业课后反省讲课内容教课时数教课目的教课要点教课难点教课方法与手段教学过程第二将λ-矩阵在初等变换下的标准型2讲课种类讲解课认识- 矩阵的初等变换,掌握求标准型的方法,掌握最小多项式的观点和求最小多项式的方法。
高等代数课件(北大版)第八章 λ-矩阵§8.6

i 0 L 0 0
1 i L 0 0
Ji
L 0
0
L 0 0
L L L
L
i
1
L , 0
i
2020/4/11§8.6 若当标准形的数理学与论计算推科学导学院
i 1,2,L , s
J1
令
J
J2 O
Js
则 J 的初等因子也是(*),
即J与A有相同的初等因子.
故J 与A相似.
2020/4/11§8.6 若当标准形的数理学与论计算推科学导学院
0 0 2 2 0 0
0 0 0 0 2
A 的初等因子为 , , 2 .
0 0 0
故 A的若当标准形为
0 0
0 0
0 2
.
2020/4/11§8.6 若当标准形的数理学与论计算推科学导学院
例2、已知12级矩阵A的不变因子为
114,12,L43,1,( 1)2,( 1)2 1, 12 1( 2 1)2 9个 求A的若当标准形. 解:依题意,A的初等因子为 12 , 12 , 12 , 1, 1, i2 , i2
00 00
L L 1n1
1 0
L 1
所以 E J0 的 n 1 级行列式因子为1. 从而, E J0 的 n 2,L ,2,1 级行列式因子皆为1.
J0 的不变因子是:
d1 L dn1 1, dn 0 n . 故 J0 的初等因子是: 0 n .
2020/4/11§8.6 若当标准形的数理学与论计算推科学导学院
1
O
1
s ks
等价. 由定理9,J 的全部初等因子是:
( 1 )k1 , ( 2 )k2 , L , ( s )ks .
高等代数 北大 课件

拉普拉斯定理与因式分解
总结词
拉普拉斯定理的表述、应用和因式分解的方法。
详细描述
拉普拉斯定理是行列式计算中的重要定理,它提供了计算行列式的一种有效方法。因式分解是将多项式分解为若 干个因子的过程,是解决代数问题的重要手段之一。
CHAPTER 04
矩阵的分解与二次型
矩阵的分解
01
02
03
矩阵的三角分解
矩阵的乘法
矩阵的乘法满足结合律和分配律,但不一定满足 交换律。
பைடு நூலகம்
矩阵的逆与行列式
矩阵的逆
对于一个非奇异矩阵,存在一个逆矩阵,使得原矩阵 与逆矩阵相乘等于单位矩阵。
行列式的定义
行列式是一个由矩阵元素构成的数学量,可以用于描 述矩阵的某些性质。
行列式的性质
行列式具有一些重要的性质,如交换律、结合律、分 配律等。
将一个矩阵分解为一个下 三角矩阵和一个上三角矩 阵之积。
矩阵的QR分解
将一个矩阵分解为一个正 交矩阵和一个上三角矩阵 之积。
矩阵的奇异值分解
将一个矩阵分解为若干个 奇异值和若干个奇异向量 的组合。
二次型及其标准型
二次型的定义
一个多项式函数,可以表示为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中 $a_{ij}$是常数。
VS
二次型的标准型
通过线性变换,将一个二次型转化为其标 准形式,即一个平方项之和减去另一个平 方项之和。
正定二次型与正定矩阵
正定二次型的定义
对于一个二次型,如果对于所有 的非零向量$x$,都有$f(x) > 0$ ,则称该二次型为正定二次型。
高等数学(高教版)第八章λ 矩阵第五节

所以
证毕
下面的定理给了我们一个求初等因子的方法,
它不必事先知道不变因子.
定理 9 首先用初等变换化特征矩阵 E - A
为对角形式,然后将主对角线上的元素分解成互不
相同的一次因式方幂的乘积,
则所有这些一次因
式的方幂(相同的按出现的次数计算)就是 A 的全
部初等因子.
证明 设 E - A 已用初等变换化为对角形
如果多项式 f1(), f2() 都与 g1(), g2() 互
素,则
(f1()g1() , f2()g2())=(f1() , f2())(g1() , g2()).
事实上,令
( f1()g1() , f2()g2()) = d() , ( f1() , f2()) = d1() , ( g1() , g2()) = d2() .
因式的方幂
( j )k1 j , ( j )k2 j ,, ( j )knj
( j 1,2,, r)
在 D() 的主对角线上按递升幂次排列后,得到的
新对角矩阵 D () 与 D() 等价.
此时 D () 就是
E - A 的标准形而且所有不为 1 的
因子,因而它们相似.
反之,如果两个矩阵相似,
则它们有相同的不变因子,因而它们有相同的初
等因子.
综上所述,即得:
定理 8 两个同级复数矩阵相似的充分必要条
是它们有相同的初等因子.
三、初等因子的求法
初等因子和不变因子都是矩阵的相似不变量. 但是初等因子的求法与不变因子的求法比较,反而 方便一些.
在介绍直接求初等因子的方法之前,先来说明 关于多项式的最大公因式的一个性质:
(
j )kij
091550_高等代数(北大版第三版)习题答案

所以
f ( x) g ( x) , 1。 ( f ( x), g ( x)) ( f ( x), g ( x))
11 . 证 明 : 如 果 f ( x), g ( x) 不 全 为 零 , 且 u ( x) f ( x) v( x) g ( x) ( f ( x), g ( x)) , 那 么
解 1)由带余除法,可得 q ( x)
2
2)同理可得 q ( x) x x 1, r ( x) 5 x 7 。 2. m, p, q 适合什么条件时,有 1) x mx 1 | x px q ,
2 3
2) x mx 1 | x px q 。
2 4 2
(u ( x), v( x)) 1 。
证 由上题证明类似可得结论。 12.证明:如果 ( f ( x), g ( x)) 1, ( f ( x), h( x)) 1 ,那么 ( f ( x), g ( x) h( x)) 1 。 证 由假设,存在 u1 ( x), v1 ( x) 及 u2 ( x), v2 ( x) 使
3 2 2
多项式
1) f ( x) x 3 x x 1, g ( x) 3 x 2 x 1 ; 2)
f ( x) x 4 2 x 5, g ( x) x 2 x 2 。 1 7 26 2 x , r ( x) x ; 3 9 9 9
高等代数(北大*第三版)答案
目录
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章 多项式 行列式 线性方程组 矩阵 二次型 线性空间 线性变换
—矩阵
欧氏空间 双线性函数与辛空间
北京大学数学系《高等代数》(第3版)(章节题库 λ-矩阵)

,则
,从而
,于是
由于
的若当标准形依次为
故 A*的若当标准形为
7.求 A 的全体零化多项式集,其中
解:将特征矩阵化为标准形
得 A 的最小多项式为
,故 A 的零化多项式的集合为
最小多项式有着广泛的用途,例如求矩阵的若当标准形,判定
矩阵能否对角化等等.
8.设实数域 R 上矩阵
5 / 64
圣才电子书
标准形为
A 的初等因子是 A+3,(λ-1)2;不变因子是
由
,故 A 的有理标准形为
4.已知
(1)求 A 的不变因子,初等因子和最小多项式.(2)求 A 的若当标准形. 解:(1)用初等变换将 λE-A 化为标准形,
于是 A 的不变因子是 1)2,(λ-1)2;最小多项式为(λ-1)2.
(2)A 的若当标准形为
十万种考研考证电子书、题库视频学习平 台
(1)求 A 的特征多项式 f(λ). (2)f(λ)是否为 R 上不可约多项式?(3)求 A 的最小多项式,要写出理由;(4) A 在 R 上可否对角化? 解:将 λE-A 化为标准形
故 A 不变因子为
(1)A 的特征多项式
(2)由 R 上的不可约多项式仅有 2 次,2 次多项式,故 f(λ)在 R 上可约.
故 a=b=c.由
,即
故 A 至少有两个特征值为 0. 3.设
求矩阵 A 的不变因子,初等因子,若当标准形,有理标准形. 解:因为
2 / 64
圣才电子书
十万种考研考证电子书、题库视频学习平 台
故 A 的特征值为 λ2=3,λ2=1(2 重),1 的几何重数为 3-r(E-A)=1,故 A 的若当
高等代数教学大纲

高等代数课程教学大纲一、课程说明1、课程性质:高等代数是高等院校数学系数学与应用数学专业的一门重要基础课。
对学生数学思想的形成有着重要意义,是进一步学习近世代数、常微分方程等后继课的基础,也为深入理解中学数学打下必要的基础。
高等代数是现代数学的基础知识,是学习其它数学学科和现代科学知识的必备基础和重要工具,尤其在本世纪,计算机技术、通讯信息技术和现代生物工程技术已成为最热门的学科领域,这些学科的发展均需要代数学的知识与支持。
高等代数也是师范院校数学与应用数学专业的一门重要基础课程,既是中学代数的继续和提高,对于中学数学教学工作具有重要的理论指导作用,又是输送更高层次优秀人才的专业知识保证。
2、课程教学目的要求(1)使学生掌握多项式理论、线性代数理论的基础知识和基本理论,着重培养学生解决问题的基本技能。
(2) 使学生熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。
(3) 使学生进一步掌握具体与抽象、特殊与一般、有限与无限等辩证关系,培养其辩证唯物主义观点。
(4) 逐步培养学生的对真理知识的发现和创新的能力,训练其对特殊实例的观察、分析、归纳、综合、抽象概括和探索性推理的能力。
(5) 使学生对中学数学有关内容从理论上有更深刻的认识,以便能够居高临下地掌握和处理高级中学数学教材,进一步提高中学数学教学质量。
(6) 根据教学的实际内容的需要,对大纲所列各章内容,分别提出了具体的目的要求,教学时必须着重抓住重点内容进行教学。
本课程分以一元多项式为主体的多项式理论和线性代数两部分。
线性代数部分涉及行列式、矩阵、线性方程组、二次型、线性空间、线性变换、λ-矩阵、欧几里得空间等。
本课程教学重点应放在多项式理论与线性代数理论。
多项式理论以一元多项式的因式分解唯一性定理为主体介绍了有关多项式的一些必要的知识,为后继课提供准备;线性代数部分则较为系统地介绍了线性方程组,线性空间与线性变换理论。
高等代数第八章 Lamda-矩阵(小结)

一、基本概念 λ-矩阵,可逆的λ-矩阵,秩; λ-矩阵的初 -矩阵,可逆的 -矩阵, -矩阵的 等变换及 标准形, -矩阵的等价; 等变换及(Smith)标准形, λ-矩阵的等价;行列式 标准形 因子,不变因子,初等因子;若当标准形, 因子,不变因子,初等因子;若当标准形,(矩阵 的有理标准形*).
返回 上页 下页
12*.
数域P上 × 方阵 在上相似于 方阵A在上相似于唯一的一个 数域 上n×n方阵 在上相似于唯一的一个
有理标准形,称为 的有理标准形. 有理标准形,称为A的有理标准形. 13*. 是数域P上 维线性空间V的线性变换, 设A是数域 上n维线性空间 的线性变换, 是数域
则在V中存在一组基,使A在该基下的矩阵是有理 则在 中存在一组基, 在该基下的矩阵是有理 标准形,并且这个有理标准形由A唯一决定的, 唯一决定的 标准形,并且这个有理标准形由 唯一决定 称为A的有理标准形. 称为 的有理标准形.
返回 上页 下页
每个n级的复数矩阵A都与一个若当形矩阵相似, 级的复数矩阵 若当形矩阵相似 9. 每个 级的复数矩阵 都与一个若当形矩阵相似, 这个若当形矩阵除去其中若当块的排列次序外是 这个若当形矩阵除去其中若当块的排列次序外是 若当形矩阵除去其中若当块的排列次序外 被矩阵A唯一决定的,它称为A的若当标准形. 被矩阵 唯一决定的,它称为 的若当标准形. 唯一决定的 10. 是复数域上n维线性空间V的线性变换, 10 设A是复数域上 维线性空间 的线性变换, 是复数域上 在V中必定存在一组基,使A在这组基下的矩阵是 中必定存在一组基, 在这组基下的矩阵是 若当形,并且这个若当形矩阵除去其中若当块的 若当形,并且这个若当形矩阵除去其中若当块的 排列次序外是被A唯一决定的 唯一决定的. 排列次序外是被 唯一决定的. 11. 复数矩阵A与对角矩阵相似 相似的 = 是 的 11 复数矩阵 与对角矩阵相似的<=>是A的初等 因子全为一次的( 因子全为一次的(或A的不变因子都没有重根). 全为一次的 的不变因子都没有重根).
北京大学数学系《高等代数》(第3版)(名校考研真题 λ-矩阵)

第8章 λ-矩阵一、分析计算题1.设n 维线性空间V 上的线性变换A 一的最小多项式与特征多项式相同.求证:,使得为v的一个基.[北京大学2007研]解:据题设,设的最小多项式与特征多项式同为则的前个不变因子为l ,1,…,1,第n 个不变因子为,容易知道,矩阵的不变因子也为,所以存在V 的一个基,使得A 在这个基下的矩阵为A ,即现在令,则,因此a 为V 的一个基.2.证明:矩阵不能用相似变换对角化.[中国科技大学研]证明:由于有一个一阶子式为非零常数,因此有即A 的最小多项式为,它有重根,所以A 不能对角化.3.设有一个6阶矩阵其中a ,b 都是实数,且6≠o,试求AE A的不变因子与初等因子,以及A 的若当标准形.[武汉大学研]解:因为特征矩阵①在①的右上角有一个5阶子式等于,而所以从而λE-A 的不变因子为A 的初等因子为A 的若当标准形为4.设A 是n 级幂等阵,且秩为r ,试求(1)矩阵A 的相似标准形,并说明理由;(2)计算[清华大学研]解:(1)因为A2=A,从而A有无重根的零化多项式由于无重根,所以A相似于对角阵,且特征值只能是l或0.再由秩A=r,所以存在可逆阵T,并有A的相似标准形为:其中Er,为r级单位阵.5.已知是6阶方阵A的极小多项式,且tr(A)=6,试求(1)A的特征多项式f(λ)及若当标准形.(2)A的伴随矩阵A*的若当标准形.[华东师范大学研]解:(1)设A的不变因子为(A),i=1,2, (6)由于A的极小多项式是A的最后一个不变因子,所以又A的特征多项式为6次多项式,且tr(A)=6,所以从而A的特征多项式A 有初等因子λ-1,λ-1,(λ-1+i )2,(λ-1+i )2,(λ-1-i )2.A 的若当标准形为(2)由(1)知,存在可逆阵P ,使又显见| A |=4,所以有由于所以A*的若当标准形为6.设A为n阶复方阵.证明:存在一个n维向量α,使α,线性无关的充要条件是A的每一个特征根恰有一个线性无关的特征向量.[南京大学研]证明::由于α,使n维向量组α.线性无关,所以可令取,则P是可逆矩阵,且由可得由此可得A的不变因子为.所以令则A的初等因子为,从而有A的若当标准形可见所以A的每个特征子空间的维数均为1,即A的每个特征根恰有一个线性无关的特征向量.:如果A的每个特征根恰有一个线性无关的特征向量,则对A的任一特征根右,从而A的若当标准形中不同若当块的对角线元素互不相同,因此A的特征多项式与最小多项式相等.设A的最小多项式为则A与有相同的不变因子,因而A与B相似.令,且则即。
高等代数【北大版】课件

多项式的因式分解与根的性质
总结词
多项式的因式分解、根的性质和求解方 法
VS
详细描述
多项式的因式分解是将多项式表示为若干 个线性因子乘积的过程。通过因式分解, 可以更好地理解多项式的结构,简化计算 和证明。此外,多项式的根是指满足多项 式等于0的数。根的性质包括根的和与积、 重根的性质等。求解多项式的根的方法有 多种,如求根公式、因式分解法等。
性方
02
线性方程组的解法
高斯消元法 通过行变换将增广矩阵化为阶梯形矩 阵,从而求解线性方程组。
选主元高斯消元法
选择主元以避免出现除数为0的情况, 提高算法的稳定性。
追赶法
适用于系数矩阵为三对角线矩阵的情 况,通过逐步消去法求解。
迭代法
通过迭代逐步逼近方程组的解,常用 的方法有雅可比迭代法和SOR方法。
向量空间的子空间与基底
总结词
子空间与基底
详细描述
子空间是向量空间的一个非空子集,它也满足向量空间的定义和性质。基底是 向量空间中一个线性独立的集合,它可以用来表示向量空间中的任意元素。基 底中的向量个数称为向量空间的维数。
ቤተ መጻሕፍቲ ባይዱ
向量空间的维数与基底的关系
总结词
维数与基底的关系
详细描述
向量空间的维数与基底密切相关。一个向量空间的维数等于其基底的向量个数。 如果一个向量空间有n个基底,则它的维数为n。同时,如果一个向量空间有有限 个基底,则它的维数是有限的。
行列式
06
行列式的定义与性质
总结词
行列式的定义和性质是高等代数中的 基础概念,包括代数余子式、余子式、 转置行列式等。
详细描述
行列式是由n阶方阵的n!项组成的代数 式,按照一定规则排列,具有一些重 要的性质,如交换律、结合律、代数 余子式等。这些性质在后续章节中有 着广泛的应用。
高等代数教案第八章λ-矩阵

第八章 -λ矩阵§1 -λ矩阵设P 是数域,λ是一个文字,作多项式环][λP ,一个矩阵如果它的元素是λ的多项式,即][λP 的元素,就称为-λ矩阵.在这一章讨论-λ矩阵的一些性质,并用这些性质来证明上一章第八节中关于若当标准形的主要定理.因为数域P 中的数也是][λP 的元素,所以在-λ矩阵中也包括以数为元素的矩阵.为了与-λ矩阵相区别,把以数域P 中的数为元素的矩阵称为数字矩阵.以下用Λ),(),(λλB A 等表示-λ矩阵.我们知道,][λP 中的元素可以作加、减、乘三种运算,并且它们与数的运算有相同的运算规律.而矩阵加法与乘法的定义只是用到其中元素的加法与乘法,因此可以同样定义-λ矩阵的加法与乘法,它们与数字矩阵的运算有相同的运算规律.行列式的定义也只用到其中元素的加法与乘法,因此,同样可以定义一个n n ⨯的-λ矩阵的行列式.一般地,-λ矩阵的行列式是λ的一个多项式,它与数字矩阵的行列式有相同的性质.定义1 如果-λ矩阵)(λA 中有一个)1(≥r r 级子式不为零,而所有1+r 级子式(如果有的话)全为零,则称)(λA 的秩为r .零矩阵的秩规定为零.定义 2 一个n n ⨯的-λ矩阵)(λA 称为可逆的,如果有一个n n ⨯的-λ矩阵)(λB 使E A B B A ==)()()()(λλλλ, (1)这里E 是n 级单位矩阵.适合(1)的矩阵)(λB (它是唯一的)称为)(λA 的逆矩阵,记为)(1λ-A ..定理1 一个n n ⨯的-λ矩阵)(λA 是可逆的充要条件为行列式|)(|λA 是一个非零的数.§2 -λ矩阵在初等变换下的标准形-λ矩阵也可以有初等变换定义3 下面的三种变换叫做-λ矩阵的初等变换:(1) 矩阵的两行(列)互换位置;(2) 矩阵的某一行(列)乘以非零的常数c ;(3) 矩阵有某一行(列)加另一行(列)的)(λϕ倍,)(λϕ是一个多项式. 和数字矩阵的初等变换一样,可以引进初等矩阵.例如,将单位矩阵的第j 行的)(λϕ倍加到第i 行上得行行列列j i j i P j i ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11)(11))(.(O M O ΛO λϕϕ 仍用),(j i P 表示由单位矩阵经过第i 行第j 行互换位置所得的初等矩阵,用))((c i P 表示用非零常数c 乘单位矩阵第i 行所得的初等矩阵.同样地,对一个n s ⨯的-λ矩阵)(λA 作一次初等变换就相当于在)(λA 的左边乘上相应s s ⨯的初等矩阵;对)(λA 作一次初等列变换就相当于)(λA 在的右边乘上相应的n n ⨯的初等矩阵.初等矩阵都是可逆的,并且有))(,())(,(,))(())((,),(),(1111ϕϕ-===----j i P j i P c i P c i P j i P j i P .由此得出初等变换具有可逆性:设-λ矩阵)(λA 用初等变换变成)(λB ,这相当于对)(λA 左乘或右乘一个初等矩阵.再用此初等矩阵的逆矩阵来乘)(λB 就变回)(λA ,而这逆矩阵仍是初等矩阵,因而由)(λB 可用初等变换变回)(λA .定义4 -λ矩阵)(λA 称为与)(λB 等价,如果可以经过一系列初等变换将)(λA 化为)(λB .等价是-λ矩阵之间的一种关系,这个关系显然具有下列三个性质: (!) 反身性:每一个-λ矩阵与它自身等价.(2) 对称性:若)(λA 与)(λB 等价,则)(λB 与)(λA 等价.(3) 传递性:若)(λA 与)(λB 等价,)(λB 与)(λC 等价,则)(λA 与)(λC 等价. 应用初等变换与初等矩阵的关系即得,矩阵)(λA 与)(λB 等价的充要条件为有一系列初等矩阵t l Q Q Q P P P ,,,,,,,2121ΛΛ,使t l Q Q Q B P P P A ΛΛ2121)()(λλ=. (2)这一节主要是证明任意一个-λ矩阵可以经过初等变换化为某种对角矩阵. 引理 设-λ矩阵)(λA 的左上角元素0)(11≠λa ,并且)(λA 中至少有一个元素不能被它除尽,那么一定可以找到一个与)(λA 等价的矩阵)(λB ,它的左上角元素也不为零,但是次数比)(11λa 的次数低.定理2 任意一个非零的n s ⨯的-λ矩阵)(λA 都等价于下列形式的矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00)()()(21O O λλλr d d d , 其中),,2,1)((,1r i d r i Λ=≥λ是首项系数为1的多项式,且)1,,2,1()(|)(1-=+r i d d i i Λλλ.这个矩阵称为)(λA 的标准形.例 用初等变换化-λ矩阵⎪⎪⎪⎭⎫ ⎝⎛--++---=232211121)(λλλλλλλλλλλA 为标准形.§3 不 变 因 子现在来证明,-λ矩阵的标准形是唯一的.定义5 设-λ矩阵)(λA 的秩为r ,对于正整数,1,r k k ≤≤,)(λA 中必有非零的k 级子式. )(λA 中全部k 级子式的首项系数为1的最大公因式)(λk D 称为)(λA 的k 级行列式因子.由定义可知,对于秩为r 的-λ矩阵,行列式因子一共有r 个.行列式因子的意义就在于,它在初等变换下是不变的.定理3 等价的-λ矩阵具有相同的秩与相同的各级行列式因子.现在来计算标准形矩阵的行列式因子.设标准形为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00)()()(21O O λλλr d d d (1) 其中)(,),(),(21λλλr d d d Λ是首项系数为1的多项式,且)1,,2,1()(|)(1-=+r i d d i i Λλλ.不难证明,在这种形式的矩阵中,如果一个k 级子式包含的行与列的标号不完全相同,那么这个k 级子式一定为零.因此,为了计算k 级行列式因子,只要看由k i i i ,,,21Λ行与k i i i ,,,21Λ列组成的k 级子式就行了,而这个k 级子式等于)(,),(),(21λλλk i i i d d d Λ显然,这种k 级子式的最大公因式就是)()()(21λλλk d d d Λ定理4 -λ矩阵的标准形是唯一的.证明 设(1)是)(λA 的标准形.由于)(λA 与(1)等价,它们有相同的秩与相同的行列式因子,因此,)(λA 的秩就是标准形的主对角线上非零元素的个数r ;)(λA的k 级行列式因子就是),,2,1()()()()(21r k d d d D k k ΛΛ==λλλλ. (2)于是)()()(,,)()()(,)()(112211λλλλλλλλ-===r r r D D d D D d D d Λ. (3) 这就是)(λA 的标准形(1)的主对角线上的非零元素是被)(λA 的行列式因子所唯一决定的,所以)(λA 的标准形是唯一的.定义6 标准形的主对角线上非零元素)(,),(),(21λλλr d d d Λ称为-λ矩阵)(λA 的不变因子.定理5 两个-λ矩阵等价的充要条件是它们有相同的行列式因子,或者,它们有相同的不变因子.由(3)可以看出,在-λ矩阵的行列式因子之间,有关系式)1,,2,1()(|)(1-=+r k D D k k Λλλ. (4)在计算-λ矩阵的行列式因子时,常常是先计算最高级的行列式因子.这样,由(4)就大致有了低级行列式因子的范围了.例如,可逆矩阵的标准形.设)(λA 为一个n n ⨯可逆矩阵,由定理1知d A =|)(|λ,其中d 是一非零常数,这就是说1)(=λn D于是由(4)可知,),,2,1(1)(n k D k Λ==λ从而),,2,1(1)(n k d k Λ==λ因此,可逆矩阵的标准形是单位矩阵E .反过来,与单位矩阵等价的矩阵一定是可逆矩阵,因为它的行列式是一个非零的数.这就是说,矩阵可逆的充要条件是它与单位矩阵等价.又矩阵)(λA 与)(λB 等价的充要条件是有一系列初等矩阵t l Q Q Q P P P ,,,,,,,2121ΛΛ,使t l Q Q Q B P P P A ΛΛ2121)()(λλ=特别是,当时E B =)(λ,就得到定理6 矩阵)(λA 是可逆的充要条件是它可以表成一些初等矩阵的乘积. 推论 两个n s ⨯的-λ矩阵)(λA 与)(λB 等价的充要条件为,有一个s s ⨯可逆矩阵与一个n n ⨯可逆矩阵)(λQ ,使)()()()(λλλλQ A P B =.§4 矩阵相似的条件在求一个数字矩阵A 的特征值和特征向量时曾出现过-λ矩阵A E -λ,我们称它A 为的特征矩阵.这一节的主要结论是证明两个n n ⨯数字矩阵A 和B 相似的充要条件是它们的特征矩阵A E -λ和B E -λ等价.引理1 如果有n n ⨯数字矩阵00,Q P 使00)(Q B E P A E -=-λλ, (1)则A 和B 相似.引理2 对于任何不为零的n n ⨯数字矩阵A 和-λ矩阵)(λU 与)(λV ,一定存在-λ矩阵)(λQ 与)(λR 以及数字矩阵0U 和0V 使0)()()(U Q A E U +-=λλλ, (2)0))(()(V A E R V +-=λλλ. (3)定理7 设A ,B 是数域P 上两个n n ⨯矩阵. A 与B 相似的充要条件是它们的特征矩阵A E -λ和B E -λ等价.矩阵A 的特征矩阵A E -λ的不变因子以后简称为A 的不变因子.因为两个-λ矩阵等价的充要条件是它们有相同的不变因子,所以由定理7即得推论 矩阵A 与B 相似的充要条件是它们有相同的不变因子.应该指出,n n ⨯矩阵的特征矩阵的秩一定是n .因此,n n ⨯矩阵的不变因子总是有n 个,并且,它们的乘积就等于这个矩阵的特征多项式.以上结果说明,不变因子是矩阵的相似不变量,因此我们可以把一个线性变换的任一矩阵的不变因子(它们与该矩阵的选取无关)定义为此线性变换的不变因子.§5 初等因子一、初等因子的概念定义7 把矩阵A (或线性变换A )的每个次数大于零的不变因子分解成互不相同的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次数计算)称为矩阵A (或线性变换A )的初等因子.例 设12级矩阵的不变因子是222229)1)(1()1(,)1()1(,)1(,1,,1,1++-+--λλλλλλ43421Λ个. 按定义,它的初等因子有7个,即22222)(,)(,)1(,)1(,)1(,)1(,)1(i i +-++---λλλλλλλ.其中2)1(-λ出现三次,1+λ出现二次.现在进一步来说明不变因子和初等因子的关系.首先,假设n 级矩阵A 的不变因子)(,,)(,)(21λλλn d d d Λ为已知.将),,2,1)((n i d i Λ=λ分解成互不相同的一次因式方幂的乘积:r k r k k d 11211)()()()(211λλλλλλλ---=Λ,r k r k k d 22221)()()()(212λλλλλλλ---=Λ,nr n n k r k k n d )()()()(2121λλλλλλλ---=ΛΛΛΛΛΛΛ,则其中对应于1≥ij k 的那些方幂)1()(≥-ij k j k ij λλ就是A 的全部初等因子.注意不变因子有一个除尽一个的性质,即)1,,2,1()(|)(1-=+n i d d i i Λλλ,从而),,2,1;1,,2,1()(|)(,1r j n i j i ij k j k j ΛΛ=-=--+λλλλ.因此在)(,,)(,)(21λλλn d d d Λ的分解式中,属于同一个一次因式的方幂的指数有递升的性质,即),,2,1(21r j k k k nj j j ΛΛ=≤≤≤.这说明,同一个一次因式的方幂作成的初等因子中,方次最高的必定出现在)(λn d 的分解中,方次次高的必定出现在)(1λ-n d 的分解中.如此顺推下去,可知属于同一个一次因式的方幂的初等因子在不变因子的分解式中出现的位置是唯一确定的.二、初等因子与不变因子的求法上面的分析给了我们一个如何从初等因子和矩阵的级数唯一地作出不变因子的方法.设一个n 级矩阵的全部初等因子为已知,在全部初等因子中将同一个一次因式),,2,1)((r j j Λ=-λλ的方幂的那些初等因子按降幂排列,而且当这些初等因子的个数不足n 时,就在后面补上适当个数的1,使得凑成n 个.设所得排列为),,2,1(,)(,,)(,)(1,1r j j j n nj kj k j k j ΛΛ=----λλλλλλ. 于是令 ),,2,1()()()()(2121n i d ir i i k r k k i ΛΛ=---=λλλλλλλ,则)(,,)(,)(21λλλn d d d Λ就是A 的不变因子.这也说明了这样一个事实:如果两个同级的数字矩阵有相同的初等因子,则它们就有相同的不变因子,因而它们相似.反之,如果两个矩阵相似,则它们有相同的不变因子,因而它们有相同的初等因子.综上所述,即得定理8 两个同级复数矩阵相似的充要条件是它们有相同的初等因子.初等因子和不变因子都是矩阵的相似不变量.但是初等因子的求法与不变因子的求法比较,反而方便一些.如果多项式)(,)(21λλf f 都与)(,)(21λλg g 互素,则.))(,)(())(,)(())()(),()((21212211λλλλλλλλg g f f g f g f ⋅=.引理 设)()(00)()()(2211λλλλλg f g f A =,)()(00)()()(2112λλλλλg f g f B =,如果多项式)(,)(21λλf f 都与)(,)(21λλg g 互素,则)(λA 和)(λB 等价.定理9 首先用初等变换化特征矩阵A E -λ为对角形式,然后将主对角线上的元素分解成互不相同的一次因式方幂的乘积,则所有这些一次因式的方幂(相同的按出现的次数计算)就是A 的全部初等因子.§6 若尔当(Jordan)标准形的理论推导我们用初等因子的理论来解决若尔当标准形的计算问题.首先计算若尔当标准形的初等因子.不难算出若尔当块nn J ⨯⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0001000010001000λλλΛM M M M ΛΛΛ 的初等因子是n )(0λλ-.事实上,考虑它的特征矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=-00001000010001000λλλλλλλΛM M M M ΛΛΛJ E显然n J E )(00λλλ-=-,这就是0J E -λ的n 级行列式因子.由于0J E -λ有一个1-n 级子式是100)1(100100001001--=------n ΛΛM MM M ΛΛλλλλ,所以它的1-n 级行列式因子是1,从而它以下各级的行列式因子全是1.因此它的不变因子n n n d d d )()(,1)()(011λλλλλ-====-Λ.由此即得,0J E -λ的初等因子是n )(0λλ-.再利用§5的定理9,若尔当形矩阵的初等因子也很容易算出. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=s J J J J O21 是一个若尔当形矩阵,其中),,2,1(100010001000s i J ii k k i i ii ΛΛM M M M ΛΛΛ=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯λλλ. 既然i J 的初等因子是),,2,1()(s i i k i Λ=-λλ,所以i J E -λ与⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-i k i )(11λλO 等价.于是⎪⎪⎪⎪⎪⎭⎫⎝⎛---=-s k k k J E J E J E J E s λλλλO2121 与⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---s k s k k )(11)(11)(112121λλλλλλOOO 等价.因此,J 的全部初等因子是:s k s k k )(,,)(,)(2121λλλλλλ---Λ.这就是说,每个若尔当形矩阵的全部初等因子就是由它的全部若尔当形矩阵的初等因子构成的.由于每个若尔当块完全由它的级数n 与主对角线上元素0λ所刻划,而这两个数都反映在它的初等因子n )(0λλ-中.因此,若尔当块被它的初等因子唯一决定.由此可见,若尔当形矩阵除去其中若尔当块排列的次序外被它的初等因子唯一决定.定理10 每个n 级的复数矩阵A 都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序外是被矩阵A 唯一决定的,它称为A 的若尔当标准形.例1 §5的例中,12级矩阵的若尔当标准形就是1212101011110111011101⨯⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----i i i i 例2 求矩阵⎪⎪⎪⎭⎫⎝⎛-----=411301621A的若尔当标准形.定理10换成线性变换的语言来说就是:定理11 设A 是复数域上n 维线性空间V 的线性变换,在V 中必定存在一组基,使A 在这组基下的矩阵是若尔当形,并且这个若尔当形矩阵除去其中若尔当块的排列次序外是被A 唯一决定的.应该指出,若尔当形矩阵包括对角矩阵作为特殊情形,那就是由一级若尔当块构成的若尔当形矩阵,由此即得定理12 复数矩阵A 与对角矩阵相似的充要条件是A 的初等因子全为一次的.根据若尔当形的作法,可以看出矩阵A 的最小多项式就是A 的最后一个不变因子.因此有定理13 复数矩阵A 与对角矩阵相似的充要条件是A 的不变因子都没有重根.虽然我们证明了每个复数矩阵A 都与一个若尔当形矩阵相似,并且有了具体求矩阵A 的若尔当标准形的方法,但是并没有谈到如何确定过渡矩阵T ,使AT T 1-成若尔当标准形的问题. T 的确定牵涉到比较复杂的计算问题.最后指出,如果规定上三角形矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000100000100001λλλλΛΛM M M M M ΛΛ为若尔当块,应用完全类似的方法,可以证明相应于定理10,定理11的结论也成立.§7 矩阵的有理标准形前一节中证明了复数域上任一矩阵A 可相似于一个若尔当形矩阵.这一节将对任意数域P 来讨论类似的问题.我们证明了P 上任一矩阵必相似于一个有理标准形矩阵.定义8 对数域P 上的一个多项式n n n a a d +++=-Λ11)(λλλ称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=--12110010001000a a a a A n n n ΛM M M M ΛΛΛ (1)为多项式)(λd 的伴侣阵.容易证明,A 的不变因子(即A E -λ的不变因子)是)(,1,,1,11λd n 43421Λ个-.(见习题3)定义9 下列准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A A A A O21, (2) 其中i A 分别是数域P 上某些多项式),,2,1()(s i d i Λ=λ的伴侣阵,且满足)(||)(|)(21λλλs d d d Λ,A 就称为P 上的一个有理标准形矩阵.引理 (2)中矩阵A 的不变因子为)(,,)(,)(,1,,1,121λλλs d d d ΛΛ,其中1的个数等于)(,,)(,)(21λλλs d d d Λ的次数之和n 减去s .定理14 数域P 上n n ⨯方阵A 在上相似于唯一的一个有理标准形,称为A 的有理标准形.把定理14的结论变成线性变换形式的结论就成为定理15 设A 是数域P 上n 维线性空间V 的线性变换,则在V 中存在一组基,使A 在该基下的矩阵是有理标准形,并且这个有理标准形由A 唯一决定的,称为A 的有理标准形.例 设33⨯矩阵A 的初等因子为)1(,)1(2--λλ,则它的不变因子是1,2)1(,)1(--λλ,它的有理标准形为.⎪⎪⎪⎭⎫ ⎝⎛-210100001.第八章 -λ矩阵(小结)一、基本概念-λ矩阵,可逆的-λ矩阵,秩;-λ矩阵的初等变换及标准形,-λ矩阵的等价;行列式因子,不变因子,初等因子;若尔当标准形,矩阵的有理标准形.二、主要结论1. 一个n n ⨯的-λ矩阵)(λA 是可逆的充要条件为行列式|)(|λA 是一个非零的数.2. 任意一个非零的n s ⨯的-λ矩阵)(λA 都等价于其唯一的标准形矩阵:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛00)()()(21O O λλλr d d d , 其中),,2,1)((,1r i d r i Λ=≥λ是首项系数为1的多项式,且)1,,2,1()(|)(1-=+r i d d i i Λλλ.3. 两个-λ矩阵等价的充要条件是它们有相同的行列式因子,或者,它们有相同的不变因子.4. 矩阵)(λA 是可逆的充要条件是它可以表成一些初等矩阵的乘积.5. 两个n s ⨯的-λ矩阵)(λA 与)(λB 等价的充要条件为,有一个s s ⨯可逆矩阵与一个n n ⨯可逆矩阵)(λQ ,使)()()()(λλλλQ A P B =.6. 设A ,B 是数域P 上两个n n ⨯矩阵. A 与B 相似的充要条件是它们的特征矩阵A E -λ和B E -λ等价.7. 两个同级复数矩阵相似的充要条件是它们有相同的初等因子.8. 首先用初等变换化特征矩阵A E -λ为对角形式,然后将主对角线上的元素分解成互不相同的一次因式方幂的乘积,则所有这些一次因式的方幂(相同的按出现的次数计算)就是A的全部初等因子.9. 每个n级的复数矩阵A都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序外是被矩阵A唯一决定的,它称为A的若尔当标准形.10. 设A是复数域上n维线性空间V的线性变换,在V中必定存在一组基,使A在这组基下的矩阵是若尔当形,并且这个若尔当形矩阵除去其中若尔当块的排列次序外是被A唯一决定的.11. 复数矩阵A与对角矩阵相似的充要条件是A的初等因子全为一次的(或A的不变因子都没有重根).12. 数域P上nn 方阵A在上相似于唯一的一个有理标准形,称为A的有理标准形.13. 设A是数域P上n维线性空间V的线性变换,则在V中存在一组基,使A在该基下的矩阵是有理标准形,并且这个有理标准形由A唯一决定的,称为A 的有理标准形.。
高等代数.第八章.λ-矩阵(介绍).课堂笔记

课堂笔记
第九章
第八章 λ-矩阵(介绍)
本章主要介绍如何求给定的复数矩阵的若尔当标准形. 已学知识回顾: 第七章第五节 ∀������ ∈ P ������×������ ,������与对角矩阵相似当且仅当������有������个线性无关的特征向量. 事实上������ ′ ������������ = ������������������������(������1 , ������2 , … , ������������ ), ������ ∈ P ������×������ ,������可逆, ⟺ ������������ = ������ ∙ ������������������������(������1 , ������2 , … , ������������ ) ⟺ ������������������ = ������������ ������������ , ������ = 1,2, … , ������, 其中,������������ 为������的第������ 个列向量,即������ = (������1, ������2 , … , ������������ ). 第九章第六节 ∀������ ∈ P ������×������ 且������ = ������′,������正交相似于对角阵,即存在正交阵������, 使得������ ′ ������������ = ������������������������(������1 , ������2 , … , ������������ ). ∀������ ∈ ℂ������×������ ,������与若尔当形矩阵������相似,且出去若尔当块排列次序外,������是唯一的(称为 ������的若尔当标准形). ——定理 14 这里,������级若尔当块是指如下形式的复数矩阵: ������0 1 ������0 ,记作������(������0 , ������), ������0 ∈ ℂ, 1 ⋱ ⋱ ������0 [ 1 ������0 ] 而由若干个若尔当块合成的分块对角矩阵 ������1 ������ = [ ������2 ,称为若尔当形矩阵,其中������������ = ������(������������ , ������������ ),
高等代数§8.1 λ─矩阵

§第八章 λ─矩阵
§8.1 λ─矩阵
代数与几何教研室
一、λ-矩阵的概念
定义:
设P是一个数域, 是一个文字, P [ ] 是多项式环, 若矩阵A的元素是 的多项式,即
P [ ]
的元素,则
称A为 ―矩阵,并把A写成 A ( ).
注:
① P P [ ], ∴ 数域P上的矩阵—数字矩阵也
的秩为r .
零矩阵的秩规定为0.
三、可逆λ-矩阵
定义:
一个n n 的 ―矩阵 A ( ) 称为可逆的,如果有一 一个 n n 的 ―矩阵 B ( ) ,使
A( )B ( ) B ( ) A( ) E
这里E是n级单位矩阵. 称 B ( ) 为 A ( ) 的逆矩阵(它是唯一的),记作
这里 A ( ), B ( ) 为同级 ―矩阵. ④ 与数字矩阵一样, ―矩阵也有子式的概念.
―矩阵的各级子式是 的多项式.
二、λ-矩阵的秩
定义:
若 ―矩阵 A ( ) 中有一个 r ( r 1) 级子式不为零, 而所有 r
A( )
1
级的子式(若有的话)皆为零,则称
是 ―矩阵.
② ―矩阵也有加法、减法、乘法、数量乘法运算, 其定义与运算规律与数字矩阵相同. ③ 对于 n n 的 ―矩阵,同样有行列式 | A ( ) |, 它是一个 的多项式,且有
| A ( ) B ( ) | | A ( ) || B ( ) | .
A
1
( ).
判定:
(定理1) 一个 n n 的 ―矩阵 A ( )可逆
A( )
是一个非零常数. 若 A ( ) 可逆,则有 B ( ) ,使
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学与应用数学
“ ” 设 A( ) d 是一个非零常数.
A ( ) 为 A( )的伴随矩阵,则
1 1 A( ) A ( ) A ( ) A( ) E d d
A( ) 可逆.
1 A ( ) A ( ). d
1
( )
1
i行 j行 1
数学与应用数学
② 初等矩阵皆可逆.
p(i , j )1 p(i , j )
p( i (c ))1 p( i ( 1 c ))
p(i , j( ( ))) p(i , j( ( )))
1
③ 对一个 s n 的 ―矩阵 A( )作一次初等行变换 就相当于在 A( ) 在的左边乘上相应的 s s 的初等矩 阵;对 A( ) 作一次初等列变换就相当于在 A( )的右 边乘上相应的 n n的初等矩阵.
A1 ( ).
2015-6-12§8.1 λ─矩阵
数学与应用数学
判定:
(定理1) 一个 n n 的 ―矩阵 A( )可逆
A( ) 是一个非零常数.
证: “ ”
若 A( ) 可逆,则有 B ( ),使
A( ) B( ) E
两边取行列式,得
A( ) B( ) A( ) B( ) E 1 A( ) , B( ) 都是零次多项式,即为非零常数.
( ) 是一个多项式.
2015-6-12§8.2 λ─矩阵的标准形
数学与应用数学
注:
为了书写的方便,我们采用以下记号
[ i , j ]代表 i , j 两行(列)互换; [ i ( c )]代表第 i 行乘以非零数 c ; [i j ( ( ))] 代表把第 j 行(列)的 ( )倍加到第 i
称之 A ( ) 为 的 标准 形.
d r ( )
0
其中 r 1, d i ( ) ( i 1,2,
, r ) 是首项系数为1的
, r 1).
多项式,且
d i ( ) d i 1 ( ) ( i 1,2,
数学与应用数学
2015-6-12§8.2 λ─矩阵的标准形
证: 经行列调动之后,可使 A( ) 的左上角元素
除尽,这种情况的证明i)与类似.
iii) A( )的第一行与第一列中的元素都可以被 a11 ( )
除尽,但 A( ) 中有另一个元素 aij ( ) ( i 1, j 1)
2015-6-12§8.2 λ─矩阵的标准形
数学与应用数学
被 a11 ( ) 除尽. 我们设 ai 1 ( ) a11 ( ) ( ).
―矩阵的各级子式是 的多项式.
2015-6-12§8.1 λ─矩阵
数学与应用数学
二、λ-矩阵的秩
定义:
若 ―矩阵 A( ) 中有一个 r ( r 1) 级子式不为零, 而所有 r 1 级的子式(若有的话)皆为零,则称2015-6-12§8.1 λ─矩阵
行(列).
2015-6-12§8.2 λ─矩阵的标准形
数学与应用数学
二、λ-矩阵的初等矩阵
定义:
将单位矩阵进行一次 ―矩阵的初等变换所得的 矩阵称为 ―矩阵的初等矩阵.
注: ① 全部初等矩阵有三类:
1 1 0 1 1 0 1 i行 j行 1
aij ( ) (1 ( ))a1 j ( )
不能被左上角元素 a11 ( ) 除尽,转为情形 ii) . 证毕.
2015-6-12§8.2 λ─矩阵的标准形
数学与应用数学
2.(定理2)任意一个非零的 s n的 一矩阵 A( ) 都等价于下列形式的矩阵
d1 ( ) d 2 ( ) 0
P (i , j )
2015-6-12§8.2 λ─矩阵的标准形
数学与应用数学
1 p( i (c ))
1
c
1
1
i行
1 p( i , j ( ( )))
2015-6-12§8.2 λ─矩阵的标准形
数学与应用数学
r ( ) B( ). [1,i ] a11 ( ) B ( ) 的左上角元素 r ( ) 符合引理的要求,
故 B ( ) 为所求的矩阵. ii) 在 A( ) 的第一行中有一个元素 a1i ( )不能被 a11 ( )
1
2015-6-12§8.1 λ─矩阵
数学与应用数学
§8.2 λ─矩阵的标准形
一、λ-矩阵的初等变换 二、λ-矩阵的初等矩阵
三、等价λ-矩阵 四、λ-矩阵的对角化
2015-6-12§8.2 λ─矩阵的标准形
数学与应用数学
一、λ-矩阵的初等变换
定义:
λ―矩阵的初等变换是指下面三种变换: ① 矩阵两行(列)互换位置; ② 矩阵的某一行(列)乘以非零常数 c ; ③ 矩阵的某一行(列)加另一行(列)的 ( ) 倍,
其中余式 r ( ) 0 ,且 r ( x ) a11 ( )
对 A( ) 作下列初等行变换:
a11 ( ) A( ) ai 1 ( )
2015-6-12§8.2 λ─矩阵的标准形
a11 ( ) [ i 1( q )] r ( )
第八章 λ─矩阵
§1 λ-矩阵 §2 λ-矩阵的标准形
§3 不变因子 §4 矩阵相似的条件 §5 初等因子 §6 若当(Jordan)标准形的理论推导 小结与习题
2015-6-12 数学与应用数学
§8.1 λ─矩阵
一、λ-矩阵的概念 二、λ-矩阵的秩 三、可逆λ-矩阵
2015-6-12§8.1 λ─矩阵
数学与应用数学
三、可逆λ-矩阵
定义:
一个n n 的 ―矩阵 A( ) 称为可逆的,如果有一 一个 n n的 ―矩阵 B ( ) ,使
A( ) B( ) B( ) A( ) E
这里E是n级单位矩阵. 称 B ( ) 为 A( ) 的逆矩阵(它是唯一的),记作
数学与应用数学
2015-6-12§8.2 λ─矩阵的标准形
1 i
a11 ( ) 0
A1 ( )
aij ( ) (1 ( ))a1 j ( ) aij ( ) a1 j ( ) ( )
矩阵 A1 ( ) 的第一行中,有一个元素:
其中 d1 ( ) 与 d 2 ( ) 都是首1多项式( d1 ( ) 与 bs ( ) 只差一个常数倍数),而且 能除尽 A2 ( ) 的全部元素. 如此下去, A( ) 最后就化成了标准形.
2015-6-12§8.2 λ─矩阵的标准形
数学与应用数学
d1 ( ) | d 2 ( ),
数学与应用数学
一、λ-矩阵的概念
定义:
设P是一个数域, 是一个文字, P[ ]是多项式环, 若矩阵A的元素是 的多项式,即 P[ ] 的元素,则 称A为 ―矩阵,并把A写成 A( ).
注:
①
P P[ ], ∴ 数域P上的矩阵—数字矩阵也
是 ―矩阵.
2015-6-12§8.1 λ─矩阵
传递性: A( ) 与 B ( ) 等价, B ( ) 与 C ( ) 等价
A( ) 与C ( ) 等价.
2015-6-12§8.2 λ─矩阵的标准形
数学与应用数学
2) A( )与 B ( ) 等价 存在一系列初等矩阵
P1
PS , Q1
Qt 使 A( ) P1
B2 ( ) 左上角元素 b2 ( ) 0, b2 ( ) b1 ( ) .
如此下去,将得到一系列彼此等价的λ- 矩阵:
2015-6-12§8.2 λ─矩阵的标准形
数学与应用数学
A( ), B1 ( ), B2 ( ),
.
它们的左上角元素皆为零,而且次数越来越低. 但次数是非负整数,不可能无止境地降低. 因此在有限步以后,将终止于一个λ-矩阵 Bs ( ) 它的左上角元素 bs ( ) 0 ,而且可以除尽 Bs ( ) 的全部元素 bij ( ), 即
数学与应用数学
② ―矩阵也有加法、减法、乘法、数量乘法运算, 其定义与运算规律与数字矩阵相同. ③ 对于 n n 的 ―矩阵,同样有行列式 | A( ) |, 它是一个 的多项式,且有
| A( ) B( ) || A( ) || B( ) | .
这里 A( ), B( ) 为同级 ―矩阵. ④ 与数字矩阵一样, ―矩阵也有子式的概念.
对 A( ) 作下述初等行变换:
a11 ( ) A( ) ai 1 ( )
a1 j ( ) aij ( )
i 1( )
a1 j ( ) a11 ( ) 0 ... aij ( ) a1 j ( ) ( ) ...
bij ( ) bs ( )qij ( j ),
对 Bs ( ) 作初等变换:
2015-6-12§8.2 λ─矩阵的标准形
i 1,2,
, s; j 1,2,
, n.
数学与应用数学
bs ( ) 0 0 [21( q21 )],[3 1( q31 )], B( ) [21( q21 )],[31( q13 )], A1 ( ) 0
0
A1 ( ) 中的全部元素都是可以被 bs ( ) 除尽的,
因为它们都是 Bs ( ) 中元素的组合. 如果 A1 ( ) 0 ,则对于 A1 ( ) 可以重复上述过程,