高中数学第一章导数及其应用1.1.1平均变化率教案
《平均变化率》教案及教案说明
平均变化率江苏省南京外国语学校严青一、教材:苏教版《普通高中课程标准实验教科书(选修2—2)·数学》第1章。
二、地位和作用:《导数及其应用》在整个高中教材中的地位和作用是非常重要的,它既是对函数知识的补充和完善,也为今后进一步学习微积分奠定基础。
通过本章的学习,使学生对变量数学的思想方法有新的感悟,促进学生全面认识数学的价值(应用价值、科学价值、文化价值),从而进一步发展学生的数学思维能力。
新课标对“导数及其应用”内容的处理有了较大的变化,它不介绍极限的形式化定义及相关知识,也有别于以往教材将导数仅仅作为一种特殊的极限、一种“规则”来学习的处理方式,而是按照:平均变化率—瞬时变化率—导数的概念—导数的几何意义这样的顺序来安排,用“逼近”的方法定义导数,这种概念建立的方式形象、直观、生动又容易理解,突出了导数概念的本质。
平均变化率是是本章的一个重要的基本概念,本节课是《导数及其应用》的起始课,对导数概念的形成起着奠基作用。
三、教学目标✧通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型;✧理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率;✧感受数学模型在刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力。
四、教学重点平均变化率概念教学难点平均变化率概念的形成过程五、教学方法与教学手段✧启发式教学与探究式学习相结合。
通过生活中的实例,引导学生分析和归纳,让学生在已有认知结构的基础上建构新知识,从而达到概念的自然形成,进而从数学的外部到数学的内部,启发学生运用概念探究新问题。
这样学生不会感到突兀,并能进一步感受到数学来源于生活,生活中处处蕴含着数学化的知识,同时可以提高他们学习数学的主观能动性。
教师在教学中应遵循五“W”原则(who,what,why,when,how),尤其要关注其中的三个原则,即“谁在学?为什么要学?怎么学?”✧利用多媒体辅助教学,突出重点、突破难点,提高教学效率。
高中数学 第一章 导数及其应用教案 苏教版选修22
第一章导数及其应用1.1导数的概念1.1.1 平均变化率(教师用书独具)●三维目标1.知识与技能通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型.2.过程与方法理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率.3.情感、态度与价值观感受数学模型刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力.●重点难点重点:平均变化率的概念.难点:平均变化率概念的形成过程.为了使得平均变化率概念的引入自然流畅,可创设实际问题情境,如气球吹气时的平均膨胀率、跳板跳水某段起跳后的平均速度,通过具体的实例提出问题;借助天气预报中某天气温的变化曲线,以形助数,让学生有一个直观的认识,然后从数学的角度,描述这种现象就一目了然了.(教师用书独具)●教学建议本节课是起始课,对导数概念的形成起着奠基作用.平均变化率是个核心概念,它在整个高中数学中占有极其重要的地位,是研究瞬时变化率及其导数概念的基础.在这个过程中,要注意特殊到一般、数形结合等数学思想方法的渗透.●教学流程创设问题情境,提出问题,根据气球的平均膨胀率得出平均变化率的概念.⇒应用平均变化率的概念,完成例1及其变式训练.⇒实际问题中的平均变化率,完成例2及其变式训练.⇒通过例3及其变式训练,进一步理解平均变化率的意义及其应用.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.在吹气球时,气球的半径r(单位:dm )与气球空气容量(体积)V(单位:L )之间的函数关系是r(V)=33V4π.1.当空气容量V 从0增加到1 L 时,气球的平均膨胀率是多少? 【提示】 平均膨胀率为r (1)-r (0)1-0≈0.621=0.62(dm /L ).2.当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 【提示】 平均膨胀率为r (V 2)-r (V 1)V 2-V 1.一般地,函数y =f(x)在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1,其中Δy=f(x 2)-f(x 1)是函数值的改变量.如图所示,函数y =f(x)图象上四点A ,B ,D ,E.1.由Δy =f(x 2)-f(x 1)能否判断曲线在A→B 段的陡峭程度? 【提示】 不能.2.平均变化率f (x 2)-f (x 1)x 2-x 1能否近似刻画曲线在A→B 段的陡峭程度?为什么?曲线段AB 与曲线段DE 哪段更陡峭?【提示】 能.因为k AB =f (x 2)-f (x 1)x 2-x 1表示A ,B 两点所在直线的斜率,所以可近似地刻画曲线段AB 的陡峭程度.由于k DE >k AB ,知曲线段DE 更加陡峭.从平均变化率的定义知,其几何意义是经过曲线y =f(x)上两点P(x 1,y 1),Q(x 2,y 2)的直线PQ 的斜率.因此平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.已知函数f(x)=x 2+x ,分别计算f(x)在区间[1,3],[1,2],[1,1.5]上的平均变化率.【思路探究】 对于给定的三个区间,分别求函数值的增量Δy 与自变量的增量Δx 的比值ΔyΔx. 【自主解答】 (1)函数f(x)在区间[1,3]上的平均变化率为f (3)-f (1)3-1=32+3-(12+1)2=5.(2)函数f(x)在区间[1,2]上的平均变化率为 f (2)-f (1)2-1=22+2-(12+1)1=4.(3)函数f(x)在区间[1,1.5]上的平均变化率为f (1.5)-f (1)1.5-1=1.52+1.5-(12+1)0.5=3.5.1.本题主要依据平均变化率的意义代入公式直接计算,解题的关键是弄清自变量与函数值的增量.2.求函数y =f(x)在区间[x 1,x 2]上的平均变化率的步骤: (1)作差:求Δx =x 2-x 1,Δy =f(x 2)-f(x 1); (2)作商:求Δy Δx ,即f (x 2)-f (x 1)x 2-x 1的值.求函数y =5x 2+6在区间[2,3]上的平均变化率.【解】 函数在区间[2,3]上的平均变化率为f (3)-f (2)3-2=5×32+6-5×22-61=45-20=25.在高台跳水运动中,运动员相对于水面的高度h(单位:m )与起跳后的时间t(单位:s )存在函数关系h(t)=-4.9t 2+6.5t +10.(1)求运动员在第一个0.5 s 内高度h 的平均变化率;(2)求高度h 在1≤t≤2这段时间内的平均变化率.【思路探究】 (1)求函数h(t)=-4.9t 2+6.5t +10在区间[0,0.5]上的平均变化率;(2)求函数h(t)=-4.9t 2+6.5t +10在区间[1,2]上的平均变化率.【自主解答】 (1)运动员在第一个0.5 s 内高度h 的平均变化率为h (0.5)-h (0)0.5-0=4.05(m /s ).(2)在1≤t≤2这段时间内,高度h 的平均变化率为h (2)-h (1)2-1=-8.2(m /s ).1.结合物理知识可知,在第一个0.5 s 内高度h 的平均变化率为正值,表示此时运动员在起跳后处于上升过程;在1≤t≤2这段时间内,高度h 的平均变化率为负值,表示此时运动员已开始向水面下降.事实上平均变化率的值可正、可负也可以是0.2.平均变化率的应用主要有:求某一时间段内的平均速度,物体受热膨胀率,高度(重量)的平均变化率等等.解决这些问题的关键在于找准自变量和因变量.已知某物体运动位移与时间的关系为s(t)=12gt 2,试分别计算t 从3 s 到3.1 s ,3.001s 各段的平均速度,通过计算你能发现平均速度有什么特点吗?【解】 设物体在区间[3,3.1],[3,3.001]上的平均速度分别为V 1,V 2, 则ΔS 1=S(3.1)-S(3)=12g ×3.12-12g ×32=0.305g(m ). ∴物体从3 s 到3.1 s 时平均速度V 1=ΔS 13.1-3=0.305g 0.1=3.05g(m /s ),同理V 2=ΔS 23.001-3=0.003 000 5g 0.001=3.000 5g(m /s ).通过计算可以发现,随着时间间隔Δt 的变小,平均速度在向3g m /s 靠近,而3g m /s 为物体做自由落体运动时,t =3 s 时的瞬时速度.2012年冬至2013年春,我国北部某省冬麦区遭受严重干旱,根据某市农业部门统计,该市小麦受旱面积如图1-1-1所示,据图回答:图1-1-1(1)2012年11月至2012年12月间,小麦受旱面积变化大吗?(2)哪个时间段内,小麦受旱面积增幅最大?(3)从2012年11月到2013年2月,与从2013年1月到2013年2月间,试比较哪个时间段内,小麦受旱面积增幅较大?【思路探究】利用平均变化率的计算公式及其实际意义进行分析.【自主解答】(1)在2012年11月至2012年12月间,Δs变化不大,即小麦受旱面积变化不大.(2)由图形知,在2013年1月至2013年2月间,平均变化率ΔsΔt较大,故小麦受旱面积增幅最大.(3)在2012年11月至2013年2月间,平均变化率=s B -s A3, 在2013年1月至2013年2月间,平均变化率=s B -s C1=s B -s C ,显然k BC >k AB ,即s B -s C >s B -s A3,∴在2013年1月至2013年2月间,小麦受旱面积增幅较大.1.本例中的(2)(3)可数形结合,利用平均变化率进行分析,抓住平均变化率的几何意义.2.在实际问题中,平均变化率具有现实意义,应根据问题情境,理解其具体意义.为了检测甲、乙两辆车的刹车性能,分别对两辆车进行了测试,甲车从25 m /s 到0 m /s 花了5 s ,乙车从18 m /s 到0 m /s 花了4 s ,试比较两辆车的刹车性能.【解】 甲车速度的平均变化率为0-255=-5(m /s 2),乙车速度的平均变化率为0-184=-4.5(m /s 2),平均变化率为负值说明速度在减少,因为刹车后,甲车的速度变化相对较快,所以甲车的刹车性能较好.实际问题中平均变化率意义不明致误甲、乙二人跑步,路程与时间关系以及百米赛跑路程与时间关系分别如图1-1-2中①②所示,试问:图1-1-2(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?【错解】(1)对于图①,设甲、乙两曲线的右端点分别为A,B,显然有k OB>k OA,故乙的平均变化率大于甲的平均变化率,所以乙比甲跑得快.(2)对于图②,在[0,t0]上,甲、乙的时间、路程相同,平均变化率相等,速度相等,所以两人跑得一样快.【错因分析】在(2)中,题意不明,误求甲、乙在[0,t0]上的平均变化率认为是终点附近的平均速度.【防范措施】(1)在实际问题中,理解平均变化率具有的现实意义;(2)弄清题目的要求,区别平均速度与瞬时速度.【正解】(1)同上面解法.(2)对于图②,在[0,t0]上,甲、乙的平均变化率是相等的,但甲的平均变化率是常数,而乙的变化率逐渐增大,快到终点时,乙的变化率大于甲的变化率,所以,快到终点时,乙跑得较快.1.准确理解平均变化率的意义是求解平均变化率的关键,其实质是函数值增量Δy与自变量取值增量Δx的比值.涉及具体问题,计算Δy很容易出现运算错误,因此,计算时要注意括号的应用,先列式再化简,这是减少错误的有效方法.2.函数的平均变化率在生产生活中有广泛的应用,如平均速度、平均劳动生产率、面积体积变化率等.解决这类问题的关键是能从实际问题中引出数学模型并列出函数关系式,需注意是相对什么量变化的.1.函数y=2x+2在[1,2]上的平均变化率是________.【解析】(2×2+2)-(2×1+2)2-1=2.【答案】 22.圆的半径r 从0.1变化到0.3时,圆的面积S 的平均变化率为________. 【解析】 ∵S=πr 2, ∴ΔS Δr =S (0.3)-S (0.1)0.3-0.1=0.09π-0.01π0.2=0.4π. 【答案】 0.4π3.如图1-1-3,函数y =f(x)在A ,B 两点间的平均变化率是________.图1-1-3【解析】 ∵k AB =y A -y B x A -x B =3-11-3=-1,由平均变化率的意义知y =f(x)在A ,B 两点间的平均变化率为-1. 【答案】 -14.甲企业用2年时间获利100万元,乙企业投产6个月时间就获利30万元,如何比较和评价甲、乙两企业的生产效益?(设两企业投产前的投资成本都是10万元)【解】 甲企业生产效益的平均变化率为100-1012×2-0=154.乙企业生产效益的平均变化率为30-106-0=103.∵154>103, ∴甲企业的生产效益较好.一、填空题1.函数f(x)=1x 在[2,6]上的平均变化率为________.【解析】 f (6)-f (2)6-2=16-126-2=-112.【答案】 -1122.函数f(x)=log 2x 在区间[2,4]上的平均变化率是________. 【解析】 函数的平均变化率是f (4)-f (2)4-2=2-12=12.【答案】 123.已知某质点的运动规律为s(t)=5t 2(单位:米),则在1 s 到3 s 这段时间内,该质点的平均速度为________.【解析】 s (3)-s (1)3-1=5×32-5×122=20(m /s ).【答案】 20 m /s4.若函数f(x)=x 2-c 在区间[1,m]上的平均变化率为3,则m 等于________. 【解析】 由题意得(m 2-c )-(12-c )m -1=3,∴m =2(m =1舍去). 【答案】 25.在雨季潮汛期间,某水文观测员观察千岛湖水位的变化,在24 h 内发现水位从102.7m 上涨到105.1 m ,则水位涨幅的平均变化率是________m /h .【解析】105.1-102.724=0.1(m /h ).【答案】 0.16.服药后,人吸收药物的情况可以用血液中药物的浓度c(单位:mg /mL )来表示,它是时间t(单位:min )的函数,表示为c =c(t),下表给出了c(t)的一些函数值.). 【解析】c (70)-c (30)70-30=0.90-0.9840=-0.002 mg /(mL ·min ). 【答案】 -0.0027.已知某物体运动的速度与时间之间的关系式是v(t)=t +13t 3,则该物体在时间间隔[1,32]内的平均加速度为________.【解析】 平均加速度Δv Δt =32+13·(32)3-(1+13)32-1=3112.【答案】3112图1-1-48.如图1-1-4所示,显示甲、乙在时间0到t 1范围内路程的变化情况,下列说法正确的是________.①在0到t 0范围内甲的平均速度大于乙的平均速度; ②在0到t 0范围内甲的平均速度小于乙的平均速度; ③在t 0到t 1范围内甲的平均速度大于乙的平均速度; ④在t 0到t 1范围内甲的平均速度小于乙的平均速度.【解析】 在[0,t 0]内甲、乙的平均速度为s 0t 0,①②错.在[t 0,t 1]上,v 甲=s 2-s 0t 1-t 0,v乙=s 1-s 0t 1-t 0. ∵s 2-s 0>s 1-s 0,且t 1-t 0>0, ∴v 甲>v 乙,故③正确,④错误. 【答案】 ③ 二、解答题9.求函数f(x)=x 2+1x+4在区间[1,2]上的平均变化率.【解】 f(x)=x 2+1x +4在区间[1,2]上的平均变化率为22+12+4-(12+11+4)2-1=52.10.假设在生产8到30台机器的情况下,生产x 台机器的成本是c(x)=x 3-6x 2+15x(元),而售出x 台的收入是r(x)=x 3-3x 2+12x(元),则生产并售出10台至20台的过程中平均利润是多少元?【解】 依题意,生产并售出x 台所获得的利润是 L(x)=r(x)-c(x)=3x 2-3x(元), ∴x 取值从10台至20台的平均利润为L (20)-L (10)20-10=3×202-3×20-(3×102-3×10)10=87(元),故所求平均利润为87元.11.(2013·泰安高二检测)巍巍泰山为我国五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?图1-1-5【解】 山路从A 到B 高度的平均变化率为 h AB =Δy Δx =10-050-0=15, 山路从B 到C 高度的平均变化率为h BC =Δy Δx =15-1070-50=14, ∴h BC >h AB ,∴山路从B 到C 比从A 到B 要陡峭得多.(教师用书独具)已知气球的体积为V(单位:L )与半径r(单位:dm )之间的函数关系是V(r)=43πr 3.(1)求半径r 关于体积V 的函数r(V);(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义?【自主解答】 ∵V=43πr 3,∴r 3=3V 4π,r = 33V 4π,即r(V)= 33V4π.(2)函数r(V)在区间[0,1]上的平均变化率约为 r (1)-r (0)1-0=33×14π-01≈0.62(dm /L ),函数r(V)在区间[1,2]上的平均变化率约为r (2)-r (1)2-1= 33×24π- 33×14π≈0.16(dm /L ).显然体积V 从0 L 增加到1 L 时,半径变化快,这说明随着气球体积的增加,气球的半径增加得越来越慢.一块正方形的铁板在0 ℃时,边长为10 cm ,加热铁板会膨胀,当温度为t ℃时,边长变为10(1+at)cm ,a 为常数,试求0~10 ℃内铁板面积S 的平均变化率.【解】 铁板面积S =102(1+at)2, 在区间[0,10]上,S 的平均变化率为S (10)-S (0)10-0=102(1+10a )2-10210=200a +1 000a 2,即0~10 ℃内铁板面积S 的平均变化率为(200a +1 000a 2)cm 2/℃.1.1.2 瞬时变化率——导数(教师用书独具)●三维目标1.知识与技能了解导数概念的实际背景;理解函数在某点处导数以及在某个区间的导函数的概念;会用定义求瞬时速度和函数在某点处的导数.2.过程与方法用函数的眼光来分析研究物理问题;经历由平均速度与瞬时速度关系类比由平均变化率过渡到瞬时变化率的过程,体会数形结合、特殊到一般、局部到整体的研究问题的方法.3.情感、态度与价值观通过导数概念的形成过程,体会导数的思想及其内涵;激发学生兴趣,在从物理到数学,再用数学解决物理问题的过程中感悟数学的价值.●重点难点重点:函数在某一点处的导数的概念及用导数概念求函数在一点处的导数.难点:从实例中归纳、概括函数瞬时变化率的定量分析过程,及函数在开区间内的导函数的理解.为了突出重点、突破难点,在导数概念的教学中,积极创设问题情境,从学生已有的认知入手,例如物理学中的瞬时速度、曲线割线的斜率等,采用相互讨论、探究规律和引导发现的教学方法,通过不断出现的一个个问题,一步步创设出使学生有兴趣探索知识的“情境”,通过反映导数思想和本质的实例,引导学生经历由平均变化率到瞬时变化率的过程,从而更好地理解导数概念.(教师用书独具)●教学建议新课标对“导数及其应用”内容的处理有较大的变化,它不介绍极限的形式化定义及相关知识,而是按照“平均变化率——曲线在某一点处的切线——瞬时速度(加速度)——瞬时变化率——导数的概念”这样的顺序来安排,用“逼近”的方法来定义导数,这种概念建立的方式直观、形象、生动,又易于理解,突出导数概念的形成过程.因此,在教学中采用教师启发诱导与学生动手操作、自主探究、合作交流相结合的教学方式,引导学生动手操作、观察、分析、类比、抽象、概括,并借助excel及几何画板演示,调动学生参与课堂教学的主动性和积极性.●教学流程利用割线逼近切线的方法探究曲线上一点处的切线.⇒通过缩小时间间隔,由平均速度得出瞬时速度.⇒会求瞬时速度和瞬时加速度,完成例1与变式训练.⇒利用瞬时变化率得出导数的概念,会求函数在某点处的导数,完成例2及互动探究.⇒根据导数的几何意义,完成例3及其变式训练.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.1.曲线的切线与曲线只有一个公共点吗?曲线上在某一点处的切线的含义是什么?【提示】 切线与曲线不一定只有一个公共点,如图,曲线C 在点P 处的切线l 与曲线C 还有一个公共点Q.曲线上某一点处的切线,其含义是以该点为切点的切线.2.运动物体在某一时刻的瞬时加速度为0,那么该时刻物体是否一定停止了运动? 【提示】 不是.瞬时加速度刻画的是速度在某一时刻的变化快慢,瞬时加速度为0,并不是速度为0.1.曲线上一点处的切线设Q 为曲线C 上不同于P 的一点,这时,直线PQ 称为曲线的割线,随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C.当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线l 称为曲线在点P 处的切线.2.瞬时速度、瞬时加速度(1)如果当Δt 无限趋近于0时,运动物体位移S(t)的平均变化率S (t 0+Δt )-S (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时速度,即位移对于时间的瞬时变化率.(2)如果当Δt 无限趋近于0时,运动物体速度v(t)的平均变化率v (t 0+Δt )-v (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加速度,即速度对于时间的瞬时变化率.1.导数设函数y =f(x)在区间(a ,b)上有定义,x 0∈(a ,b),若Δx 无限趋近于0时,比值Δy Δx=f (x 0+Δx )-f (x 0)Δx无限趋近于一个常数A ,则称f(x)在x =x 0处可导,并称该常数A 为函数f(x)在x =x 0处的导数,记作f ′(x 0).2.导数的几何意义导数f′(x 0)的几何意义就是曲线y =f(x)在点P(x 0,f(x 0))处的切线的斜率,切线PT 的方程是y -f(x 0)=f ′(x 0)(x -x 0).求瞬时速度、瞬时加速度已知质点M的运动速度与运动时间的关系为v=3t2+2(速度单位:cm/s,时间单位:s),(1)当t=2,Δt=0.01时,求ΔvΔt;(2)求质点M在t=2时的瞬时加速度.【思路探究】【自主解答】ΔvΔt=v(t+Δt)-v(t)Δt=3(t+Δt)2+2-(3t2+2)Δt=6t+3Δt.(1)当t=2,Δt=0.01时,ΔvΔt=6×2+3×0.01=12.03(cm/s2).(2)当Δt无限趋近于0时,6t+3Δt无限趋近于6t,则质点M在t=2时的瞬时加速度为12 cm/s2.1.求瞬时速度的关键在于正确表示“位移的增量与时间增量的比值”,求瞬时加速度的关键在于正确表示“速度的增量与时间增量的比值”,注意二者的区别.2.求瞬时加速度:(1)求平均加速度ΔvΔt;(2)令Δt →0,求出瞬时加速度.质点M 按规律s(t)=at 2+1做直线运动(位移单位:m ,时间单位:s ).若质点M 在t =2 s 时的瞬时速度为8 m /s ,求常数a 的值.【解】 ∵Δs =s(2+Δt)-s(2)=a(2+Δt)2+1-a·22-1=4a Δt +a(Δt)2, ∴ΔsΔt=4a +a Δt. 当Δt →0时,ΔsΔt→4a. ∵在t =2时,瞬时速度为8 m /s ,∴4a =8,∴a =2.求函数y =f(x)=x -1x在x =1处的导数.【思路探究】求Δy =f (1+Δx )-f (1)―→求Δy Δx→令Δx →0,求ΔyΔx→A 的值 【自主解答】 ∵Δy =(1+Δx)-11+Δx -(1-11)=Δx +1-11+Δx =Δx +Δx1+Δx.∴ΔyΔx=Δx +Δx 1+Δx Δx =1+11+Δx ,当Δx →0时,ΔyΔx→1+1=2. ∴f ′(1)=2.1.本题是利用定义求f′(1),解题的关键是求出ΔyΔx并化简,利用定义求解的步骤为:①求函数的增量Δy =f(x 0+Δx)-f(x 0);②求平均变化率ΔyΔx;③当Δx 无限趋近于0时,确定ΔyΔx的无限趋近值. 2.求f′(x 0)也可先求出导函数f′(x),再将x =x 0代入,即求出f′(x)在点x =x 0处的函数值.在例题中,若条件改为f′(x 0)=54,试求x 0的值.【解】 ∵Δy =f(x 0+Δx)-f(x 0)=(x 0+Δx)-1x 0+Δx -(x 0-1x 0)=Δx +Δxx 0(x 0+Δx )∴Δy Δx =1+1x 0(x 0+Δx )当Δx →0时,Δy Δx →1+1x 20. 又f′(x 0)=54,则1+1x 20=54.∴x 0=±2.已知抛物线y =2x 2,求抛物线在点(1,2)处的切线方程.【思路探究】 根据导数的几何意义求出切线的斜率,然后利用点斜式即可写出切线方程.【自主解答】 因为点(1,2)在抛物线上,所以抛物线在点(1,2)处的切线斜率为函数y =2x 2在x =1处的导数f′(1).因为Δy Δx =f (1+Δx )-f (1)Δx =2(1+Δx )2-2×12Δx=4+2Δx ,当Δx 无限趋近于0时,4+2Δx 无限趋近于4,所以f ′(1)=4. 所以切线方程为y -2=4(x -1),即4x -y -2=0.1.本题是“给出曲线和切点(x 0,f(x 0))求切线方程”,此时切线的斜率就是f′(x 0),则该点处的切线方程为y -f(x 0)=f′(x 0)(x -x 0).2.若求“过点(x 0,y 0)的切线方程”,此时所给的点有可能不是切点,切线的斜率还用f′(x 0)则可能会出错.此时应先设出切点坐标P(x′0,y ′0),由已知条件列出切点横坐标的方程,求x′0,然后再求解.曲线y =x 3+11在点P(1,12)处的切线与y 轴交点的纵坐标是________.【解析】 ∵Δy Δx =(x 0+Δx )3+11-x 30-11Δx=3x 0Δx +3x 20+(Δx)2,∴当x 0=1,Δx →0时,k =f′(1)=3.∴曲线y =x 3+11在点P(1,12)处的切线为y =3x +9. ∴当x =0时,y =9.因此所求切线与y 轴交点的纵坐标为9. 【答案】 9对导数定义理解不透彻致误已知f′(1)=-2,则当Δx →0时,f (1+2Δx )-f (1)Δx→________.【错解】 当Δx →0时,f (1+2Δx )-f (1)Δx →-2.【答案】 -2【错因分析】 产生错解的原因是对导数定义的理解不透彻,一味地套用公式.本题分子中自变量的增量是2Δx ,即(1+2Δx)-1=2Δx ,而错解中分母中的增量为Δx ,二者不是等量的.【防范措施】 在导数定义中,增量Δx 的形式是多种多样的,但无论如何变化,其实质是分子中的自变量的增量与分母中的增量必须保持一致.【正解】f (1+2Δx )-f (1)Δx =2·f (1+2Δx )-f (1)2Δx当Δx →0时,f (1+2Δx )-f (1)2Δx →f ′(1),∴2·f (1+2Δx )-f (1)2Δx →2f ′(1)=2×(-2)=-4. 【答案】 -41.不管是求切线的斜率、瞬时速度和瞬时加速度,还是求实际问题中的瞬时变化率,它们的解题步骤都是一样的——(1)计算Δy ,(2)求Δy Δx ,(3)看Δx 无限趋近于0时,Δy Δx无限趋近于哪个常数.2.准确理解导数的概念,正确求y =f(x)在点x =x 0处的导数注意两点:(1)Δy =f(x +Δx)-f(x)不能误认为Δy =f(Δx);(2)求解时不给出Δx 的具体值,否则求出的是平均变化率,而不是瞬时变化率(导数).3.求过某点曲线的切线方程的类型及求法.(1)若已知点(x 0,y 0)为切点,则先求出函数y =f(x)在点x 0处的导数,然后根据直线的点斜式方程,得切线方程y -y 0=f′(x 0)(x -x 0).(2)若题中所给的点(x 0,y 0)不是切点,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.因此求曲线的切线方程一定要明确切点的位置,分清楚是“曲线在某点处的切线”还是“过某点的曲线切线”.1.如果质点A 按规律s =3t 2运动,则在t =3时的瞬时速度为________.【解析】 Δs Δt =3(3+Δt )2-3×32Δt=18+3Δt ,当Δt →0时,ΔsΔt→18+3×0=18. ∴质点A 在t =3时的瞬时速度为18. 【答案】 182.已知f(x)=2x +5,则f(x)在x =2处的导数为________.【解析】 Δy =f(2+Δx)-f(2)=2(2+Δx)+5-(2×2+5)=2Δx , ∴ΔyΔx=2,∴f ′(2)=2. 【答案】 23.抛物线y =14x 2在点Q(2,1)处的切线方程为______.【解析】 Δy Δx =14(2+Δx )2-14×22Δx =1+14Δx.当Δx →0时,ΔyΔx→1,即f′(2)=1, 由导数的几何意义,点Q 处切线斜率k =f′(2)=1. ∴切线方程为y -1=1(x -2)即y =x -1. 【答案】 y =x -14.求函数y =x 在x =1处的导数. 【解】 法一 ∵Δy =1+Δx -1,∴Δy Δx =1+Δx -1Δx =11+Δx +1, 当Δx 无限趋近于0时,Δy Δx =11+Δx +1无限趋近于12, ∴函数y =x 在x =1处的导数为12.法二Δy Δx =x +Δx -x Δx =1x +Δx +x, 当Δx →0时,Δy Δx →12x ,所以y′=12x. 当x =1时,y ′=12.∴函数y =x 在x =1处的导数为12.一、填空题1.设函数f(x)在x =x 0处可导,当h 无限趋近于0时,对于f (x 0+h )-f (x 0)h 的值,以下说法中正确的是________.①与x 0,h 都有关;②仅与x 0有关而与h 无关; ③仅与h 有关而与x 0无关;④与x 0,h 均无关.【解析】 导数是一个局部概念,它只与函数y =f(x)在x =x 0处及其附近的函数值有关,与h 无关.【答案】 ②2.(2013·徐州高二检测)函数f(x)=x 2在x =3处的导数等于________.【解析】 Δy Δx =(3+Δx )2-32Δx=6+Δx ,令Δx →0,得f′(3)=6. 【答案】 63.(2013·合肥高二检测)函数y =f(x)的图象在点P 处的切线方程是y =-2x +9,若P 点的横坐标为4,则f(4)+f′(4)=________.【解析】 由导数的几何意义,f ′(4)=-2. 又f(4)=-2×4+9=1. 故f(4)+f′(4)=1-2=-1. 【答案】 -14.已知物体的运动方程为s =-12t 2+8t(t 是时间,s 是位移),则物体在t =2时的速度为________.【解析】 Δs =-12(2+Δt)2+8(2+Δt)-(8×2-12×22)=6Δt -12(Δt)2,则Δs Δt =6-12Δt , 当Δt →0时,ΔsΔt→6. 【答案】 65.曲线f(x)=x 3在x =0处的切线方程为________.【解析】 Δy Δx =f (0+Δx )-f (0)Δx =(Δx )3-0Δx=(Δx)2.当Δx →0时,ΔyΔx→0. ∴由导数的几何意义,切线的斜率k =f′(0)=0. 因此所求切线方程为y =0. 【答案】 y =06.若点(0,1)在曲线f(x)=x 2+ax +b 上,且f′(0)=1,则a +b =________. 【解析】 ∵f(0)=1,∴b =1.又Δy Δx =f (0+Δx )2-f (0)Δx=Δx +a. ∴当Δx →0时,ΔyΔx→a ,则f′(0)=a =1. 所以a +b =1+1=2. 【答案】 27.高台跳水运动员在t 秒时距水面高度h(t)=-4.9t 2+6.5t +10(单位:米),则该运动员的初速度为________米/秒.【解析】 Δh Δt =-4.9(Δt )2+6.5·(Δt )+10-10Δt=6.5-4.9Δt∵当Δt 无限趋近于0时,-4.9Δt +6.5无限趋近于6.5, ∴该运动员的初速度为6.5米/秒. 【答案】 6.58.(2013·泰州高二检测)已知函数f(x)在区间[0,3]上的图象如图1-1-6所示,记k 1=f′(1),k 2=f′(2),k 3=f(2)-f(1),则k 1,k 2,k 3之间的大小关系为________.图1-1-6【解析】 k 1表示曲线在x =1处的切线的斜率,k 2表示曲线在x =2处的切线的斜率, k 3表示两点(1,f(1)),(2,f(2))连线的斜率, 由图可知:k 1>k 3>k 2. 【答案】 k 1>k 3>k 2 二、解答题9.已知函数f(x)=2x 2+4x ,试求f′(3). 【解】 Δy =f(3+Δx)-f(3)=2(3+Δx)2+4(3+Δx)-30=2(Δx)2+16Δx , ∴ΔyΔx=2Δx +16, 当Δx →0时,ΔyΔx→16. 因此f′(3)=16.10.子弹在枪筒中的运动可以看作匀加速直线运动,运动方程为s =12at 2,如果它的加速度是a =5×105m /s 2,子弹在枪筒中的运动时间为1.6×10-3s ,求子弹射出枪口时的瞬时速度. 【解】 运动方程为s =12at 2.因为Δs =12a(t 0+Δt)2-12at 20=at 0(Δt)+12a(Δt)2,所以Δs Δt =at 0+12a(Δt).所以当Δt →0时,ΔsΔt→at 0. 由题意知,a =5×105m /s 2,t 0=1.6×10-3s ,所以at 0=8×102=800(m /s ), 即子弹射出枪口时的瞬时速度为800 m /s . 11.已知曲线y =1t -x 上两点P(2,-1),Q(-1,12). 求:(1)曲线在点P ,Q 处的切线的斜率; (2)曲线在点P ,Q 处的切线方程. 【解】 将P(2,-1)代入y =1t -x ,得t =1,∴y =11-x ,设f(x)=11-x, ∵f (x +Δx )-f (x )Δx =11-(x +Δx )-11-x Δx=Δx[1-(x +Δx )](1-x )Δx=1(1-x -Δx )(1-x ),∴当Δx →0时,1(1-x -Δx )(1-x )→1(1-x )2.∴f ′(x)=1(1-x )2.(1)由导数的几何意义,知曲线在点P 处的切线斜率f′(2)=1. 曲线在点Q 处的切线斜率f′(-1)=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2,即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.(教师用书独具)已知曲线y =2x +1,问曲线上哪一点处的切线与直线y =-2x +3垂直,并求切线方程.【自主解答】 设切点坐标为(x 0,y 0),Δy Δx =2x 0+Δx +1-(2x 0+1)Δx=2x 0+Δx -2x 0Δx =2[(x 0+Δx )2-(x 0)2]Δx (x 0+Δx +x 0)=2x 0+Δx +x 0.当Δx →0时,2x 0+Δx +x 0→2x 0+x 0=1x 0, 又直线y =-2x +3的斜率为-2, 所以所求切线的斜率为12,故1x 0=12.所以x 0=4,y 0=5,所以切点坐标为(4,5), 切线方程为y -5=12(x -4),即x -2y +6=0.已知曲线y =x 2+1,问是否存在实数a ,使得经过点(1,a)能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.【解】 设切点为P(t ,t 2+1).∵Δy Δx =(t +Δx )2+1-(t 2+1)Δx=2t +Δx , 当Δx →0时,ΔyΔx→2t. 由导数的几何意义,在点P(t ,t 2+1)处切线的斜率k =f′(t)=2t , ∴切线方程为y -(t 2+1)=2t(x -t), 将(1,a)代入,得a -(t 2+1)=2t(1-t), 即t 2-2t +(a -1)=0, 因为切线有两条,所以Δ=(-2)2-4(a -1)>0, 解得a <2.故存在实数a,使得经过点(1,a)能够作出该曲线的两条切线,a的取值范围是(-∞,2).1.2导数的运算1.2.1 常见函数的导数(教师用书独具)●三维目标1.知识与技能能够用导数的定义求几个常用函数的导数,会利用它们解决简单的问题.2.过程与方法使学生掌握由定义求导数的三个步骤,推导四种常见函数的导数公式.3.情感、态度与价值观通过本节的学习进一步体会导数与物理知识之间的联系,提高数学的应用意识,注意培养学生归纳类比的能力.●重点难点重点:利用导数公式,求简单函数的导数.难点:对导数公式的理解与记忆.在初等函数的求导公式中,对数函数与指数函数的求导公式比较难记忆,要区分公式的结构特征,找出他们之间的差异去记忆.(教师用书独具)●教学建议导数的定义不仅阐明了导数概念的实质,也给出了利用定义求导数的方法,但是,如果对每一个函数都直接按定义去求它的导数,往往是极为复杂和困难的,甚至是不可能的,因此,我们希望找到一些简单函数的导数(作为我们的基本公式),借助它们来简化导数的计算过程.因此教材直接给出了基本初等函数的导数公式,使得用定义求导数比较麻烦、计算量很大的问题得以解决,为以后导数的研究带来了方便,同时也将所学的导数和实际应用问题结合起来,使得导数的优越性发挥得淋漓尽致.●教学流程创设情境,回忆导数的概念与导数的求法.⇒利用导数的定义求y=x n(n=1,2,3,。
湘教版高中同步学案数学选择性必修第二册精品课件 第1章 导数及其应用 1.1.1 函数的平均变化率
e-1
e3 +2
C.
e-1
e3 +2
D.
e+1
解析 因为f(x)=x3-ln x,所以f(e)=e3-ln e=e3-1,f(1)=13-ln 1=1,所以f(x)=x3-ln x
(e)-(1) e3 -1-1 e3 -2
在区间[1,e]上的平均变化率为
.故选B.
=
=
e-1
e-1
e-1
1 2 3 4 5
5. 泰山为我国五岳之首,有“天下第一山”之美誉,当地用“紧十八,慢十八,不
紧不慢又十八”的俗语来形容爬十八盘的感受.上面是一段登山路线图,同
样是登山,但是从A处到B处会感觉比较轻松,而从B处到C处会感觉比较吃
力.想想看,为什么?
1 2 3 4 5
解 山路从 A 到 B 高度的平均变化率为ℎ =
所以
-(-2)
=
( 2 -)-[(-2)2 -(-2)]
=2,
+2
即t2-t-6=2t+4,即t2-3t-10=0,解得t=5或t=-2(舍去).
5
.
探究点三
函数的平均变化率的应用
【例3】 A,B两机关单位开展节能活动,活动开始后两机关单位的用电量
W1(t),W2(t)与时间t(单位:天)的关系如图所示,则一定有( B )
= =9(米/
2
2
3.若函数f(x)=x2-t在区间[1,m]上的平均变化率为4,则m等于( C )
A. √5
B.2
C.3
解析
D.1
()-(1)
由题意可得 -1
1 2 3 4 5
=
2 -1
函数的平均变化率
(或[x0+△x,x0])的平均变化率(x0≠0,且
x0+△x≠0).
1 解:函数 y x 的平均变化率为
1 1 f ( x0 x) f ( x0 ) x0 x x0 1 x x ( x0 x) x0
练习题 1.设函数y=f(x),当自变量x由x0改变到 x0+△x时,函数的改变量为( D )
称作函数y=f(x)在区间[x0,x0+△x](或 [x0+△x,x0])的平均变化率。
进一步理解: 1.式子中△x 、△y的值可正、可负,但 的△x值不能为0, △y 的值可以为0; 2.若函数f (x)为常函数时, △y=0; 3. 变式: f ( x2 ) f ( x1 ) f ( x1 x) f ( x1 )
移与水平位移之比
y 的绝对值 现在摆在我们面前的问题是:山路是 弯曲的,怎样用数量刻画弯曲山路的陡峭 程度呢?
一个很自然的想法是将弯曲的山路分 成许多小段,每一小段的山坡可视为平直 的。例如,山坡DE可近似的看作线段DE, 再用对平直山坡AB分析的方法,得到此段 山路的陡峭程度可以用比值近似地刻画。
2 x0 x
思考 由上式可以看出,当x0取定值时,△x 取不同的值,函数的平均变化率不同,当 △x取定值,x0取不同的值时,该函数的平 均变化率也不一样。
例如,x0取正值,并不断增大时,该函 数的平均变化率也不断地增大,曲线变得 越来越陡峭。
1 例2.求函数 y x 在区间[x0,x0+△x]
由此我们引出函数平均变化率的概念。
函数平均变化率的概念: 一般地,已知函数y=f(x),x0,x1是其定 义域内不同的两点,记△x=x1-x0, △y=y1-y0=f(x1)-f(x0)=f(x0+△x)-f(x0).
1.1.1和1.1.2变化率问题、导数的概念课件人教新课标1
【解析】(1)自变量x从1变到2时,函数f(x)=2x+1的函数值的
增量为Δy=5-3=2,故增量之比是2.
答案:2
(2)函数f(x)=x2在x=1处的瞬时变化率是 lim f (1 x) f (1)
x0
x
lim (1 x)2 12 lim (2 x) 2.
x0
x
x0
答案:2
(3)函数y=f(x)= 1 在x=-1处的导数可表示为f′(-1)或
【微思考】
(1)函数f(x)在区间[x1,x2]上的平均变化率的大小与曲线 y=f(x)在区间[x1,x2]上的“峻峭”程度有什么关系? 提示:平均变化率的绝对值越大,曲线y=f(x)在区间[x1,x2]
上越“峻峭”,反之亦然. (2)平均变化率可以是零吗? 举例说明. 提示:可以是零,如函数f(x)=a(a为常数).
Δx趋于0的距离要多近有多近,即|Δx-0|可以小于给定的任
意小的正数,且始终Δx≠0.
3.对导数概念的两点说明
(若1)当xy 的Δ极x≠限0不时存,在比,值则xyf的 (x极)在限点存x在0处,不则可f导(x或)在无点导x数0处.可导;
(2)在点x=x0处的导数的定义可变形为f′(x0)=
lim f (x0 x) f (x0 )
取定值,x1取不同的数值时,函数的平均变化率也是不同的.
特别地,当函数f(x)为常数函数时,Δy=0,则 y =0.
x
2.对平均变化率的三点说明 (1)y=f(x)在区间[x1,x2]上的平均变化率是曲线y=f(x)在 区间[x1,x2]上峻峭程度的“数量化”,曲线峻峭程度是平 均变化率的“视觉化”. (2)平均变化率的几何意义就是函数y=f(x)图象上两点P1(x1,
高中数学 第一章 导数及其应用 1.1 函数的平均变化率教案 新人教B版2新人教B版数学教案
函数的平均变化率3. 做、议讲、评(二)平均变化率概念:1.上述问题中的变化率可用式子1212)()(xxxfxf--表示, 称为函数f(x)从x1到x2的平均变化率2.若设12xxx-=∆,)()(12xfxff-=∆(这里x∆看作是对于x1的一个“增量”可用x1+x∆代替x2,同样)()(12xfxfyf-=∆=∆)则平均变化率为=∆∆=∆∆xfxyxx fxx fxxx fx f∆-∆+=--)()()()(111212思考:观察函数f(x)的图象平均变化率=∆∆xf1212)()(xxxfxf--表示什么?学生在笔记本上计算学生在黑板上计算计算时互相交流适当引入讨论通过具体实例做题,加深对变化率公式的记忆和计算。
印象深刻。
计算时,适当引入讨论,让更多的学生参与其中。
学生进一步讨论,上黑板计算,小组讨论计算步骤,得出最佳书写格式。
10分钟。
高中数学选修2-2教案
高中数学选修2-2教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2选修2-2教案第一章 导数及其应用§1.1.1变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--3⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈-气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念:41.上述问题中的变化率可用式子 1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆) 3.则平均变化率为=∆∆=∆∆x fx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 思考:观察函数f (x )的图象 平均变化率=∆∆xf1212)()(x x x f x f --表示什么?直线AB三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:)1()1(22x x y ∆+-+∆+--=∆+-,5∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。
部编版2020高中数学第1章导数及其应用1.1导数学案新人教B版选修2-2
1.1 导数1.理解函数在某点的平均变化率的概念,并会求此平均变化率. 2.理解运动物体在某时刻的瞬时变化率(瞬时速度).3.理解导数的几何意义,并会求曲线在某点处的切线方程.1.函数的平均变化率一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商________________称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率.Δx ,Δy 的值可正、可负,但Δx 的值不能为0,Δy 的值可以为0.若函数f (x )为常数函数,则Δy =0.【做一做1-1】已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ). A .0.40 B .0.41 C .0.43 D .0.44【做一做1-2】在x =1附近,取Δx =0.3,在四个函数:①y =x ;②y =x 2;③y =x 3;④y =1x中,平均变化率最大的是( ).A .④ B.③ C.② D.① 2.瞬时变化率与导数(1)设函数y =f (x )在x 0及其附近有定义,当自变量在x =x 0附近改变量为Δx 时,函数值相应地改变Δy =f (x 0+Δx )-f (x 0).如果当Δx 趋近于0时,平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx趋近于一个常数l ,那么常数l 称为函数f (x )在点x 0的__________.(2)“当Δx 趋近于0时,f (x 0+Δx )-f (x 0)Δx趋近于常数l ”可以用符号“→”记作“当Δx →0时,f (x 0+Δx )-f (x 0)Δx →l ”,或记作“0lim x ∆→f (x 0+Δx )-f (x 0)Δx =l ”,符号“→”读作“趋近于”.函数y =f (x )在点x 0的瞬时变化率,通常称为f (x )在点x 0处的______,并记作f′(x 0).这时又称f (x )在点x 0处是可导的.于是上述变化过程,可以记作“当Δx →0时,f (x 0+Δx )-f (x 0)Δx →________”或“0lim x ∆→f (x 0+Δx )-f (x 0)Δx =________”.(3)如果f (x )在开区间(a ,b )内每一点x 都是可导的,则称f (x )在区间(a ,b )______.这样,对开区间(a ,b )内每个值x ,都对应一个确定的导数f′(x ).于是,在区间(a ,b )内,f′(x )构成一个新的函数,我们把这个函数称为函数y =f (x )的______,记为f′(x )或y′(或yx′).导函数通常简称为______.(1)Δx 是自变量x 在x 0处的改变量,Δx ≠0,而Δy 是函数值的改变量,可以是零. (2)对于导函数的定义的几种形式表示如下:y′=0lim x ∆→f (x +Δx )-f (x )Δx ;y′=0limx ∆→f (x )-f (x +Δx )-Δx ;y′=0lim x ∆→f (x -Δx )-f (x )-Δx ;y′=0lim x ∆→f (x )-f (x 0)x -x 0.【做一做2-1】若质点按规律s =3t 2运动,则在t =3时的瞬时速度为( ). A .6 B .18 C .54 D .81【做一做2-2】已知函数f (x )在x =x 0处可导,则lim Δx →0f (x 0+Δx )-f (x 0)Δx( ).A .与Δx ,x 0都有关B .仅与x 0有关而与Δx 无关C .仅与Δx 有关而与x 0无关D .与x 0,Δx 均无关 3.导数的几何意义设函数y =f (x )的图象如图所示.AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx ))的一条割线.由此割线的斜率是()()00f x x f x y x x+∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线在点A 的切线.于是,当Δx →0时,割线AB 的斜率趋近于在点A的切线AD 的斜率,即0lim x ∆→f (x 0+Δx )-f (x 0)Δx =切线AD 的斜率.由导数意义可知,曲线y =f (x )在点(x 0,f (x 0))的切线的斜率等于________.【做一做3-1】曲线y =-3x 2+2在点(0,2)处的切线的斜率为( ). A .-6 B .6 C .0 D .不存在 【做一做3-2】下面说法正确的是( ).A .若f′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f′(x 0)必存在C .若f′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f′(x 0)有可能存在1.“函数f (x )在点x =x 0处的导数”“导函数”“导数”三者有何关系? 剖析:(1)函数在点x =x 0处的导数f′(x 0)是一个数值,不是变量. (2)导函数也简称导数,所以(3)函数y =f (x )在点x =x 0处的导数f′(x 0)就是导函数f′(x )在点x =x 0处的函数值.所以求函数在一点处的导数,一般是先求出函数的导函数,再计算导函数在这点的函数值.2.曲线的切线与曲线只有一个公共点吗?剖析:回答是否定的.这就是我们为什么要用割线的极值位置来定义切线,而不说与曲线只有一个公共点的直线叫切线,其理由如下:在初中我们学习过圆的切线:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的切线的定义推广为一般曲线的切线的定义:直线和曲线有唯一公共点时,该直线叫做曲线在该点的切线,显然这种推广是不妥当的.观察图中的曲线C ,直线l 1虽然与曲线C 有唯一的公共点M ,但我们不能说直线l 1与曲线C 相切;而直线l 2尽管与曲线C 有不止一个公共点,我们还是说直线l 2是曲线C 在点N 处的切线.因此,对于一般的曲线,必须重新寻求曲线切线的定义.一般地,过曲线y =f (x )上一点P (x 0,y 0)作曲线的割线PQ ,当点Q 沿着曲线无限趋近于点P 时,若割线PQ 趋近于某一确定的位置,则称这一确定位置的直线为曲线y =f (x )在点P 处的切线.在这里,要注意,曲线y =f (x )在点P 处的切线:(1)与点P 的位置有关;(2)要依据割线PQ 是否存在极限位置来判定与求解.如有极限,则在此点处有切线,且切线是唯一的;如不存在,则在此点处无切线.题型一 求瞬时速度【例题1】已知物体的运动方程如下:()223 1 (1<3),233 (3)t t s t t ⎧+≤⎪=⎨+-≥⎪⎩求此物体在t =1和t =3时的瞬时速度.(位移的单位:m ,时间的单位:s )分析:先求平均变化率,即平均速度,再取极限(注意定义域的限制).反思:质点运动的瞬时速度不同于质点在某段时间内运动的平均速度. 题型二 导数定义的应用【例题2】过曲线y =f (x )=x 3上两点P (1,1)和Q (1+Δx ,1+Δy )作曲线的割线,求出当Δx =0.1时割线的斜率.分析:割线PQ 的斜率即为函数f (x )在x =1到x =1+Δx 之间的平均变化率ΔyΔx.反思:一般地,设曲线C 是函数y =f (x )的图象,P (x 0,y 0)是曲线上的定点,点Q (x 0+Δx ,y 0+Δy )是C 上与点P 邻近的点,有y 0=f (x 0),y 0+Δy =f (x 0+Δx ), Δy =f (x 0+Δx )-f (x 0), 割线PQ 的斜率为tan β=Δy Δx =f (x 0+Δx )-f (x 0)Δx,曲线C 在点P 处的斜率为tan α=0limx yx ∆→∆∆=000()()lim x f x x f x x∆→+∆-∆.题型三 求切线方程【例题3】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)第(1)问中的切线与曲线C 是否还有其他公共点?分析:求切线方程可先求出切线的斜率,再应用点斜式写出切线方程;判断直线与曲线的交点个数,可联立方程组求其解的个数.反思:(1)求曲线的切线的斜率的步骤:①求函数值的增量Δy =f (x 0+Δx )-f (x 0);②求割线的斜率tan β=ΔyΔx;③求极限0limx ∆→yx ∆∆=0lim x ∆→00()()f x x f x x+∆-∆;④若极限存在,则切线的斜率0lim x yk x∆→∆=∆.(2)由导数的几何意义得出求切线方程的步骤: ①先求出函数y =f (x )在点x 0处的导数f′(x 0); ②根据点斜式得切线方程为y -y 0=f′(x 0)(x -x 0). 题型四 易错辨析易错点:在求曲线过某点的切线方程时,不注意判断该点是否在曲线上,而直接把点当成在曲线上求切线方程,导致方程求错,避免错误的方法是看到此类题目先判断该点是否在曲线上,然后根据不同情况求解.【例题4】试求过点M (1,1)且与曲线y =x 3+1相切的直线方程.错解:Δy Δx =(x +Δx )3+1-x 3-1Δx =3x (Δx )2+3x 2Δx +(Δx )3Δx =3x Δx +3x 2+(Δx )2,0lim x ∆→Δy Δx=3x 2,因此y ′=3x 2,所以切线在x =1处的斜率k =3.故切线方程为y -1=3(x -1),即3x -y -2=0.1一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内的平均速度为( ). A .3Δt +6 B .-3Δt +6 C .3Δt -6 D .-3Δt -62设函数f (x )=ax 3+2,若f′(-1)=3,则a =( ).A .-1B .12C .1D .133设f(x)为可导函数且满足0(1)(12)lim=12x f f x x→---,则过曲线y =f (x )上的点(1,f (1))的切线的斜率为( ).A .2B .-1C .1D .-24一木块沿某一斜面自由下滑,测得下滑的水平距离s (m)与时间t (s)之间的函数关系为s =18t 2,则t =2 s 时,此木块在水平方向的瞬时速度为______ m/s.5已知函数f (x )=x -1x,则它与x 轴交点处的切线方程为____________________.答案:基础知识·梳理【做一做1-1】B ∵x =2,Δx =0.1,∴Δy =f (x +Δx )-f (x )=f (2.1)-f (2)=0.41.【做一做1-2】B 根据平均变化率的定义可求得四个函数的平均变化率依次为1,2.3,3.99,-1013.2.(1)瞬时变化率 (2)导数 f′(x 0) f′(x 0) (3)可导 导函数 导数【做一做2-1】B 瞬时速度v =lim Δt →0Δs Δt =lim Δt →0s 3+Δt -s 3Δt =lim Δt →0(3Δt +18)=18.【做一做2-2】B 由导数的定义,对给定的可导函数f (x )有limx ∆→∞f x 0+Δx -f x 0Δx =f′(x 0).显然,f′(x 0)仅与x 0有关而与Δx 无关.3.f′(x 0)【做一做3-1】C f′(0)=0lim x ∆→∞-30+Δx2+2-0+2Δx=0lim x ∆→∞(-3Δx )=0.【做一做3-2】C 函数f (x )在一点x =x 0处的导数f′(x 0)的几何意义是y =f (x )在这一点处切线的斜率,但f′(x 0)不存在,并不能说明这一点处不存在切线,而是说明在这一点处的切线的斜率不存在,即若在这一点处的切线的斜率不存在,曲线在该点处也可能有切线.所以函数f (x )在某点可导,是相应曲线上过该点存在切线的充分不必要条件.典型例题·领悟【例题1】解:当t =1时,s =3t 2+1,v =0limt ∆→∞Δs Δt =0limt ∆→∞s t +Δt -s tΔt=0limt ∆→∞31+Δt2+1-3×12-1Δt=0limt ∆→∞6Δt +3Δt2Δt =6(m/s).当t =3时,s =2+3(t -3)2,v =0lim t ∆→∞s t +Δt -s t Δt =0limt ∆→∞2+33+Δt -32-2-33-32Δt=0limt ∆→∞3Δt 2Δt=0lim t ∆→∞3Δt =0 (m/s).∴物体在t =1和t =3时的瞬时速度分别为6 m/s 和0 m/s.【例题2】解:∵Δy =f (1+Δx )-f (1)=(1+Δx )3-1=3Δx +3(Δx )2+(Δx )3. ∴割线PQ 的斜率 Δy Δx=Δx3+3Δx 2+3ΔxΔx=(Δx )2+3Δx +3.当Δx =0.1时,设割线PQ 的斜率为k , 则k =Δy Δx =(0.1)2+3×0.1+3=3.31.【例题3】解:(1)将x =1代入曲线C 的方程, 得y =1,所以切点为P (1,1). 因为y′=0lim x ∆→∞ΔyΔx =0limx ∆→∞x +Δx 3-x 3Δx =0limx ∆→∞3x 2Δx +3x Δx2+Δx3Δx =lim x ∆→∞[3x 2+3x Δx +(Δx )2]=3x 2,所以1'|3x y ==.所以过点P 的切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧y -1=3x -1,y =x 3,可得(x -1)2(x +2)=0,解得x 1=x 2=1,x 3=-2.从而求得公共点为P (1,1)或P (-2,-8),说明切线与曲线C有除切点外的公共点.【例题4】错因分析:错解中将点M (1,1)当成了曲线y =x 3+1上的点.因此在求过某点的切线时,一定要先判断点是否在曲线上,再根据不同情况求解.正解:由错解可知y′=3x 2,因为点M (1,1)不在曲线y =x 2+1上,所以设过点M (1,1)的切线与y =x 3+1相切于点P (x 0,x 30+1),依据导数的几何意义,函数在点P 处的切线的斜率为k =3x 2①,过点M (1,1)的切线的斜率k =x 30+1-1x 0-1②,由①=②得,3x 20=x 30x 0-1,解之得x 0=0或x 0=32,所以k =0或k =274,因此曲线y =x 3+1过点M (1,1)的切线方程有两条,分别为y -1=274(x -1)和y =1,即27x -4y -23=0和y =1.随堂练习·巩固 1.D v =5-31+Δt2-5-3×12Δt=-3Δt -6.2.C ∵f′(-1)=0lim x ∆→∞f -1+Δx -f -1Δx =0lim x ∆→∞[a (Δx )2-3a Δx +3a ]=3a =3,∴a =1.3.Blimx ∆→∞f 1-f 1-2x 2x=limx ∆→∞f 1-2x -f 1-2x=20limx -→f [1+-2x ]-f 1-2x =f′(1)=-1.4.12 t =2 s 时瞬时速度为lim Δt →0182+Δt 2-18×22Δt =lim Δt →018(4+Δt )=12. 5.2x -y +2=0和2x -y -2=0 令x -1x=0,得x =±1,∴曲线与x 轴的交点坐标为(±1,0),又f′(x )=1+1x2,∴f′(±1)=2,∴所求切线方程为y =2(x ±1),即2x -y ±2=0.。
2017_2018版高中数学第一章导数及其应用1.1.1函数的平均变化率学案新人教B版选修2_220
1.1.1 函数的平均变化率明目标、知重点 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的一些实际问题.1.函数的平均变化率已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商f x 0+Δx -f x 0Δx =ΔyΔx叫做函数y =f (x )在x 0到x 0+Δx (或[x 0+Δx ,x 0])之间的平均变化率. 2.函数y =f (x )的平均变化率的几何意义Δy Δx =f x 2-f x 1x 2-x 1表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的斜率.[情境导学]某市2013年5月30日最高气温是33.4℃,而此前的两天5月29日和5月28日最高气温分别是24.4℃和18.6℃,短短两天时间,气温“陡增”14.8℃,闷热中的人们无不感叹:“天气热得太快了!”但是,如果我们将该市2013年4月28日最高气温3.5℃和5月28日最高气温18.6℃进行比较,可以发现二者温差为15.1℃,甚至超过了14.8℃,而人们却不会发出上述感慨,这是什么原因呢?显然原因是前者变化得“太快”,而后者变化得“缓慢”,那么在数学中怎样来刻画变量变化得快与慢呢? 探究点一 函数的平均变化率思考1 如何用数学反映曲线的“陡峭”程度?答 如图,表示A 、B 之间的曲线和B 、C 之间的曲线的陡峭程度,可以近似地用直线的斜率来量化.如用比值y C -y Bx C -x B近似量化B 、C 这一段曲线的陡峭程度,并称该比值是曲线在[x B ,x C ]上的平均变化率.思考2 什么是平均变化率,平均变化率有何作用?答 如果问题中的函数关系用y =f (x )表示,那么问题中的变化率可用式子f x 2-f x 1x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢. 思考3 平均变化率有什么几何意义?答 设A (x 1,f (x 1)),B (x 2,f (x 2))是曲线y =f (x )上任意不同的两点,函数y =f (x )的平均变化率Δy Δx=f x 2-f x 1x 2-x 1=f x 1+Δx -f x 1Δx为割线AB 的斜率.x 1,x 2是定义域内不同的两点,因此Δx ≠0,但Δx 可正也可负;Δy =f (x 2)-f (x 1)是相应Δx=x 2-x 1的改变量,Δy 的值可正可负,也可为零.因此,平均变化率可正可负,也可为零. 例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.解 从出生到第3个月,婴儿体重平均变化率为 6.5-3.53-0=1(千克/月). 从第6个月到第12个月,婴儿体重平均变化率为 11-8.612-6=2.46=0.4(千克/月). 反思与感悟 求平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx=f x 2-f x 1x 2-x 1.跟踪训练1 如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________.答案 (1)12 (2)34解析 (1)函数f (x )在区间[-1,1]上的平均变化率为f-f -1--=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1x +1,1<x ≤3.所以函数f (x )在区间[0,2]上的平均变化率为f-f2-0=3-322=34.探究点二 求函数的平均变化率例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001]. 解 (1)函数f (x )在[1,3]上的平均变化率为f-f3-1=32-122=4;(2)函数f (x )在[1,2]上的平均变化率为f-f 2-1=22-121=3;(3)函数f (x )在[1,1.1]上的平均变化率为f-f 1.1-1=1.12-120.1=2.1;(4)函数f (x )在[1,1.001]上的平均变化率为f-f 1.001-1=1.0012-120.001=2.001.反思与感悟 函数的平均变化率可以表现出函数的变化趋势,自变量的改变量Δx 取值越小,越能准确体现函数的变化情况.跟踪训练2 求函数y =x 2在x =1,2,3附近的平均变化率,判断哪一点附近平均变化率最大? 解 在x =1附近的平均变化率为k 1=f+Δx -fΔx=+Δx 2-1Δx=2+Δx ;在x =2附近的平均变化率为k 2=f+Δx -fΔx=+Δx 2-22Δx=4+Δx ;在x =3附近的平均变化率为k 3=f+Δx -fΔx=+Δx 2-32Δx=6+Δx ;对任意Δx 有,k 1<k 2<k 3,∴在x =3附近的平均变化率最大.思考 一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点?答 根据函数平均变化率的几何意义,一次函数图象上任意两点连线的斜率是定值k ,即一次函数的平均变化率是定值. 探究点三 平均变化率的应用例3 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?解 由图象可知s 1(t 0)=s 2(t 0),s 1(0)>s 2(0), 则s 1t 0-s 1t 0<s 2t 0-s 2t 0,所以在从0到t 0这段时间内乙的平均速度大.反思与感悟 平均变化率的绝对值反映函数在给定区间上变化的快慢,平均变化率的绝对值越大,函数在区间上的变化越快;平均变化率的绝对值越小,函数在区间上的变化越慢. 跟踪训练3 甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果? 解 甲赚钱的平均速度为105×12=1060=16(万元/月),乙赚钱的平均速度为25(万元/月). 因为乙平均每月赚的钱数大于甲平均每月赚的钱数, 所以乙的经营成果比甲的好.1.如果质点M 按规律s =3+t 2运动,则在一小段时间[2,2.1]中相应的平均速度是( ) A .4 B .4.1 C .0.41 D .3 答案 B 解析 v =+2.12-+220.1=4.1.2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度为________. 答案 23.已知函数h (x )=-4.9x 2+6.5x +10.(1)计算从x =1到x =1+Δx 的平均变化率,其中Δx 的值为①2;②1;③0.1;④0.01. (2)根据(1)中的计算,当|Δx |越来越小时,函数h (x )在区间[1,1+Δx ]上的平均变化率有怎样的变化趋势?解 (1)∵Δy =h (1+Δx )-h (1) =-4.9(Δx )2-3.3Δx ,∴ΔyΔx=-4.9Δx -3.3. ①当Δx =2时,ΔyΔx =-4.9Δx -3.3=-13.1;②当Δx =1时,ΔyΔx =-4.9Δx -3.3=-8.2;③当Δx =0.1时,ΔyΔx =-4.9Δx -3.3=-3.79;④当Δx =0.01时,ΔyΔx=-4.9Δx -3.3=-3.349.(2)当|Δx |越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变大,并接近于-3.3.[呈重点、现规律]1.函数的平均变化率可以表示函数值在某个范围内变化的快慢;平均变化率的几何意义是曲线割线的斜率,在实际问题中表示事物变化的快慢. 2.求函数f (x )的平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1); (2)再计算自变量的改变量Δx =x 2-x 1; (3)得平均变化率Δy Δx=fx 2-f x 1x 2-x 1.。
高中数学第一章导数及其应用1.1.1平均变化率学案苏教版选修2_
1.1.1 平均变化率2.会求平均变化率.平均变化率一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为__________. 预习交流1在平均变化率的定义中,自变量的改变量Δx ______0. 预习交流2已知函数y =x 2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy ),则ΔyΔx=__________.预习交流3函数f (x )在区间(x 1,x 2)上的平均变化率可以等于0吗?若平均变化率等于0,是否说明f (x )在(x 1,x 2)上没有变化或一定为常数?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点 我的学疑点f (x 2)-f (x 1)x 2-x 1预习交流1:≠预习交流2:提示:Δy =f (1+Δx )-f (1)=(1+Δx )2+1-(12+1)=2Δx +(Δx )2,∴Δy Δx =2Δx +(Δx )2Δx=2+Δx . 预习交流3:提示:函数f (x )在区间(x 1,x 2)上的平均变化率可以等于0,这时f (x 1)=f (x 2);平均变化率等于0,不能说f (x )在区间(x 1,x 2)上没有变化,也不能说明f (x )一定为常数,例如f (x )=x 2-1在区间(-2,2)上.一、求函数在某区间内的平均变化率某物体做自由落体运动,其位移s 与时间t 的关系为s (t )=12gt 2(单位:m),计算t 从3 s 到3.1 s,3.01 s,3.001 s 各时间段内s (t )的平均变化率.思路分析:求各时间段内s 的平均变化率,即求相应的平均速度,就是求s (t 2)-s (t 1)t 2-t 1,即ΔsΔt,为此需求出Δs ,Δt .1.若质点的运动方程为s =-t 2,则该质点在t =1到t =3时的平均速度为________.2.求函数f (x )=1x +2在区间(-1,0),(1,3),(4,4+Δx )上的平均变化率.求函数y =f (x )在区间[x 1,x 2]上的平均变化率的步骤:(1)求自变量的改变量Δx =x 2-x 1;(2)求函数值的改变量Δy =f (x 2)-f (x 1);(3)求平均变化率Δy Δx =f (x 1+Δx )-f (x 1)Δx =f (x 2)-f (x 1)Δx.二、求函数在某点附近的平均变化率求函数y =5x 2+6在区间[2,2+Δx ]上的平均变化率.思路分析:∵函数f (x )=y =5x 2+6, ∴f (2)=5×4+6=26.当x 由2变化到2+Δx 时,f (2+Δx )=5(2+Δx )2+6,则Δy =f (2+Δx )-f (2).1.已知函数y =f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx ,f (1+Δx )),则ΔyΔx=__________. 2.当x 0=2,Δx =14时,求y =1x在[x 0,x 0+Δx ]上的平均变化率.Δy =f (x 0+Δx )-f (x 0)是函数的自变量由x 0改变到x 0+Δx 时的变化量,而平均变化率就是ΔyΔx .1.函数f (x )=x 3在区间(-1,3)上的平均变化率为__________.2.已知某质点的运动规律为s (t )=5t 2(s 的单位为m ,t 的单位为s),则在1 s 到3 s 这段时间内,该质点的平均速度为__________.3.一质点的运动方程为s =2t 2,则此质点在时间[1,1+Δt ]内的平均速度为__________.4.函数y =2x 2+5在区间[2,2+Δx ]内的平均变化率为__________.5.圆的半径r 从0.1变化到0.3时,圆的面积S 的平均变化率为__________.答案:活动与探究1:解:设t 在[3,3.1]上的平均变化率为v 1,则Δt 1=3.1-3=0.1(s),Δs 1=s (3.1)-s (3)=12g ×3.12-12g ×32=0.305g (m),∴Δs 1Δt 1=0.305g 0.1=3.05g (m/s). 同理Δs 2Δt 2=0.030 05g 0.01=3.005g (m/s),Δs 3Δt 3=0.003 000 5g0.001=3.000 5g (m/s). 迁移与应用:1.-4 解析:平均速度为Δs Δt =-32-(-1)23-1=-4.2.解:f (x )=1x +2在区间(-1,0)上的平均变化率为Δy Δx =f (0)-f (-1)0-(-1)=12-11=-12; f (x )=1x +2在区间(1,3)上的平均变化率为Δy Δx =f (3)-f (1)3-1=15-132=-115; f (x )=1x +2在区间(4,4+Δx )上的平均变化率为Δy Δx =f (4+Δx )-f (4)(4+Δx )-4=16+Δx -16Δx =-16(6+Δx ). 活动与探究2:解:∵f (x )=y =5x 2+6,∴Δy =f (2+Δx )-f (2)=5(2+Δx )2+6-26=5[4+4Δx +(Δx )2]-20=20Δx +5(Δx )2.∴Δy Δx =20Δx +5(Δx )2Δx =20+5Δx . 迁移与应用:1.2Δx +4 解析:Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-2+1=2(Δx )2+4Δx ,所以ΔyΔx=2Δx +4.2.解:x 0=2,Δx =14时,Δy =12+14-12=-118,∴平均变化率为Δy Δx =-11814=-29.当堂检测1.7 解析:Δy Δx =f (3)-f (-1)3-(-1)=27-(-1)4=7.2.20 m/s3.4+2Δt 解析:Δs Δt =2(1+Δt )2-2Δt=4+2Δt .4.8+2Δx 解析:Δy Δx =2(2+Δx )2+5-(2×22+5)Δx =8Δx +2(Δx )2Δx=8+2Δx . 5.0.4π 解析:∵S =πr 2,∴ΔS Δr =S (0.3)-S (0.1)0.3-0.1=0.09π-0.01π0.2=0.4π.。
课件3:1.1.1 函数的平均变化率
C.0.43
D.0.44
解析:Δy=f(2+0.1)-f(2)=2.12+1-(22+1)=0.41.
答案:B
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在 4到4+Δt之间的平均速度v. 解:Δs=s(4+Δt)-s(4) =3(4+Δt)2+(4+Δt)+4-(3×42+4+4) =25Δt+3(Δt)2. ∴v=ΔΔst=25+3Δt. 即物体在 4 到 4+Δt 之间的平均速度为 25+3Δt.
提示:从20 min到30 min变化快. 问题2:如何刻画体温变化的快慢? 提示:用平均变化率. 问题3:平均变化率一定为正值吗? 提示:不一定.可正,可负,可为零.
知识点解读
平均变化率
(1)定义:对一般的函数 y=f(x)来说,当自变f量(x2x)-从f(xx21)变为 x2 时,函数值从 f(x1)变为 f(x2),它的平均变化率为. x2-x1
其中自变量的变化 x2-x1 称作自变量的改变量,记作Δx ,
函数值的变化 f(x2)-f(x1) 称作函数值的改变量,记作Δy .这样,
函数的平均变化率就可以表示为函数值的改变量与自变量的改变
f(x2)-f(x1)
量之比,即ΔΔxy=
x2-x1 .
(2)作用:刻画函数值在 区间[x1,x2] 上变化的快慢.
瞬时变化率
(1)定义:对于一般的函数 y=f(x),在自变量 x 从 x0 变到 x1
的过程中,设 Δx=x1-x0,Δy=f(x1)-f(x0),则函数的平均变化
率是ΔΔxy=
fx1-fx0 = x1-x0
fx0+Δx-fx0 Δx
.而当 Δx趋于0
时,平
均变化率就趋于函数在 x0 点的瞬时变化率.
平均变化率教案高中数学
平均变化率教案高中数学教学目标:1. 了解平均变化率的概念及其计算方法;2. 掌握在各种情况下计算平均变化率的技巧;3. 能够应用平均变化率解决实际问题。
教学重点:1. 平均变化率的定义;2. 平均变化率的计算方法;3. 平均变化率的应用。
教学难点:1. 理解平均变化率与图像的关系;2. 解决实际问题时如何确定变化量和时间间隔。
教学准备:1. 讲义、笔记本、书本等教学资料;2. 课件或投影仪。
教学过程:1. 导入:引导学生回顾导数的概念,并引出平均变化率的概念。
简单解释平均变化率是某一函数在两个点之间的变化率的平均值。
2. 讲解:(1)介绍平均变化率的计算方法,即在两个点处的函数值的差除以对应自变量的差。
(2)通过具体例子讲解平均变化率的计算过程,并提示学生注意变化量和时间间隔的确定。
3. 练习:让学生进行一些练习,巩固平均变化率的计算方法。
可以包括各种函数的计算和图像分析。
4. 分析:引导学生分析平均变化率与图像的关系,让他们理解在图像上如何表示平均变化率。
5. 应用:通过实际问题的讨论,让学生应用平均变化率的概念解决实际问题,培养他们的计算能力和应用能力。
6. 总结:总结本节课的重点内容,强调平均变化率的重要性和应用范围。
教学延伸:1. 可以引导学生探究平均变化率与导数的关系,深入了解两者之间的联系。
2. 鼓励学生自主寻找更多实际问题,应用平均变化率进行解决,提高他们的问题发现和解决能力。
布置作业:布置相关练习题,要求学生巩固所学知识,并提出自己的疑惑和问题。
教学反思:通过本节课的教学,学生应该能够掌握平均变化率的概念和计算方法,能够运用平均变化率解决实际问题。
同时,也要引导学生深入思考,加深他们对平均变化率的理解和运用。
高中数学 第1章 导数及其应用 1.1.1 平均变化率学案 苏教版选修22
1.1.1 平均变化率1.通过实例,了解平均变化率的概念,并会求具体函数的平均变化率.(重点) 2.了解平均变化率概念的形成过程,会在具体的情境中,说明平均变化率的实际意义.(难点)3.平均变化率的正负.(易混点)[基础·初探]教材整理 函数的平均变化率 阅读教材P 5~P 7,完成下列问题. 1.函数平均变化一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f x 2-f x 1x 2-x 1.2.平均变化率的意义平均变化率的几何意义是经过曲线y =f (x )上两点P (x 1,y 1),Q (x 2,y 2)的直线PQ 的斜率.因此平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”.1.判断正误:(1)函数的平均变化率为零,说明函数没有发生变化.( )(2)自变量的改变量x 2-x 1取值越小,越能准确体现函数的变化率.( ) (3)对山坡的上、下两点A ,B 中,y 2-y 1x 2-x 1可以近似刻画弯曲山路的陡峭程度.( ) 【答案】 (1)× (2)√ (3)√2.函数y =2x +2在[1,2]上的平均变化率是________.【导学号:01580000】【解析】 +-+2-1=2.【答案】 2[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_______________________________________________ 解惑:_______________________________________________ 疑问2:_______________________________________________ 解惑:_______________________________________________ 疑问3:_______________________________________________ 解惑:_______________________________________________[小组合作型](1)f (x +Δx )-f (x )的值为________.(2)已知函数f (x )=x +1x,分别计算f (x )在自变量x 从1变到2和从3变到5时的平均变化率,并判断在哪个区间上函数值变化得较快.【精彩点拨】 (1)由f (x +Δx )-f (x )=f (2+0.1)-f (2)可得.f x 2-x 1x 2-1【自主解答】 (1)f (2+Δx )-f (2)=f (2.1)-f (2)=2.12-22=0.41. 【答案】 0.41(2)自变量x 从1变到2时,函数f (x )的平均变化率为f-f2-1=2+12-+1=12; 自变量x 从3变到5时,函数f (x )的平均变化率为f-f 5-3=5+15-⎝ ⎛⎭⎪⎫3+132=1415.因为12<1415,所以函数f (x )=x +1x在自变量x 从3变到5时函数值变化得较快.1.求函数平均变化率的三个步骤 第一步,求自变量的增量x 2-x 1;第二步,求函数值的增量f (x 2)-f (x 1); 第三步,求平均变化率f x 2-f x 1x 2-x 1.2.求平均变化率的一个关注点 求点x 0附近的平均变化率,可用f x 0+Δx -f x 0Δx的形式.[再练一题]1.如图111,函数y =f (x )在A ,B 两点间的平均变化率是________.图111【解析】 ∵k AB =y A -y B x A -x B =3-11-3=-1, 由平均变化率的意义知y =f (x )在A ,B 两点间的平均变化率为-1. 【答案】 -1t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.(1)求运动员在第一个0.5 s 内高度h 的平均变化率; (2)求高度h 在1≤t ≤2这段时间内的平均变化率.【精彩点拨】 (1)求函数h (t )=-4.9t 2+6.5t +10在区间[0,0.5]上的平均变化率;(2)求函数h (t )=-4.9t 2+6.5t +10在区间[1,2]上的平均变化率.【自主解答】 (1)运动员在第一个0.5 s 内高度h 的平均变化率为h-h0.5-0=4.05(m/s).(2)在1≤t ≤2这段时间内,高度h 的平均变化率为h-h 2-1=-8.2 (m/s).实际问题中的平均变化率与函数在某一区间上的平均变化率类似,首先求f (x 2)-f (x 1),再求比值f x 2-f x 1x 2-x 1,当函数解析式没有给定时,先根据实际问题求出函数解析式,再重复上述步骤即可.[再练一题]2.一质点作直线运动,其位移s 与时间t 的关系为s (t )=t 2+1,该质点在2到2+Δt (Δt >0)之间的平均速度不大于5,则Δt 的取值范围是________.【解析】 质点在2到2+Δt 之间的平均速度为v =+Δt2+1-2+Δt=4Δt +Δt 2Δt=4+Δt ,又v ≤5,则4+Δt ≤5,所以Δt ≤1,又Δt >0,所以Δt 的取值范围是(0,1]. 【答案】 (0,1][探究共研型]探究1 函数y 12【提示】f x 2-f x 1x 2-x 1探究2 平均变化率的大小说明什么意义?【提示】 平均变化率的绝对值越大,表示函数值变化的越快,若平均变化率为负,则表示函数值在减小,若平均变化率为正,表示函数值在增加.已知气球的体积为V (单位:L)与半径r (单位:dm)之间的函数关系是V (r )=43πr 3.(1)求半径r 关于体积V 的函数r (V );(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义?【精彩点拨】 (1)由体积V 和半径r 的关系反解即可.(2)分别求函数r (V )在区间[0,1]和[1,2]上的平均变化率,然后比较说明.【自主解答】 (1)∵V =43πr 3,∴r 3=3V 4π,r =33V 4π,即r (V )=33V4π.(2)函数r (V )在区间[0,1]上的平均变化率约为r-r 1-0=33×14π-01≈0.62(dm/L),函数r (V )在区间[1,2]上的平均变化率约为r-r 2-1=33×24π-33×14π≈0.16(dm/L).显然体积V 从0 L 增加到1 L 时,半径变化快,这说明气球刚开始膨胀的比较快,随着体积的增大,半径增加的越来越慢.平均变化率的应用主要有:求某一时间段内的平均速度,物体受热膨胀率,高度(重量)的平均变化率等等.解决这些问题的关键在于找准自变量和因变量.平均变化率为正值,表示函数值在增加;平均变化率为负值,表示函数值在减小.[再练一题]3.为了检测甲、乙两辆车的刹车性能,分别对两辆车进行了测试,甲车从25 m/s 到0 m/s 花了5 s ,乙车从18 m/s 到0 m/s 花了4 s ,试比较两辆车的刹车性能.【解】 甲车速度的平均变化率为0-255=-5(m/s 2),乙车速度的平均变化率为0-184=-4.5(m/s 2),平均变化率为负值说明速度在减少,因为刹车后,甲车的速度变化相对较快,所以甲车的刹车性能较好.[构建·体系]1.已知函数y =f (x )=2x 2的图象上点P (1,2)及邻近点Q (1+Δx,2+Δy ),则Δy Δx 的值为________.【导学号:01580001】【解析】f+Δx -fΔx=+Δx 2-2×12Δx=4+2Δx .【答案】 4+2Δx2.质点运动规律s =2t 2+5,则在时间(2,2+Δt )中,相应的平均速度等于________.【解析】 s (2+Δt )-s (2)=2(2+Δt )2+5-(2×22+5)=2(Δt )2+8Δt . ∴s+Δt -s 2+Δt -2=Δt 2+8ΔtΔt=8+2Δt .【答案】 8+2Δt3.函数y =x 2-2x 在x =2附近的平均变化率是______________________. 【解析】 f (2+Δx )-f (2) =(2+Δx )2-2(2+Δx )-(4-4) =(Δx )2+2Δx , ∴f+Δx -fΔx=Δx2+2ΔxΔx=Δx +2.【答案】 Δx +24.质点运动规律s =12gt 2,则在时间区间(3,3+Δt )内的平均速度等于________.(g=10 m/s 2)【解析】 12g ×(3+Δt )2-12g ×32=12×10×[9+6Δt +(Δt )2]-45=30Δt +5(Δt )2,v =12g +Δt2-12g ×32Δt=30+5Δt .【答案】 30+5Δt5.将半径为R 的球加热,若半径从R =1到R =m 时球的体积膨胀率(体积的变化量与半径的变化量之比)为28π3,则m 的值为________.【解析】 ∵4π3m 3-4π3×13=4π3(m 3-1),∴43πm 3-43π×13m -1=4π3m 3-m -1=28π3, 即m 2+m +1=7,解得m =2或m =-3(舍去). 【答案】2我还有这些不足:(1)_______________________________________________ (2)_______________________________________________ 我的课下提升方案:(1)_______________________________________________(2)_______________________________________________。
2020版高中数学第一章导数及其应用1.1.1函数的平均变化率课件新人教B版选修2_2
为 f x1 f x2 ?
x1 x2
提示:能.若从x1变为x2,平均变化率为
若从x2变为x1,平均变化率为
而 f x2 =f x1 f x.1 f x2
f x1 f,
x1 x2
x
f 2
x2 x
2
,f
x1
x1
x2 x1
x1 x2
【自我总结】 1.对平均变化率的两点说明 (1)y=f(x)在区间[x1,x2]上的平均变化率是曲线y=f(x) 在区间[x1,x2]上陡峭程度的“数量化”,曲线陡峭程 度是平均变化率的“视觉化”.
【解析】函数f(x)=-x2在x0到x0+Δx之间的平均变化
率为f
x0
x
f
x0
x0
x 2
x
2 0
x
x
2x0x x
(x)2
,
2x0
x
同函数f(x)=3-x2在x0到x0+Δx之间的平均变化率相同,
故结论不变.
2.(改变问法)比较函数f(x)=3-x2在哪一点附近的平
均变化率最大? 【解析】因为 7 13 19,
y x
f x2 f x1
x2 x1
公式中Δx与Δy可能同号,也可能异号.
(3)×.函数值的改变量应是f(x0+Δx)-f(x0).
2.若已知函数f(x)=x2-1的图象上一点(1,0)及附近一 点(1+Δx,Δy),则Δy的值为________. 【解析】Δy=f(1+Δx)-f(1)= (1+Δx)2-1=(Δx)2+2Δx. 答案:(Δx)2+2Δx
第一章 导数及其应用 1.1 导 数
1.1.1 函数的平均变化率
2018年高中数学 第一章 导数及其应用 1.1.1 函数的平均变化率课件6 新人教B版选修2-2
化率?
• 答案
2 x
• 练习2
• 求函数y x2 在区间[0 , 1] ,[1, 2], 的平均
变化率?并讨论其几何意义?
• 答案
点
•
•1
3
• 几何意义:
• 点(0,0)与 点(1,1)连线的斜率= 1
点(1,1)与点(2,2) 连线的斜率= 3
则当 x 0 时,商
f (x0 x) f (x0 ) y
x
x
称作函数 y=f(x) 在区间 [ x0 , x0 x] 或[ x0 x
, x0 ]的平均变化率。
x 对概念的理解
1;函数y=f(x)在 x0处有定义1 ,x1 是 x0 附近的任意 一点,即 x x1 x0 0,但可正可负。
y x
( x0
x1 )
由图像知;K的绝对值越大,即 y 的绝对值越大,山 x
坡越陡,反之越缓。每一小段的 y
x
不尽相同,但每一小段山坡的高度的平均
变化率都可用这一比值 y来度量
x
11
由此,我们引入了函数平均变化率的概念
一般地,已知函数y=f(x) , x 0 , x 1 其定义域内不同
的两点,记 x x1 x0 ,y y1 y0 f (x1) f (x0) f (x0 x) f (x0)
• 假设下图是一座山 的剖面示意图,并在上 面建立平面直角坐标系,A是出发点,H是 山顶,爬山路线用函数y f (x) 表示
y
xx x1 x0
y y1 y0
y x
y11x11
y0 x0
由公式知,A,B连线的斜率为
k AB
yB yA xB xA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1.1平均变化率
教学目标:
1.理解平均变化率的概念;
2.了解平均变化率的几何意义;
3.会求函数在某点处附近的平均变化率
教学重点:平均变化率的概念、函数在某点处附近的平均变化率;
教学难点:平均变化率的概念.
(一)、探究新知,揭示概念
教学过程设计
一.创设情景
为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:
一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;
二、求曲线的切线;
三、求已知函数的最大值与最小值;
四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.
(二)、探究新知,揭示概念
实例一:气温的变化问题
现有南京市某年3月18日-4月20日每天气温最高温度统计图:
1、你从图中获得了哪些信息?(注:3月18日为第一天)
2 、在“4月18日到20日”,该地市民普遍感觉“气温骤增”,而在“3月18日到4月18日”却没有这样的感觉,这是什么原因呢?
3、怎样从数学的角度描述“气温变化的快慢程度”呢?
师生讨论,教师板书总结:
分析:这一问题中,存在两个变量“时间”和“气温”,
当时间从1到32,气温从3.5o C增加到18.6o C,气温平均变化
当时间从32到34,气温从18.6o C增加到33.4o C,气温平均变化
因为7.4>0.5, 所以,从32日到34日,气温变化的更快一些。
【教师过渡】:“表示时间从“3月18日到4月18日”时,气温的平均变化率。
提出问题:先说一说“平均”的含义,再说一说你对“气温平均变化率”的理解。
实例二:气球的平均膨胀率问题。
【提出问题】:回忆吹气球的过程,随着气球内空气容量的增加,气球半径增长的快慢相同吗? 学生思考回答。
假设每次吹入气球内的空气容量是相等的,如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢?
思考:
1、这一问题与“气温的变化问题”有哪些相同的地方?你打算怎样做呢?
2、如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢?先独立思考,再在小组内交流你的想法。
学生讨论,小组交流,教师巡视。
学生充分讨论后,指名不同学生上台演示交流。
【教师过渡】:“在小组交流中,同学们采用了不同的方法解决这一问题,一部分从图形的角度入手,另一部分通过计算进行具体的量化,下面我们借助Excel的自动计算功能与插入图表功能来研究这一问题。
”
(1)、观察表格,你发现了什么?(教师操作,Excel演示)
(2)、观察图象,你发现了什么?(教师操作,Excel演示)
3、当空气容量从V1增到加V2时,气球的平均膨胀率是多少?
讨论得出:
实例三:高台跳水运动
【学生思考】:在高台跳水运动中,t s时运动员相对于水面的高度是h(t)= -4.9t2+6.5t+10。
1、运动员在每段时间内的速度是匀速的吗?
2、分别计算运动员在0≤t≤0.5,1≤t≤2这两段时间里的平均速度。
3、当时间从t1到t2时,运动员的平均速度是多少?
(三)、分析归纳,抽象概括
【教学活动】:针对下面三个实例,教师引出问题:“我们通过观察图象得出了气温的平均变化率、通过分析表格,得出气球的平均膨胀率、通过分析解析式,得到了运动员的平均速度”。
(幻灯出示)
1、实例一:在气温的变化问题中,当时间从t1到t2时,气温的平均变化率=
2、实例二: 在气球的半径变化问题中,当体积从V1增加到V2时,气球的平均膨胀率=
2、实例三:在高台跳水问题中,当时间从t1到t2时,运动员的平均速度=
【学生思考】:
1. 上述三个问题,有什么共同特征?
2. 你能归纳出分析此类问题的一般方法吗?
3. 下图中函数从x1到x2的平均变化率怎样计算?
4. 说一说求函数“平均变化率”的步骤是什么?
5. 这个式子还表示什么?由此你认为平均变化率的几何意义是什么?
讨论得出:
1.上述问题中的变化率可用式子表示, 称为函数f(x)从x1到x2的平均变化率
2.若设, (这里看作是对于x1的一个“增量”可用x1+代替x2,同样)
3.则平均变化率为
(四)、知识应用,深化理解
例1.已知函数f(x)=的图象上的一点及临近一点,则.
解:,
∴
例2.求在附近的平均变化率。
解:,所以
所以在附近的平均变化率为
四.课堂练习
1.质点运动规律为,则在时间中相应的平均速度为.
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.
3.过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率. 五.回顾总结
1.平均变化率的概念
2.函数在某点处附近的平均变化率
六.布置作业。