空间计量经济学模型归纳

合集下载

空间计量经济学模型及其应用

空间计量经济学模型及其应用

空间计量经济学模型及其应用空间计量经济学模型及其应用随着经济全球化和城市化进程的不断深入,企业和居民之间的空间联系越来越密切,城市空间格局的变化越来越明显。

在这种情况下,空间计量经济学模型逐渐成为经济学研究的重要工具之一,能够准确地衡量空间的经济效应,推动城市发展和区域经济增长。

本报告将从空间计量经济学模型的基本理论、模型类型和应用领域三个方面进行论述,旨在为对此领域感兴趣的读者提供一些参考。

一、空间计量经济学模型的基本理论空间计量经济学是空间经济学与计量经济学的交叉学科,其理论构建基于三个方面:空间距离、空间依赖和空间异质性。

下面分别进行阐述。

1.空间距离空间距离是指在空间维度上两个经济体之间的距离,这里的经济体可以是城市、县、国家等经济空间单元。

在空间计量经济学中,距离不仅仅是直线距离的概念,还包括通行时间、交通成本、行政管辖区域等多方面的因素。

空间距离对经济发展具有明显的影响,可以影响固定资本的流动、劳动力的流动、资金的流动等多方面的因素。

因此,空间距离在计量经济模型中的应用非常广泛,是模型的一个重要变量之一。

2.空间依赖空间依赖是指一个经济单元的行为和性质受到其周围空间经济环境的影响。

在空间计量经济学中,空间依赖可以通过空间自回归模型、空间误差模型等方式进行测算。

空间依赖是经济空间单元之间相互作用的一种体现,它可以客观反映经济环境的变化和发展趋势,有助于经济预测和政策决策,具有非常广泛的研究领域和应用前景。

3.空间异质性空间异质性是指在不同地理空间单元之间存在的结构性差异,这种差异不会随着时间的推移而消失。

在空间计量经济学中,空间异质性主要体现在组成部分的不同、战略资源的分布和经济制度的差异等方面。

空间异质性的存在使得研究不同区域经济结构的差异和社会文化的差异变得更加复杂,需要充分考虑空间异质性对研究结果的影响。

二、空间计量经济学模型的类型空间计量经济学模型的类型主要包括空间自回归模型、空间误差模型、空间滞后模型和空间面板模型等。

第九章 空间计量经济学

第九章 空间计量经济学

I E(I ) Z Var( I )
• 当Z值为正且显著时,表明存在正的空间自相关; 当Z值为负且显著时,表明存在负的空间自相关; 当Z值为零时,观测值呈独立随机分布。
Geary’s C指数 • Geary’s C指数用的是中值离差的叉乘,强调的是观 测值之间的离差,其公式为:
C (n 1) wij ( xi x j )2 2 wij ( xi x ) 2
第二节 空间权重矩阵的设定和选择
定义空间对象的相互邻接关系,这需要借助一种工具即 空间权重矩阵。通过空间权重矩阵我们可以用简单的数 字来表示复杂的空间地理位置关系。 空间计量经济学引入空间权重矩阵,这是与传统计量经 n 济学的重要区别之一,也是进行空间计量分析的前提和 基础。 通常定义一个二元对称矩阵来表达 n 个位置上空间单元 (例如区域)之间的邻接关系
空间自回归过程(SAR)定义为:
( y i) W ( y i)

( y i) ( I W )
1
空间移动平均过程(SMA)定义为:

y W y ( I W )
二、探索性空间数据分析
探索性空间数据分析(Exploratory Spatial Data Analysis,ESDA)是一种具有识别功能的空间数据分析方 法,主要用于探测空间分布的非随机性或空间自相关性 ESDA本质上是由数据驱动的探索过程,而不是由理论 驱动的演绎推理过程,其目的是“让数据自己说话”, 通过数据分析来发现问题。
空间异质性
• 对于空间异质性,只要将空间单元的特性考虑进去, 大多可以用经典的计量经济学方法进行估计。 • 但是当空间异质性与空间相关性同时存在时,经典 的计量经济学估计方法不再有效,而且在这种情况 下,问题变得异常复杂,区分空间异质性与空间相 关性比较困难。 • 空间变系数的地理加权回归模型(Geographical Weighted Regression,简记为GWR)是处理空间异 质性的一种良好的估计方法。

空间计量经济学基本模型

空间计量经济学基本模型
* 参照时间序列自回归模型的叫法,空间滞后模型 也被称作空间自回归模型(Spatial Autoregressive Model),简记为SAR模型。
精品课件
➢空间误差模型(Spatial Error Model, SEM)
y X u u Wu
~ (0, 2I n )
* 参照时间序列误差自相关的叫法,空间误差模型 也被称作空间自相关模型(Spatial Autocorrelation Model),简记为SAC模型。
精品课件
问题:
练◦ 习考虑空间溢出效应的地区人均GDP影响因素 分析
数据文件:
◦ china.shp
论文提纲
◦ 全局MoranI检验 ◦ 局部Moran I检验 ◦ 回归分析 ◦ 运用三类不同的w分别做出结果,选最好的。
精品课件
精品课件
➢OLS、SLM、SEM的选择
Run OLS
精品课件
➢选择标准及步骤
✓1、做一次OLS估计
✓2、对比LM统计量,LM-Lag和LM-Error
✓3、若均不显著,则无需进行空间计量分析
✓4、若只有一个显著,则设定为与显著统计量 对应的空间计量模型
✓5、若均显著,再对比Robust LM-Lag和 Robust LM-Error
精品课件
➢空间杜宾误差模型(SDEM)
y W1y X1 W1X2 u u W2u ~ (0,2In)
* SDEM模型是SLM、SEM、SDM的综合,比GSAR更一般化。
* β2=0,λ=0,SDEMSLM; * β2=0,ρ=0,SDEMSEM; * λ=0,SDEMSDM;
* β2=0,SDEMGSAR;
精品课件
精品课件
精品课件

空间计量经济学模型归纳复习过程

空间计量经济学模型归纳复习过程

空间计量经济学模型空间相关性是指 (),i j y f y i j =≠即i y 与j y 相关 模型可表示为()(),1i j j i i y f y x i j βε=++≠其中,()f为线性函数,(1)式的具体形式为()()2,0,2i ij j i i ii jy a y x N βεεδ≠=++∑如果只考虑应变量空间相关性,则(2)式变为(3)式()()21,0,,1,2...3ni ij j i ii y W y N i nρεεδ==+=∑式中1nijj i Wy =∑为空间滞后算子,ij W 为维空间权重矩阵n n W ⨯中的元素,ρ为待估的空间自相关系数。

0ρ≠,存在空间效应 (3)式的矩阵形式为()()21,0,4u n y Wy N I ρεδ⨯=(4)式称为一阶空间自回归模型,记为FAR 模型 当在模型中引入一系列解释变量X 时,形式如下()()2,0,5n y Wy X N I ρβεεδ=++(5)式称为空间自回归模型,记为SAR 模型 当个体间的空间效应体现在模型扰动项时有()()21,,0,6u n y X u u Wu N I βλεδ⨯=+=(6)式成为空间误差模型,记为SEM 模型 当应变量与扰动项均存在空间相关时有()()2121,,0,7u n y W y X u u W u N I ρβλεεδ⨯=++=+(7)式称为一般空间模型,记为SAC 模型当0X =且20W =时,SAC →FAR ;当20W =时,SAC →SAR当10W =时,SAC →SEM当空间相关性还体现在解释变量上时,则有()()2,0,8n y Wy X WXr N I ρβεεδ=+++(8)式成为空间杜宾模型,记为SDM 模型面板数据空间混合回归模型空间滞后应变量()NT T N Wy W y I W y ==⊗ 空间滞后解释变量()NT T N WX W X I W X ==⊗ 空间滞后扰动项()NT T N W W I W εεε==⊗,,*(...)NT N N N NT NT T N W diag w w w I W ==⊗含因变量空间滞后的模型为()()1119NT T N NK K K NT Y I W Y X ρβε⨯⨯⨯⨯=⊗++ρ为空间自回归参数空间面板固定效应模型2,,()0,()T t t t t t t t t t NY X W E E I βμφφδφεεεεσ=++=+==(10)(10)为加入空间残差自相关的固定效应模型2,()0,()T t t t t t t t N Y WY X E E I δβμεεεεσ=+++== (11)(11)为加入空间滞后因变量的固定效应模型. 空间面板随机效应模型为Y X v β=+,1()()T N T v I I B ιμε-=⊗+⊗ (12)其中()1,,1T T ι'= , N B I W δ=-, (12)式为空间误差随机效应模型.()T N Y I W Y X v δβ=⊗++ (13)(13)式为空间滞后应变量随机效应模型.空间计量经济学:既要考虑应变量的空间相关性Wy ρ,也要考虑各个解释变量的空间相关性rWX ,还要考虑各个扰动项的空间相关性u Wu λ= a) 地理空间权重 b) 经济空间权重c) 基于距离的(阀值法、K 最近点法) 注:划*者应用最为广泛W 为空间权重矩阵,以0-1空间权重矩阵为例550111010011100101110101010A ⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1y 与234,,y y y 相关。

29_空间计量经济模型的理论与应用

29_空间计量经济模型的理论与应用

空间计量经济模型的理论与应用第一部分空间计量经济模型介绍 (2)第二部分模型理论基础与原理 (5)第三部分空间相关性分析方法 (8)第四部分常用空间计量模型构建 (10)第五部分模型估计与检验方法 (14)第六部分应用案例与实证分析 (19)第七部分空间计量模型的局限性 (22)第八部分展望与未来研究方向 (25)第一部分空间计量经济模型介绍空间计量经济模型是一种将地理空间因素纳入传统经济学模型的分析方法,它通过在传统的线性模型中引入空间相关系数来考虑地区间的相互作用和影响。

这种模型起源于 20 世纪 70 年代,并逐渐成为经济学、地理学、城市规划等领域的重要工具。

本文将从理论与应用两个方面对空间计量经济模型进行详细介绍。

一、理论基础1.空间数据特性空间数据通常具有以下特点:(1)空间邻接性:相邻地区的变量之间往往存在相互影响。

(2)空间异质性:不同地区的自然环境、人文条件等差异会导致数据表现出不同的特性。

(3)空间相关性:同一地区内的多个变量之间可能存在着内在的联系,从而使得数据具有一定的空间自相关性。

2.空间计量模型的分类根据空间效应的不同,空间计量经济模型可分为两大类:(1)局部空间模型:这类模型关注的是单个区域的数据,如空间滞后模型(SLM)和空间误差模型(SEM),它们分别考虑了邻居地区的影响和空间内相关性的效果。

(2)全局空间模型:这类模型考虑的是整个研究区域的空间效应,如空间杜宾模型(SDM)和空间卡尔曼滤波模型(SKF),它们能够捕捉到区域间广泛存在的相互作用关系。

二、空间计量模型的构建1.空间权重矩阵在构建空间计量模型时,首先要确定空间权重矩阵。

空间权重矩阵用于衡量地区之间的空间关联程度,常见的有邻接矩阵、距离衰减矩阵等。

例如,在邻接矩阵中,如果两个地区相邻,则它们之间的权值为1;否则,权值为 0。

2.模型选择根据所要解决的问题和数据特点,可以选择相应的空间计量模型。

例如,当研究区域内部存在明显的空间自相关性时,可以采用空间误差模型或空间滞后模型;当研究区域之间的互动效应较强时,则应选用空间杜宾模型。

经济学中的空间计量模型

经济学中的空间计量模型

经济学中的空间计量模型一、空间计量模型概述空间计量模型是指将空间因素引入计量经济学模型中的一种方法。

空间计量模型通常用于研究空间相关性对经济现象的影响。

空间相关性是指位置相近的地区之间存在的相互依赖关系或者相互作用。

二、空间计量模型的基本形式空间计量模型的基本形式可以表示为:Y=ρWy + Xβ + ε其中,Y表示被解释变量,X表示非空间自变量,W表示空间自变量的邻接矩阵,ε代表误差项,ρ是空间相关系数,β是非空间自变量的系数。

空间自变量通常是指与地理位置有关的变量,比如距离、地理位置等。

三、空间计量模型的类别1. 空间自回归模型(Spatial Autoregression Model,SAR)SAR模型是最简单的空间计量模型之一。

SAR模型的核心思想是,与某一地区相邻的地区之间存在相互影响,这种影响可以通过在模型中引入空间自回归项来体现。

SAR模型通常用于研究空间依赖性的影响,比如一个地区的影响对相邻地区的经济发展状况的影响。

2. 空间误差模型(Spatial Error Model,SEM)SEM模型是一种常用的空间计量模型,其核心思想是每个地区的误差项受周围地区的误差项的影响。

SEM模型和SAR模型的区别在于,SEM模型中的空间相关性体现在误差项当中,而SAR模型中的空间相关性体现在自变量中。

3. 空间Durbin模型(SDM)SDM模型是SAR模型和SEM模型的综合体,其核心思想是同时考虑空间自回归和空间误差,在模型中引入两个空间因素项。

SDM模型通常用于研究空间因素对社会、经济现象的影响。

四、空间计量模型的应用场景空间计量模型有许多的应用场景,比如城市规划、环境保护、地区经济发展等领域。

1. 研究城市规划城市规划通常需要考虑到不同城市之间的相互依赖关系。

比如,周围地区的经济状况和城市的经济发展状况相关,不同城市之间的人口流动也会影响城市的规划。

这时候可以采用空间计量模型,来研究城市规划对相邻地区的影响。

空间经济计量学模型

空间经济计量学模型

时空聚类分析
03
根据时空相似性对观测对象进阶空间模型
高阶空间自回归模型
在传统空间自回归模型中引入高阶空间项,以捕捉经济变量之间 的长距离空间依赖关系。
高阶空间滞后模型
在传统空间滞后模型中引入高阶空间项,以反映经济变量之间的 全局空间交互作用。
高阶空间权重矩阵
空间计量经济学模型的应用主要包括以下几个方 面
2. 检测空间异质性和空间依赖性:空间计量经济 学模型可以用来检测数据的空间异质性和空间依 赖性,从而更好地理解经济现象的空间关系。
1. 探索空间数据的分布和模式:通过分析空间数 据,可以了解经济现象在地理空间上的分布特征 和变化趋势。
3. 建立空间预测模型:基于空间数据的特点,可 以建立空间预测模型,对未来的经济现象进行预 测和分析。
模型估计方法 空间滞后模型的估计方法包括最 小二乘法、广义最小二乘法等。
适用范围 空间滞后模型适用于研究空间自 相关问题,即某一变量在空间上 的分布情况对其他变量产生的影 响。
空间误差模型
误差项
空间误差模型中包含一个误差项,该误差 项反映了其他未纳入模型的空间因素的影
响。
适用范围
空间误差模型适用于研究空间异质性问题 ,即某一变量在不同空间位置上的变异情
变量产生影响,又受其他变量的影响。 • 模型参数解释:空间杜宾模型的参数包括空间权重矩阵、解释变量、误差项等,其中空间权重矩阵的选取对模
型结果影响较大。此外,空间杜宾模型的解释变量系数反映了相应解释变量对因变量的影响程度和方向。
04
模型选择与评估
模型选择的原则和方法
根据研究目的和数据特点选择合适的模型
VS
详细描述
通过引入空间因素,分析人口流动的空间 影响因素及其作用机制,探讨不同地区人 口流动的异同点及影响因素的差异,为制 定有针对性的人口政策提供科学支持。

空间计量经济学基本模型

空间计量经济学基本模型

整理课件
4
➢空间杜宾模型(Spatial Durbin Model, SDM)
y Wy X1 WX2 ~ (0, 2I n )
* 考虑了自变量空间滞后项与因变量之间的相关性。
整理课件
5
二、扩展模型
➢ 广义空间自回归模型(GSAR)
y W1y X u u W2u
~ (0, 2I n )
整理课件
9
➢空间关系的体现Biblioteka 式✓只考虑单一类型的空间关系
• 邻接关系:L1,L2,L3…… • 空间距离:K1,K2,K3…… • 经济距离:J1,J2,J3……
✓同时考虑两类空间关系
• 邻接关系与空间距离二选一 • 模型中至少包含两个空间矩阵:SDEM、GSAR
整理课件
10
五、基本模型的GeoDa估计
整理课件
12
整理课件
13
整理课件
14
整理课件
15
➢结果说明
✓模块一:模型的基本统计信息 ✓模块二:回归结果的统计信息 ✓模块三:回归系数及其显著性 ✓模块四:模型结果的诊断(SLM、SEM)
• 蓝色线条以上,异方差诊断,原假设为无异方差 • 蓝色线条以下,空间相关性诊断,原假设为不存在空间相
✓5、若均显著,再对比Robust LM-Lag和Robust LM-Error
✓6、选择显著(相对显著)的统计量对应的空间
计量模型
整理课件
19
整理课件
20
整理课件
21
整理课件
22
➢确立最优模型(难点)
✓1、确定OLS、SLM、SEM模型 ✓2、对确定后的模型,展开诊断检验 ✓3、如果各项诊断均通过检验,则确定该模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间计量经济学模型
空间相关性是指 ()
,i j y f y i j =≠即i y 与j y 相关 模型可表示为()
(),1i j j i i y f y x i j βε=++≠
其中,()f
为线性函数,(1)式的具体形式为
()
()2,0,2i ij j i i i
i j
y a y x N βεεδ≠=++∑
如果只考虑应变量空间相关性,则(2)式变为(3)式
()()21
,0,,1,2...3n
i ij j i i
i y W y N i n
ρεεδ==+=∑
式中
1
n
ij
j i W
y =∑为空间滞后算子,ij W 为维空间权重矩阵n n W ⨯中的元素,ρ为待估的空间自相
关系数。

0ρ≠,存在空间效应 (3)式的矩阵形式为()
()21,
0,4u n y Wy N I ρε
δ⨯=
(4)式称为一阶空间自回归模型,记为FAR 模型 当在模型中引入一系列解释变量X 时,形式如下
()
()2,0,5n y Wy X N I ρβεε
δ=++
(5)式称为空间自回归模型,记为SAR 模型 当个体间的空间效应体现在模型扰动项时有
()
()21,,0,6u n y X u u Wu N I βλε
δ⨯=+=
(6)式成为空间误差模型,记为SEM 模型 当应变量与扰动项均存在空间相关时有
()
()2121,,0,7u n y W y X u u W u N I ρβλεε
δ⨯=++=+
(7)式称为一般空间模型,记为SAC 模型
当0X =且20W =时,SAC →FAR ;当20W =时,SAC →SAR
当10W =时,SAC →SEM
当空间相关性还体现在解释变量上时,则有
()
()2,0,8n y Wy X WXr N I ρβεε
δ=+++
(8)式成为空间杜宾模型,记为SDM 模型
面板数据空间混合回归模型
空间滞后应变量()NT T N Wy W y I W y ==⊗ 空间滞后解释变量()NT T N WX W X I W X ==⊗ 空间滞后扰动项()NT T N W W I W εεε==⊗
,,*(...)NT N N N NT NT T N W diag w w w I W ==⊗
含因变量空间滞后的模型为
()()1119NT T N NK K K NT Y I W Y X ρβε⨯⨯⨯⨯=⊗++
ρ为空间自回归参数
空间面板固定效应模型
2,,()0,()T t t t t t t t t t N
Y X W E E I βμφφδφεεεεσ=++=+==
(10)
(10)为加入空间残差自相关的固定效应模型
2,()0,()T t t t t t t t N Y WY X E E I δβμεεεεσ=+++== (11)
(11)为加入空间滞后因变量的固定效应模型. 空间面板随机效应模型为
Y X v β=+,1()()T N T v I I B ιμε-=⊗+⊗ (12)
其中()1,
,1T T ι'= , N B I W δ=-, (12)式为空间误差随机效应模型.
()T N Y I W Y X v δβ=⊗++ (13)
(13)式为空间滞后应变量随机效应模型.
空间计量经济学:既要考虑应变量的空间相关性Wy ρ,也要考虑各个解释变量的空间相关性rWX ,还要考虑各个扰动项的空间相关性u Wu λ= a) 地理空间权重 b) 经济空间权重
c) 基于距离的(阀值法、K 最近点法) 注:划*者应用最为广泛
W 为空间权重矩阵,以0-1空间权重矩阵为例
55
0111010011100101110101010A ⨯⎡⎤
⎢⎥⎢⎥
⎢⎥=⎢⎥
⎢⎥⎢⎥⎣⎦
,1y 与234,,y y y 相关。

(标准化)(()W f t ≠不太合理)
空间计量经济学
Y X u β=+为矩阵向量形式的单方程框架的模型
此模型假定样本12,,...n y y y 是独立的
当i y 与j y 相关时,则模型变为 11n n n n y W y X u ρβ⨯⨯⨯=++
当1,...k x x 的每个解释变量设l x ,取样本后12,...,l l nl x x x 也相关,则模型变为
y Wy WX u ργ=++
当不考虑y 或x 空间相关,只考虑随机项同期相关性时,模型变为,y X u u Wu βλε=+=+ 这里W 为空间权重矩阵 例如 12345,,,,y y y y y
空间权重矩阵设为1255
3450
1110100111
00101110101010y y A y y y ⨯⎡⎤
⎢⎥⎢⎥⎢⎥=⎢⎥
⎢⎥⎢⎥⎣⎦
归一化为111
333
1113
331122
1111444
4112200000000000W ⎡⎤⎢⎥
⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦
并假定,W 不随时间和变量变化(此假定不太合理)
空间经济计量模型与面板数据相结合形成了空间面板经济计量模型,这也是一个新的热点。

非参数模型
1. 什么是非参数模型:非参数模型是指不具备明确的参数形式设定的模型。

比如研究t y 和解释变量t x 之间的关系模型可设为 a)t t t y x βε=+ (1)为参数模型 b)(),t t t y f x βε=+
(2)为非参数模型(函数形式是未知的)
(2)式为非参数模型的一般设定形式 解决()|t t E Y X 有两种办法:
其一,通过模型设定来模拟t y 的条件期望,这是参数模型的方法 其二,通过对t y 条件分布的估计来估计t y 的条件期望,这是非参数方法 设 ()()|m x E Y X x ==为条件回归函数
无(非)参数回归模型就是要在给定样本[]1n
i i i X Y =下得到条件回归函数()m x 的一个估计
()n m t
如果X 是确定性变量,(1)式可以表示为
(),1,...,i i i y m x i n ε=+=
其中{}1n
i i ε=是相互独立,均值为0,方差为2
δ的序列
非参数回归模型的估计有三种方法:权函数法、最小二乘估计、稳健估计 2.半参数模型=线性回归模型+非参数模型 一般形式为()()
124t t t t
y x f x βε=++
3.非参数模型的优缺点
优点:参数模型设定有误无论采取什么先进和准确的估计方法,结果一定是有解的,但非参数模型可放松回归函数形式的限制,减少和避免有模型设定失误导致估计和预测的结果错误的可能。

缺点:非参数模型回归结果外延有困难。

相关文档
最新文档