超静定结构的概念和超静定结构次数的确定
超静定结构的受力分析及特性

超静定结构的受力分析及特性一、超静定结构的特征及超静定次数超静定结构的静力特征是仅由静力平衡条件不能唯一地确定全部未知反力和内力。
结构的多余约束数或用静力平衡条件计算全部未知反力和内力时所缺少的方程数称为结构的超静定次数。
通常采用去除多余约束的方法来确定结构的超静定次数。
即去除结构的全部多余约束,使之成为无多余约束的几何不变体系,这时所去除的约束数就是结构的超静定次数。
去除约束的方法有以下几种:(一)切断一根两端铰接的直杆(或支座链杆),相当于去除一个约束。
(二)切断一根两端刚接的杆件,相当于去除三个约束。
(三)切断——个单铰(或支座固定铰),相当于去除二个约束;切断一个复铰(连接n根杆件的铰),相当于去除2(n—1)个约束。
(四)将单刚结点改为单铰节点,相当于去除一个约束;将连接n个杆件的复刚节点改为复铰节点,相当于去除n—1个约束。
去除一个超静定结构多余约束的方法可能有几种,但不管采用哪种方法,所得超静定次数一定相同。
去除图4—1a所示超静定结构的多余约束的方法之一如图4—1b所示,去除六个多余约束后,就成为静定结构,故为超静定六次。
再用其他去除多余约束的方案确定其超静定次数,结果是相同的。
二、力法的基本原理(一)力法基本结构和基本体系去除超静定结构的多余约束,代以相应的未知力Xi (i=1、2、…、n),Xi 称为多余未知力或基本未知力,其方向可以任意假定。
去除多余约束后的结构称为力法基本结构。
力法基本结构在各多余未知力、外荷载(有时还有温度变化、支座位移等)共同作用下的体系称为力法基本体系,它是用力法计算超静定结构的基础。
选取力法基本结构应注意下面两点:1.基本结构一般为静定结构,即无多余约束的几何不变体系。
有时当简单超静定结构的解为已知时,也可以将它作为复杂超静定结构的基本结构,以简化计算。
2.选取的基本结构应使力法典型方程中的系数和自由项的计算尽可能简便,并尽量使较多的副系数和自由项等于零。
超静定结构的计算

第二节力法
这样,原结构的内力计算问题就转变为基本结构在多余未知 力多的X余基1未本及知未荷力知载量Xq共1就,同是其作多余用余的下未计的知算内力就力。迎计刃算而问解题了了。。因只此要,设力法法求计出算
(二)力法方程 基本结构在月端不再受约束限制,因此在荷载y作用下月点
竖1小因5向-不此10位同基(d移而本)]向异结。下 , 构显由 的[然图于 变在15形X二-11位是者0(c移取共)]状代,同态了在作应被X用1与拆下作原去B用点结约下竖构束月向完对点位全原竖移一结向将致构位随,的移X即作向1的B用上点大,[图 的余方竖未向向知产位力生移X的1位△共移1同必应作须与用为原下零结,,构在也在拆就X除是1方约说向束基的处本位沿结移多构相余在等未已。知知即力荷X:载1作与用多 △1=0 这就是基本结构应满足的变形谐调条件,又称位移条件。
用结所构示11、上。产则12生△、的11、1沿3 △表X11示2方、单向△位的13可力相以X应1表=位1示移, X为,2=如1,X图3=151-分12别(c作),(用d)于, (基c),本(d) 11 11X1、12 12 X 2、13 13 X 3,上面儿何条件(15-2)
中的第一式可以写为:
下一页 返回
第一节超静定结构基本知识
(1)去掉支座处的一根链杆或者切断一根链杆,相当于去掉一 个约束,如图15-3 (a),(b)所示的两个结构都多出来一个约束, 都是一次超静定结构。
(2)去掉一个铰支座或内部的一个单铰,相当于去掉两个约束。 图15-4 (a), (b)所示的两个刚架都多出来两个约束,都是二次 超静定结构。
上一页 下一页 返回
第二节力法
用力法计算超静定结构在支座移动所引起的内力时,其基本 原理和解题步骤与荷载作用的情况相同,只是力法方程中自 由项的计算有所不同,它表示基本结构由于支座移动在多余 约第束五处节沿“多支余 座未 移知 动力 时方 静向 定所 结引 构起 的的 位位 移移 计算△”iC,所可述用方第法十求四得帝。 此外,还应注意力法方程等号右侧为基本结构在拆除约束处 沿多余未知力方向的位移条件,也就是原结构在多余未知力 方正向值的,已否知则实 取际 负位 值移 。值△i,当△i与多余未知力方向一致时取
jg结构力学 力法

33
X 3
图2
31
图3
32 x3=1
1P
三次超静定结构力法方程:
力法典型方程:
11 x1 12 x2 13 x3 1 P 0 21 x1 22 x2 23 x3 2 P 0 31 x1 32 x2 33 x3 3 P 0
东 财
Dongbei University of Finance Economics &
式中:
11
22
1 1 2 64 ( 4 4) ( 4) EI 2 3 3 EI
1P 1 1 3 640 ( 4 160) ( 4) EI 3 4 EI
x1
基本结构(1)
解:力法方程:
x1 11 x1 12 x2 1 P k 21 x1 22 x2 1 P 0
力法
p
D
k
东北财经大学 建设管理学院
东 财
Dongbei University of Finance Economics &
力法
东北财经大学 建设管理学院
东 财
Dongbei University of Finance Economics &
用力法计算超静定结构
第一节 超静定结构的概念和超静定次数的确定概述
一、超静定结构的概念
1、超静定结构的定义 具有几何不变性、而又有多余约束的结构。其反力和内力 只凭静力平衡方程不能确定或不能完全确定。 2、超静定结构的特点 (1)结构的反力和内力只凭静力平衡方程不能确定或不能 完全确定。 (2)除荷载之外,支座移动、温度改变、制造误差等均引 起内力。 (3)多余联系遭破坏后,仍能维持几何不变性。 (4)局部荷载对结构影响范围大,内力分布均匀。
§7-2超静定次数的确定

二确定方法多余联系约束的数目多余未知力的数目解除多余约束使超静定结构成为几何不变的静定结构去掉约束的数目n相当于解除一个约束相当于解除二个约束相当于解除三个约束对框格的结构按框格的数目来确定超静定次数
§7-2 超静定次数的确定
一、超静定次数的定义 =多余联系(约束)的数目=多余未 知力的数目
二、确定方法
令老板当场晕倒的一份简历
年龄:这是私人问题;身高:这跟工作有关系吗? 体重:随时改变,饭前饭后都不同; 居住地:那是一个特别的地方,我生命的舞台; 电话:爱立信手机;电子邮件:只留给漂亮和富有的女孩
上班时间:越短越好;应征职位:找一个不做什么实事, 但能被美女包围的职位; 学历:毕业于一个你找不着的大学; 语言能力:侃大山是专长;兴趣:睡得天昏地暗; 生日:正月初七;经历:游戏人生; 曾任职位:高级的或低级的都是一种经历;
解除多余约束,使超静定结构成为几何不变的 静定结构,去掉约束的数目=n
去掉约束的方法:
相当于解除一个约束 相当于解除二个约束 相当于解除三个约束 对框格的结构,按框格的数目来确定超静定次数:
1、
相 当
去掉可动铰:
于 固定端-固定铰:
解 除
刚结点-单铰:
一 固定铰-可动铰:
个 约
切断一链杆:
Байду номын сангаас
束
2、相 当于解 除二个 约束
对框格的结构,按框格的数目来确定超静定次数:
n=3*7=21
n=3*7-5=16
封闭格子为3
1、一个封闭无铰的框格,其超静定次数等于3。当结构上有f 个封闭无铰框格时,其超静定次数n=3f
超静定结构的概念和超静定结构次数的确定

1。 超静定结构的概念
从几何组成分析的角度来看,结构可以分为
静定结构:几何不变,无多余约束.
超静定结构:几何不变,有多余约束.
例:如图1所示,有一个多余约束:可去掉任一根支座链杆。
支座反力和内力仅由静力平衡条件无法全部唯一确定的、几何不变但有多余约束的体系,就是超静定结构
(2)要把所有多余约束全部去掉。如图8(a)所示结构,如果只去掉一根水平链杆支座得到如图8 (b)所示结构,则其中的闭合框仍具有三个多余约束,必须把闭合框再切开一个截面,如图8 (c)所示才成为静定结构,所以故原结构共有四个多余约束,是四次超静定。
图8(a)图8(b)图8(c)
这部分是后面力法的基础。大家要熟练掌握.如果给出一个超静定结构,要会判断结构的超静定数.
多余约束
多余约束的选取方案并不一定是唯一的,但是总数目是不变的。
多余未知力(多余力)
多余约束中产生的约束力是多余力,多余力的大小不能由静力平衡条件确定。
2.超静定次数的确定
多余约束的数目就是超静定次数
判断方法:去掉多余约束使原结构变成静定结构的方法。
去掉一根支座链杆或切断一根链杆:去掉一个约束.
去掉一个铰支座或联结两钢片的单铰:去掉两个约束。如图2所示.
将固定端改成铰支座或将连续杆件上的刚性联结改成单铰联结:去掉一个约束。如
图3中的固定端改为图4中的铰支座;图5中的刚性结点改为图6中的铰结点。
去掉一个固定端或将刚性联结切断如图7所示:去掉三个约束。
在确定超静定次数时,还应注意以下两点:
(1)不要把原结构拆成一个几何可变体系。所以要特别注意非多余约束不能去掉,比如(a)中的水平链杆支座不能去掉.
超静定结构的超静定次数

超静定结构的超静定次数超静定结构是指在受力平衡条件下,由于约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。
超静定结构的超静定次数是指约束条件数量与自由度数量之差。
一、超静定结构的特点超静定结构具有以下特点:1. 约束条件数量大于自由度数量:超静定结构的约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。
这导致了结构的设计和分析变得更加困难。
2. 结构具有较高的刚度:由于超静定结构的约束条件数量较多,结构具有较高的刚度。
这使得超静定结构在承受荷载时能够更好地保持形状稳定性。
3. 结构能够承受更大的荷载:超静定结构由于具有较高的刚度,能够承受更大的荷载。
这使得超静定结构在工程实践中得到广泛应用。
二、超静定结构的应用超静定结构在工程实践中有着广泛的应用,主要包括以下几个方面:1. 桥梁工程:超静定结构在桥梁工程中得到了广泛应用。
由于桥梁需要承受大量的荷载,超静定结构能够提供更高的刚度和稳定性,保证桥梁在使用过程中不发生塌陷或变形。
2. 建筑结构:超静定结构在建筑结构中也有重要的应用。
例如,高层建筑的框架结构通常采用超静定结构设计,以提高结构的稳定性和抗震性能。
3. 机械设备:超静定结构在机械设备中也有广泛的应用。
例如,汽车的悬挂系统和起重机的支撑结构都是超静定结构,能够提供更高的稳定性和承载能力。
三、超静定结构的分析方法超静定结构的分析方法主要包括以下几个步骤:1. 定义自由度和约束条件:首先确定结构的自由度和约束条件。
自由度是指结构中可以独立变形的数量,约束条件是指结构中限制自由度的条件。
2. 建立平衡方程:根据结构的受力平衡条件,建立结构的平衡方程。
平衡方程是超静定结构分析的基础,通过平衡方程可以求解结构的受力状态。
3. 引入支座反力:由于超静定结构的约束条件数量大于自由度数量,结构中存在未知的支座反力。
通过引入支座反力,可以将超静定结构转化为静定结构进行分析。
4. 求解支座反力:利用平衡方程和约束条件,求解支座反力。
超静定结构的概述

(a)
(b)
图 11-3
除上述主要特征外,超静定结构还具有整体性强、变形小、受力较为 均匀等特点,因而这种结构在实际工程中被广泛采用。例如,图11-4a 所 示的两跨连续梁较图11-4b 所示的两跨简支梁,在力 F 作用点处的弯矩和 挠度均为小。
(a) 静定结构
(b) 超静定结构
(c) 静定结构受力图
算上来说,静定结构的静力特征是用静力平衡条件就能求得全 部反力和内力;而超静定结构的静力特征是仅用静力平衡条件不能求得 全部反力和内力。例如,对图11-1a 所示的静定梁,其受力图如图11-1c 所示,梁的反力(FAx、FAy、FB)和内力(FN、FQ、M)分别由三个静 力平衡方程求得。 而对图 11-lb 所示的连续梁,其受力图如图 11-ld 所示, 梁的反力共有四个(FAx、FAy、Fx1、FB),其中Fx1称为多余约束所对应 的多余未知力,用三个静力平衡方程不可能将此四个反力全部求得,只 要有一个反力尚未确定,梁的内力就不能确定。因此,还须补充其他条 件,才能求解。
【例11-3】确定图11-13a 所示结构的超静定次数。
解:图11-13a 所示刚架,具有一个多余约束。若将横梁某处改为铰接, 即相当于去掉一个约束,得到如图11-13b 所示的静定结构,故原结构 n = l。
若去掉支座 B 处的水平支杆,则得图11-13c 所示的静定结构。 但是,若去掉支座 B 或支座 A 的竖向支杆,即成可变体系如图11-13d 所 示,显然这是不允许的,所以此刚架支座处的竖向支杆不能作为多余约束。
图 11-6
② 去掉一个单铰,相当于去掉两个约束 。 如图11-7a 所示的结构,去掉一个单铰而变成静定结构,如图11-7b 所示。 因 n = 2,故该结构为两次超静定 。
第十四章 超静定结构

Mi Mi ii dx EI l
ij
l
Mi M j EI
dx
i F
Mi M F dx EI l
[例5] 试求图示刚架的全部约束反力,刚架EI为常数。 解:①刚架有两个多余约束。 ②选取静定基,去除多余约束, 代以多余约束反力。 ③建立力法正则方程 q B q B
2 3
a
C
a
D
X1
B
a
A
q a
D
Δ1F
1 qa3 qa 4 a EI 2 2 EI
1
a
C
a A
由δ11 X 1 Δ1F
FBX
FAX 0, FAY
3qa 0 得 X1 8
a
2
qa 2 2
3qa 0, FBY 8
11qa 8 qa , M A 8 逆
三、超静定次数
结构的多余约束的数目。 判断超静定次数的另一方法:
一次超静定 三次超静定
解除几个约束后结构成为静定,就是称为几次超静定。 解除一个可动铰时相当于解除一个约束,解除一个固
定铰或中间铰相当于解除两个约束,解除一个刚性连接相 当于解除三个约束。
四、超静定分类
1、外力超静定; 2、内力超静定; 3、既有内力超静定,又有外力超静定。
4a 3 a3 qa4 X 1 X 2 0 3EI 2 EI 6 EI a3 a3 qa4 X 1 X 2 0 2 EI 3EI 8 EI
⑥求其它支反力 q 由平衡方程得其它支反力, 4 全部表示于图中。 qa 7
A
3 qa 7
B 3 qa 2 28 1 qa 28
1 qa 28
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3中的固定端改为图4中的铰支座;图5中的刚性结点改为图6中的铰结点。
去掉一个固定端或将刚性联结切断如图7所示:去掉三个约束。
在确定超静定次数时,还应注意以下两点:
(1)不要把原结构拆成一个几何可变体系。所以要特别注意非多余约束不能去掉,比如(a)中的水平链杆支座不能去掉。
(2)要把所有多余约束全部去掉。如图8(a)所示结构,如果只去掉一根水平链杆支座得到如图8 (b)所示结构,则其中的闭合框仍具有三个多余约束,必须把闭合框再切开一个截面,如图8 (c)所示才成为静定结构,所以故原结构共有四个多余约束,是四次超静定。
图8(a)图8 (b)图8 (c)
这部分是后面力法的基础。大家要熟练掌握。如果给出一个超静定结构,要会判断结构的超静定次数。
多余约束
多余约束的选取方案并不一定是唯一的,但是总数目是不变的。
多余未知力(多余力)
多余约束中产生的约束力是多余力,多余力的大小不能由静力平衡条件确定。
2.超静定次数的确定
多余约束的数目就是超静定次数
判断方法:去掉多余约束使原结构变成静定结构的方法。
去掉一根支座链杆或切断一Байду номын сангаас链杆:去掉一个约束。
去掉一个铰支座或联结两钢片的单铰:去掉两个约束。如图2所示。
超静定结构的概念和超静定结构次数的确定
1.超静定结构的概念
从几何组成分析的角度来看,结构可以分为
静定结构:几何不变,无多余约束。
超静定结构:几何不变,有多余约束。
例:如图1所示,有一个多余约束:可去掉任一根支座链杆。
支座反力和内力仅由静力平衡条件无法全部唯一确定的、几何不变但有多余约束的体系,就是超静定结构