一元一次不等式(组)含参数问题专项练习

合集下载

一元一次不等式(组)含参数问题 专题训练(1)

一元一次不等式(组)含参数问题 专题训练(1)

一元一次不等式(组)含参数问题专题训练(1)
20.如果不等式组有解,则实数m的取值范围是.
6.若不等式组的解为x<﹣a,则下列各式中正确的是()
A.a+b≤0B.a+b≥0C.a﹣b<0D.a﹣b>0
11.若关于x的不等式(a﹣b)x>a﹣b的解集是x<1,那么下列结论正确的是()A.a>b B.a<b
C.a=b D.无法判断a、b的大小
9.若关于x的不等式组无解,则a的取值范围是.
21.如果关于x的方程x+2+m=0的解也是不等式组的一个解,则m的取值范围是.
26.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为.33.关于x的方程2x﹣3m=1的解为正数,则m的取值范围是. 35.关于x、y的二元一次方程组满足x﹣y<3,则k的取值范围为.37.已知关于x的不等式4x﹣a≤0的非负整数解是0,1,2,则a的取值范围是.47.若关于x的不等式组有两个整数解,则a的取值范围是.。

专题03 解一元一次不等式(组)及参数问题八种模型(学生版)

专题03 解一元一次不等式(组)及参数问题八种模型(学生版)

专题03解一元一次不等式(组)及参数问题八种模型【类型一解一元一次不等式模型】例题:(2022·陕西·模拟预测)解不等式3136x x-<-,并在如图所示的数轴上表示出该不等式的解集.【变式训练1】(2022·陕西·西安市西光中学二模)解不等式7132184x x->--,并把它的解集在如图所示的数轴上表示出来.【变式训练2】(2021·上海徐汇·期中)解不等式38236x x---≤,把解集在数轴上表示出来,并求出最小整数解.【变式训练3】(2022·福建·三明一中八年级阶段练习)解不等式:(1)2(41)58x x -≥-(2)261136x x +-≤【变式训练4】(2022·河南驻马店·八年级阶段练习)解下列一元一次不等式,并把它们的解集表示在数轴上:(1)2﹣5x <8﹣6x ;(2)53-x +1≤32x .【类型二解一元一次不等式组模型】例题:(2022·福建·三明一中八年级阶段练习)解不等式组52331132x xx x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集在数轴上表示出来:【变式训练1】(2022·广东·汕头市龙湖实验中学九年级阶段练习)解不等式组:1011122x x -≥⎧⎪⎨--<⎪⎩,并写出它的所有整数解.【变式训练2】(浙江省温州市2020-2021学年八年级上学期3月月考数学试题)解一元一次不等式组523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩,并把解集在数轴上表示出来.【变式训练3】(2022·广东揭阳·八年级阶段练习)解不等式组:12(1)2235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩,并把它的解集在数轴上表示出来.【变式训练4】(2022·湖南岳阳·八年级期末)(1)解不等式121132x x+++≥;(2)解不等式组:3242(1)31x x x -<⎧⎨-≤+⎩,并把它的解集在数轴上表示出来.【类型三一元一次不等式的定义时含参数问题】例题:(2021·全国·七年级课时练习)已知不等式||1(2)20n n x --->是一元一次不等式,则n =____.【变式训练1】(2022·山东·枣庄市第十五中学八年级阶段练习)已知()3426m m x --+>是关于x 的一元一次不等式,则m 的值为______.【变式训练2】(2021·黑龙江·肇源县超等蒙古族乡学校八年级期中)若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.【类型四一元一次不等式整数解中含参数问题】例题:(2022·上海·七年级期中)如果不等式2x ﹣3≤m 的正整数解有4个,则m 的取值范围是_____.【变式训练1】(2020·全国·八年级单元测试)已知不等式30x m -≤有5个正整数解,则m 的取值范围是________.【类型五一元一次方程组与不等式间含参数问题】例题:(2022·全国·八年级)关于x 的方程42158x m x -+=-的解是负数,则满足条件的m 的最小整数值是_____.【变式训练1】(2021·四川成都·八年级期末)已知关于x 的方程35x a x +=-的解是正数,则实数a 的取值范围是______.【变式训练2】(2021·全国·七年级课时练习)如果关于x 的方程2435x a x a++=的解不是负数,那么a 的取值范围是________.【变式训练3】(2021·全国·七年级课时练习)当m________时,关于x的方程222x m xx---=的解为非负数.【类型六二元一次方程组与不等式间含参数问题】例题:(2021·内蒙古呼和浩特·七年级期末)已知关于x、y的二元一次方程组231231x y kx y k+=+⎧⎨+=-⎩的解满足x+y<4,则满足条件的k的最大整数为____.【变式训练1】(2021·四川绵阳·x,y的二元一次方程组221x yx y k+=⎧⎨+=+⎩的解为正数,则k的取值范围为__.【变式训练2】(2021·江苏江苏·七年级期末)已知关于x,y的二元一次方程组231323x y mx y m+=+⎧⎨-=+⎩,且x,y满足x+y>3.则m的取值范围是___.【变式训练3】(2021·四川南充·七年级期末)已知关于x,y的方程组24223x y kx y k+=⎧⎨+=-+⎩,的解满足x﹣y>0,则k的最大整数值是______________.【变式训练4】(2021·甘肃·九年级专题练习)若关于x,y的二元一次方程组3331x yx y a+=⎧⎨+=+⎩的解满足x+y<2,则a的取值范围为_______.【类型七解一元一次不等式组中有无解集求参数问题】例题:(2021·内蒙古·包头市青山区教育教学研究中心八年级期中)关于x的不等式组352x ax a->⎧⎨-<⎩无解,则a的取值范围是_____.【变式训练1】(2022·广西贵港·八年级期末)若关于x的不等式组33235x xx m-<⎧⎨->⎩有解,则m的取值范围是______.【变式训练2】(2021·四川凉山·七年级期末)已知关于x的不等式组5122x ax x->⎧⎨->-⎩无解,则a的取值范围是_________.【变式训练3】(2021·河南南阳·三模)已知关于x的不等式组3xx m>⎧⎨≤⎩有实数解,则m的取值范围是____.【变式训练4】(2022·江苏南通·九年级阶段练习)如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则常数a的取值范围是______________.【类型八解一元一次不等式组中有整数解求参数问题】例题:(2021·宁夏中卫·八年级期末)不等式组,3x ax>⎧⎨<⎩的整数解有三个,则a的取值范围是_________.【变式训练1】(2021·安徽·马鞍山二中实验学校七年级期中)已知不等式组211x x a-<⎧⎨-≤⎩,只有三个整数解,则a 的取值范围是_________.【变式训练2】(2021·黑龙江佳木斯·模拟预测)不等式组2312x ax -⎧⎨-≤⎩<有3个整数解,则a 的取值范围是_____.【变式训练3】(2020·内蒙古·北京八中乌兰察布分校一模)关于x 的不等式组3x ax <⎧⎨≥⎩只有两个整数解,则a 的取值范围是_____.【变式训练4】(2022·湖南湘潭·八年级期末)已知关于x 的不等式组3010x a x -≤⎧⎨-≤⎩①②,有且只有3个整数解,则a 的取值范围是______________。

一元一次不等式组含参及整数解专项训练(25题)(学生版)

一元一次不等式组含参及整数解专项训练(25题)(学生版)

一元一次不等式组含参及整数解专项训练(25题)一.选择题(共13小题)1.若不等式组的解集为x>4,则a的取值范围是()A.a>4B.a<4C.a≤4D.a≥42.若不等式组无解,那么m的取值范围是()A.m>2B.m<2C.m≥2D.m≤23.关于x的一元一次不等式组无解,求m的取值范围()A.m<0B.m>0C.m≤0D.m≥04.已知关于x的不等式无解,则a的取值范围为()A.a<2B.a>2C.a≤2D.a≥25.如果点P(3﹣m,2m+4)在第四象限,那么m的取值范围是()A.﹣2<m<3B.m<3C.m>﹣2D.m<﹣26.点A(m+1,3m﹣7)在第一、三象限的角平分线上,则m的值为()A.3B.4C.5D.67.已知点A的坐标为(a,3﹣a),下列说法正确的是()A.若点A在y轴上,则a=3B.若点A在一三象限角平分线上,则a=1C.若点A到x轴的距离是3,则a=±6D.若点A在第四象限,则a的值可以为48.若关于x的不等式组无解,则m的取值范围是()A.m>1B.m≥1C.m<1D.m≤19.已知方程组的解满足x为非正数,y为负数.求m的取值范围为()A.2<m≤3B.﹣2<m<3C.﹣2<m≤3D.﹣2≤m<310.若关于x的不等式组的解集为x<2.则a的取值范围是()A.a>1B.a≥1C.a≤1D.a<111.已知关于x的不等式组的整数解共有4个,则a的取值范围是()A.﹣3≤a<﹣2B.﹣3<a≤﹣2C.﹣3<a<﹣2D.a<﹣212.已知关于x的不等式组恰有4个整数解,则a的取值范围是()A.﹣1<a<﹣B.﹣1≤a≤﹣C.﹣1<a≤﹣D.﹣1≤a<﹣13.若关于x的不等式组的所有整数解的和是15,则m的取值范围是()A.5<m<6B.5≤m<6C.5<m≤6D.5≤m≤6二.解答题(共12小题)14.已知点P(2a﹣12,1﹣a)位于第三象限.(1)若点P的纵坐标为﹣3,试求出a的值;(2)求a的取值范围.15.在平面直角坐标系中,已知点M(1+2m,﹣m).(1)若点M在y轴上,求m的值;(2)若点M到y轴的距离是3,求m的值;(3)若点M在第一、三象限的角平分线上,求m的值.16.若不等式组有3个整数解,则a的取值范围是多少.17.解不等式组,求出解集并写出此不等式组的整数解.18.(1)解不等式,3(x﹣1)﹣5x≤1,并把解集表示在数轴上;(2)解不等式组并写出它的整数解.19.解不等式组,并写出该不等式组的最大整数解.20.解不等式组并求它的所有整数解的和.21.解不等式组,并求出正整数解.22.已知关于x、y的方程组的解都为非负数.(1)求a的取值范围;(2)已知2a﹣b=1,求a+b的取值范围;(3)已知a﹣b=m(m是大于1的常数),且b≤1,求2a+b最大值.(用含m的代数式表示)23.若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,求a的取值范围.24.解不等式组,并求出该不等式组的最小整数解.25.(1)若关于x的不等式x<a的解集中的任意x,都能使不等式<1成立,求a的取值范围;(2)若关于x的不等式组有且只有两个整数解,求m的取值范围。

专题9.6 一元一次不等式(组)中的含参问题专项训练(60道)(举一反三)(人教版)(解析版)

专题9.6 一元一次不等式(组)中的含参问题专项训练(60道)(举一反三)(人教版)(解析版)

专题9.6 一元一次不等式(组)中的含参问题专项训练(60道)【人教版】考卷信息:本套训练卷共60题,题型针对性较高,覆盖面广,选题有深度,可深化学生对一元一次不等式(组)中的含参问题的理解!一、单选题(共30小题)1.(2022·山东济宁·七年级期末)已知关于x的不等式(1−a)x<2的解集为x<21−a,则a的取值范围为( )A.a>0B.a>1C.a<0D.a<1【答案】D【分析】根据不等式的性质,当不等式左右两边除以同一个正数时,不等号方向不改变,可得1−a>0,解不等式可得a的取值范围.【详解】解:由题意可得,1−a>0,解得a<1,故选D【点睛】本题考查不等式的性质、解一元一次不等式,准确掌握不等式的性质是解题的关键.2.(2022·四川乐山·七年级期末)若关于x的不等式组{2x−43≤x−1a−x>0的整数解恰有5个,则a取值范围为( )A.2<a≤3B.2≤a<3C.3<a≤4D.3≤a<4【答案】C【分析】分别解出两个一元一次不等式的解集,再根据已知条件,原一元一次不等式组的整数解恰有5个,确定该不等式组解集的公共解集,进而求得a的取值范围.【详解】解:不等式整理得{x⩾−1 x<a,∵关于x的不等式组{2x−43⩽x−1a−x>0的整数解恰有5个,∴3<a⩽4.故选:C.【点睛】本题考查一元一次不等式组的整数解、不等式的解集等知识,解题的关键是熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.3.(2022·河南新乡·七年级期末)若关于x<x的解集为2<x<5,则多项式A可以是()A.x−5B.2x−5C.x−10D.3x−12【答案】A【分析】根据题意A<0解集为x<5,据此可得答案.【详解】解:∵8−x3<x∴x>2∵若关于x<x的解集为2<x<5,∴A<0的解集为x<5A. x−5<0,解得x<5,符合题意;B. 2x−5<0,解得x<52,不合题意;C. x−10<0,解得x<10,不合题意;D. 3x−12<0,解得x<4,不合题意;故选:A【点睛】本题考查的是解一元一次不等式组,根据题意得到A<0解集为x<5是解答此题的关键.4.(2022·云南临沧·八年级期末)若整数a使关于x的不等式组x−12≤6x34x−a>x+1,有且只有19个整数解,且使关于y的方程2y a31y +10y1=1的解为非正数,则a的值是()A.−13或−12B.−13C.−12D.−12或−11【答案】C【分析】解不等式组,根据有且只有19个整数解求出a的范围,再解方程,根据方程的解为非正数,求出a的范围,找出公共部分的整数a值即可.【详解】解:解x−12≤6x34x−a>x+1,得a13<x≤15,∵不等式组有且只有19个整数解,∴−4≤a13<−3,解得:-13≤a<-10,解2y a31y +10y1=1得y=-12-a,∵方程的解为非正数,∴-12-a≤0且y=-12-a≠-1,∴a≥-12且a≠-11,∴a≥−12−13≤a<−10,∴-12≤a<-10.∵a为整数且a≠-11,∴a=-12.故选:C.【点睛】本题主要考查了解一元一次不等式组,解分式方程,一元一次不等式组的整数解,正确求得不等式组的解集是解题的关键.5.(2022·重庆秀山·七年级期末)关于x的方程k﹣2x=3(k﹣2)的解为非负数,且关于x的不等式组x−2(x−1)≤32k x3≥x有解,符合条件的整数k的值的和为( )A.3B.4C.5D.6【答案】C【分析】求出每个不等式的解集,根据不等式组有解得出k≥-1,解方程得出x=-k+3,由方程的解为非负数知-k+3≥0,据此得k≤3,从而知-1≤k≤3,继而可得答案.【详解】解:x−2(x−1)≤3 2k x3≥x解不等式x-2(x-1)≤3,得:x≥-1,解不等式2k x3≥x,得:x≤k,∵不等式组有解,∴k≥-1,解方程k-2x=3(k-2),得:x=-k+3,∵方程的解为非负数,∴-k+3≥0,解得k≤3,则-1≤k≤3,∴符合条件的整数k的值的和为-1+0+1+2+3=5,故C正确.故选:C.【点睛】本题考查的是解一元一次方程和一元一次不等式组,正确求出每一个不等式解集和一元一次方程的解是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2022·重庆涪陵·七年级期末)若关于x的一元一次不等式组−5−x≤13(x−a)3x+1>4x+2有解,则符合条件的所有正整数a的和为( )A.50B.55C.66D.70【答案】B【分析】先解不等式组得x⩾a−154x<−1,根据关于x的一元一次不等式组−5−x⩽13(x−a)3x+1>4x+2有解可得a−154<−1,从而得出正整数a,再求和即可得解.【详解】解:解不等式组−5−x⩽13(x−a)3x+1>4x+2,得x⩾a−154x<−1,∵关于x的一元一次不等式组−5−x⩽13(x−a)3x+1>4x+2有解,∴a−154<−1,∴a<11,∴正整数a的和为1+2+3+4+5+6+7+8+9+10=55,故选:B.【点睛】本题主要考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解此题的关键.7.(2022·福建漳州·七年级期末)若不等式组x−4<0x≥m有解,则m的取值范围为()A.m<4B.m>4C.m≤4D.m≥4【答案】A【分析】先求出不等式x−4<0的解集,再根据已知不等式组有解即可得出m的范围.【详解】解:解不等式x−4<0得:x<4,∵不等式组x−4<0x≥m有解,∴m<4,故选:A.【点睛】本题考查了解一元一次不等式组,能根据不等式组的解的情况得出m的不等式是解此题的关键.8.(2022·广东广州·七年级期末)若不等式组x+9<5x+1x>m的解集为x>2,则m的取值范围是()A.m≤2B.m<2C.m≥2D.m>2【答案】A【分析】先解不等式组,再根据不等式组的解集为x >2,可得答案.【详解】解:x +9<5x +1①x >m②由①得:x >2,∵ 不等式组x +9<5x +1x >m的解集为x >2,∴m ≤2. 故选:A【点睛】本题考查的是一元一次不等式的解法,根据不等式组的解集求解参数的取值范围,理解“同大取大”是解本题的关键.9.(2022·重庆·巴川初级中学校八年级期中)若关于x 的一元一次不等式组x−14(4a−2)≤123x−12<x +3的解集是x ≤a ,且关于y 的方程2y−a−3=0有非负整数解,则符合条件的所有整数a 的个数为( )个A .5B .4C .3D .2【答案】A【分析】先解不等式组,根据不等式组的解集可得a <7,再解一元一次方程可得y =a 32,然后根据a 32为非负整数即可得.【详解】解:x−14(4a−2)≤12①3x−12<x +3② ,解不等式①得:x ≤a ,解不等式②得:x <7,∵这个不等式组的解集是x ≤a ,∴a <7,解方程2y−a−3=0得:y =a 32,∵关于y 的方程2y−a−3=0有非负整数解,∴a 32≥0,且为非负整数,解得a ≥−3,在−3≤a <7内,当整数a 取−3,−1,1,3,5时,a 32为非负整数,则符合条件的所有整数a 的个数为5个,故选:A.【点睛】本题考查了解一元一次不等式组和一元一次方程,熟练掌握不等式组的解法是解题关键.10.(2022·广东云浮·七年级期末)若关于x的一元一次不等式组x−4<0x+m≥6有解,则m的取值范围为()A.m>−2B.m≤2C.m>2D.m<−2【答案】C【分析】分别求出每一个不等式的解集,根据不等式组的解集得出关于m的不等式,解之即可.【详解】解:解不等式x﹣4<0,得:x<4,解不等式x+m≥6,得:x≥6﹣m,∵不等式组有解,∴6﹣m<4,解得m>2,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2022·重庆·四川外国语大学附属外国语学校七年级期末)若实数m使关于x的不等式组3−2x3≤x32 2x−m2≤−1有解且至多有3个整数解,且使关于y的方程2y=4y−m3+2的解为非负整数解,则满足条件的所有整数m的和为()A.15B.11C.10D.6【答案】C【分析】先解一元一次不等式组,根据题意可得1⩽m−22<4,再解一元一次方程,根据题意可得6−m2⩾0且6−m2为整数,从而可得4⩽m⩽6且6−m2为整数,然后进行计算即可解答.【详解】解:3−2x3⩽x32①2x−m2⩽−1②,解不等式①得:x⩾1,解不等式②得:x⩽m−22,∵不等式组有解且至多有3个整数解,∴1⩽m−22<4,∴4⩽m<10,2y=4y−m3+2,解得:y=6−m2,∵方程的解为非负整数解,∴6−m2⩾0且6−m2为整数,∴m⩽6且6−m2为整数,∴4⩽m⩽6且6−m2为整数,∴m=4或6,∴满足条件的所有整数m的和为4+6=10,故选:C.【点睛】本题考查了一元一次方程的解,一元一次不等式组的整数解,准确熟练地进行计算是解题的关键.12.(2022·山东烟台·七年级期末)已知关于x的不等式x−m<0,5−2x≤1的整数解共有2个,则m的取值范围为()A.m>3B.m≤4C.3<m<4D.3<m≤4【答案】D【分析】先解出不等式组的解集,再根据不等式x−m<0,5−2x≤1的整数解共有2个,即可得到m的取值范围.【详解】解:x−m<0①5−2x≤1②,解不等式①,得x<m,解不等式②,得x≥2,由题意可知,不等式组有解集,∴原不等式组的解集是2≤x<m,∵不等式x−m <0,5−2x ≤1的整数解共有2个,∴这两个整数解是2,3,∴3<m ≤4,故选:D .【点睛】此题考查了由一元一次不等式组解集的情况求参数,解题的关键是明确解一元一次不等式组的方法,知道求不等式组的解集应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.(2022·福建·泉州市城东中学七年级期中)若关于x 的方程4(2−x )+x =ax 的解为正整数,且关于x 的+2>2x≤0 有解,则满足条件的所有整数a 的值有( )个.A .1B .2C .3D .4【答案】B【分析】先求出方程的解x = 8a 3,根据方程的解为正整数求出a 的值,再根据不等式组有解得出a <1,得出a 的值,即可得出选项.【详解】解:4(2﹣x )+x =ax ,8﹣4x +x =ax ,ax ﹣x +4x =8,(a +3)x =8,x =8a 3,∵关于x 的方程4(2﹣x )+x =ax 的解为正整数,∴a +3=1或a +3=2或a +3=4或a +3=8,解得:a =﹣2或a =﹣1或a =1或a =5;+2>2x①≤0②解不等式①得:x <1,解不等式②得:x ≥a ,∵关于x+2>2x≤0有解,∴a <1,∴a 只能为﹣1和﹣2,故选B .【点睛】考查了解一元一次方程、解一元一次不等式和解一元一次不等式组等知识点,能得出a 的取值范围和a 的值是解此题的关键.14.(2022·重庆荣昌·七年级期末)若关于x 的方程ax 32−2x−13=1的解为正数,且a 使得关于y 的不等式组y +3>13y−a <1恰有两个整数解,则所有满足条件的整数a 的值的和是( )A .0B .1C .2D .3【答案】B【分析】解方程ax 32−2x−13=1得x =54−3a,根据解为正数,得a <43,根据关于y 的不等式组y +3>13y−a <1恰有两个整数解,得−1<a <2,进而根据a 为整数,即可求解.【详解】解:ax 32−2x−13=13(ax +3)−2(2x−1)=6解得x =54−3a ∵关于x 的方程ax 32−2x−13=1的解为正数,∴54−3a>0∴4−3a >0解得a <43y +3>1①3y−a <1②解不等式①得:y >−2解不等式②得:y <a 13关于y 的不等式组y +3>13y−a <1有解,∴不等式组的解集为:−2<y <a 13∵关于y 的不等式组y +3>13y−a <1恰有两个整数解,∴ 0<a 13≤1,解得−1<a≤2,∵a<43,∵−1<a<43,∵a为整数,则a=0,1,其和为1.故选B【点睛】本题考查了解一元一次方程,求一元一次不等式组的解集,求不等式组的整数解,正确的计算是解题的关键.15.(2022·江苏镇江·七年级期末)关于x的不等式组x≤−1x>m的整数解只有2个,则m的取值范围为()A.m>−3B.m<−2C.−3≤m<−2D.−3<m≤−2【答案】C【分析】先求出两个不等式的解,再根据“不等式组的整数解只有2个”即可得.【详解】解:不等式组的解集为:m<x≤−1,∵不等式组的整数解只有2个,∴不等式的整数解为-2,-1,∴−3≤m<−2,故选:C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.16.(2022·黑龙江佳木斯·七年级期末)已知不等式组x+a>1,2x−b<2解集为−2<x<3,则(a−b)2022的值为()A.1B.2022C.−1D.−2022【答案】A【分析】按照解一元一次不等式组的步骤进行计算,可得1-a=-2,2b2=3,即可求出a,b的值,最后再代入式子中进行计算即可解答.【详解】解:x+a>1①2x−b<2②,解不等式①得:x>1-a,解不等式②得:x<2b2,∴原不等式组的解集为:1-a<x<2b2,∵该不等式组的解集为-2<x<3,∴1-a=-2,2b2=3,∴a=3,b=4,∴(a-b)2022=(3-4)2022=(-1)2022=1,故选:A.【点睛】本题考查了一元一次不等式组、有理数的乘方,熟练掌握解一元一次不等式组是解题的关键.17.(2022·重庆丰都·七年级期末)若关于x的不等式组x−24<x−133x−m≤3−x恰有2个整数解,且关于x、y的方程组mx+y=43x−y=0也有整数解,则所有符合条件的整数m的乘积为()A.−6B.−2C.2D.0【答案】C【分析】先求出不等式组的解集,根据一元一次不等式组的整数解得出关于m的不等式组,求出m的取值范围,根据m为整数得出m为-3,-2,-1,0,求出方程组的解,再根据方程组有整数解得出答案即可.【详解】解:不等式组x−24<x−133x−m≤3−x整理得x>−2x≤m34,∵关于x的不等式组x−24<x−133x−m≤3−x恰有2个整数解,即-1和0,∴0≤m34<1,解得:-3≤m<1,∵m为整数,∴m为-3,-2,-1,0,解方程组mx+y=43x−y=0得:x=4m3y=12m3,∵方程组有整数解,∴m只能为-2或-1,∴所有符合条件的整数m的乘积为2,故选:C.【点睛】本题考查了解二元一次方程组,解一元一次不等式组,一元一次不等式组的整数解等知识点,能求出m的范围是解此题的关键.18.(2022·重庆·七年级期末)若关于x的不等式组x−24<x−134x−m≤4−x恰有2个整数解,且关于x,y的方程组mx+y=43x−y=0也有整数解,则所有符合条件的整数m的和为()A.−2B.−3C.−6D.−7【答案】D【分析】表示出不等式组的解集,根据解集中恰有2个整数解,确定出m的范围,再由方程组有整数解,确定出满足题意的整数m的值,求出之和即可.【详解】解:不等式组整理得:x>−2x≤m45,解得:-2<x≤m45,∵不等式组恰有2个整数解,即-1,0,∴0≤m45<1,解得:-4≤m<1,即整数m=-4,-3,-2,-1,0,解方程组mx+y=43x−y=0得:x=4m3y=12m3,∵x,y为整数,∴m+3=±1或±2或±4,解得:m=-4或-2或-1,则m值的和为-4-2-1=-7.故选:D.【点睛】此题考查了一元一次不等式的整数解,以及二元一次方程组的解,熟练掌握各自的解法是解本题的关键.19.(2022·重庆铜梁·七年级期末)若a使关于x的不等式组4(x+2)≥x+a−23x+3≥2有三个整数解,且使关于y的方程2y+a=5y62有正数解,则符合题意的整数a的和为()A.12B.9C.5D.3【答案】B【分析】不等式组整理后,根据有三个整数解,表示出解集,确定出a的范围,再由方程有正数解,确定出符合题意整数a的值,求出之和即可.【详解】解:不等式组整理得: x≥a−83x≤32,∵不等式组有三个整数解,∴a−83≤x≤32,整数解为-1,0,1,∴−2<a−83≤1解得2<a≤5,∴整数解a=3,4,5,方程去分母得:4y+2a=5y+6,解得:y=2a-6,∵方程有正数解,∴2a-6>0,解得:a>3,综上所述,a=4,5,之和为4+5=9.故选:B.【点睛】此题考查了一元一次不等式组的整数解,以及一元一次方程的解,弄清题意是解本题的关键.20.(2022·浙江舟山·八年级期末)对于任意实数p、q,定义一种运算:p@q=p-q+pq,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x的不等式组2@x<4x@2≥m有3个整数解,则m的取值范围为是()A.-8≤m<-5B.-8<m≤-5C.-8≤m≤-5D.-8<m<-5【答案】B【分析】利用题中的新定义得到不等式组,然后解不等式组,根据不等式组有3个整数解,确定出m的范围即可.【详解】解:根据题中的新定义得到不等式组:2−x+2x<4①x−2+2x≥m②,解不等式①得:x<2,解不等式②得:x≥m23,∴不等式组的解集是m 23≤x <2,∵不等式组有3个整数解,即整数解为﹣1,0,1,∴﹣2<m 23≤﹣1,解得:﹣8<m ≤﹣5.故选:B .【点睛】此题考查了新定义下的实数运算、解一元一次不等式组、求一元一次不等式组的整数解等知识,弄清题中的新定义是解本题的关键.21.(2022·重庆九龙坡·七年级期末)整数a 使得关于x ,y 的二元一次方程组ax−y =113x−y =1的解为正整数(x ,y 均为正整数),且使得关于x+8)≥7x−a <2 无解,则所有满足条件的a 的和为( )A .9B .16C .17D .30【答案】C【分析】表示出方程组的解,由a 为整数且方程组的解为正整数确定出a 的值,再由不等式组无解,确定出满足题意a 的值,求出之和即可.【详解】解:方程组ax−y =11①3x−y =1②,①−②得:(a −3)x =10,解得:x =10a−3,把x =10a−3代入②得:30a−3−y =1,解得:y =33−aa−3,∵a 为整数,x ,y 为正整数,∴a −3=1或2或5或10,解得:a =4或5或8或13,不等式组整理得:x ≥10x <a +2,∵不等式组无解,∴a +2≤10,解得:a ≤8,∴满足题意a 的值为4或5或8,之和为4+5+8=17,故C 正确.故选:C.【点睛】本题主要考查了解一元一次不等式组,以及二元一次方程组的解,熟练掌握各自的解法是解本题的关键.22.(2022·四川资阳·七年级期末)若关于x的一元一次不等式组{2(x+1)<x+3x−a≤a+5的解集是x<1,且a为非正整数,则满足条件的a的取值有( )个.A.1B.2C.3D.4【答案】C【分析】不等式组整理后,根据已知解集确定出a的范围,进而确定出非负正整数解的个数即可.【详解】解:不等式组整理得:x<1x≤2a+5,∵不等式组的解集为x<1,∴2a+5≥1,解得:a≥-2,则非负正整数a=-2,-1,0,共3个.故选:C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.23.(2022·重庆江北·七年级期末)已知关于x的不等式组x>a,x≤5至少有三个整数解,关于y的方程y−3a=12的解为正数,则满足条件的所有整数a的值之和为()A.−7B.−3C.0D.3【答案】B【分析】首先根据不等式组整数解的情况确定a<3;再根据方程y−3a=12解的情况确定a>−4.从而确定a的取值范围,再进一步确定整数a的值,进而求出所有整数a的值和.【详解】解:∵不等式组x>ax≤5至少有三个整数解,∴a<3,解方程y−3a=12得,y=12+3a,∵方程的解y为正数,∴12+3a>0,∴a>−4,∴a的取值范围为:−4<a<3,∴整数a的值为:−3,−2,−1,0,1,2,∴整数a的值之和为:−3+(−2)+(−1)+1+2+0=−3,故选:B.【点睛】本题主要考查了根据不等式组解集的情况确定参数的取值范围,解这类题目的关键是题目中有关字母取值范围的确定.24.(2022·重庆巴南·七年级期末)若关于x的不等式组2x−1>7x−a≤0无解,且关于x的方程ax=3x+2的解为整数,则满足条件的所有整数a的和为( )A.12B.7C.3D.1【答案】B,结合方程的解为整数知a=1,2,4,【分析】解不等式组,根据不等式组无解得出a≤4,解方程得出x=2a−3从而得出答案.【详解】解:由2x−1>7,得:x>4,由x−a≤0,得:x≤a,∵不等式组无解,∴a≤4,,解关于x的方程ax=3x+2,得:x=2a−3∵方程的解为整数,∴a=1,2,4,则满足条件的所有整数a的和为1+2+4=7,故选:B.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.25.(2022·重庆·七年级期末)若关于x的一元一次不等式组x−m≥02x+1<3无解,关于y的一元一次方程2(y−3)+m=0的解为非负数,则满足所有条件的整数m的和为()A.14B.15C.20D.21【答案】D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到,确定不等式组的解集.【详解】解:∵x−m≥0,∴x≥m,∵2x+1<3,∴x<1,∵不等式组无解,∴m≥1,∵2(y−3)+m=0,∴y=3−m2,∵关于y的一元一次方程2(y−3)+m=0的解为非负数,∴y=3−m2≥0,∴m≤6,∴1≤m≤6,∴满足所有条件的整数m为:1,2,3,4,5,6,∴它们的和为:1+2+3+4+5+6=21.故选:D.【点睛】此题考查的是解—元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解答此题的关键.26.(2022·重庆北碚·七年级期末)若关于x的不等式组x+2(x−1)≤−52k x3≤x无解,且关于y的一元一次方程2(y+1)+3k=11的解为非负数,则符合条件的所有整数k的和是()A.2B.3C.5D.6【答案】D【分析】先解出方程的解和不等式组的解集,再根据题意即可确定k的取值范围,从而可以得到符合条件的整数,然后相加即可.【详解】解:x+2(x−1)≤−5①2k x3≤x②,由不等式①,得:x≤-1,由不等式②,得:x≥k,∵关于x的不等式组x+2(x−1)≤−52k x3≤x无解,∴k>-1,由方程2(y+1)+3k=11,得y=9−3k2,∵关于y的方程2(y+1)+3k=11的解为非负数,∴9−3k2≥0,得k≤3,由上可得,k的取值范围是-1<k≤3,∴k的整数值为0,1,2,3,∴符合条件的整数k的值的和为:0+1+2+3=6,故选:D.【点睛】本题考查解一元一次方程、解一元一次不等式组,解答本题的关键是求出k的取值范围.27.(2022·福建省福州屏东中学七年级期末)已知关于x,y的方程组x−3y=4−tx+y=3t,其中−3≤t≤1,若M=x−y,则M的最小值为()A.−2B.−1C.2D.3【答案】B【分析】由①+②得x-y=2+t,将M=x−y代入得t=M-2,再根据−3≤t≤1可得−1≤M≤3即可得出答案.【详解】解:x−3y=4−t①x+y=3t②①+②得2x-2y=4+2t即x-y=2+t,∵M=x−y,∴M=2+t,∴t=M-2∵−3≤t≤1,∴−3≤M−2≤1即−1≤M≤3∴M的最小值为-1故选:B.【点睛】本题考查含参二元一次方程组参数满足的条件求字母的最小值问题,用整体思想直接找到两个参数之间的关系是解题的关键.28.(2022·重庆·巴川初级中学校七年级期中)如果整数m使得关于x>0 ≥−4有解,且使得关于x,y的二元一次方程组mx+y=52x+y=1的解为整数(x,y均为整数),则符合条件的所有整数m的个数为()A.2个B.3个C.4个D.5个【答案】C【分析】不等式组整理后,根据有解确定出m的范围,再由方程组的解为整数确定出满足题意m的值,判断即可.>0①≥−4②由①得,x>m,由②得,x≤4∵>0,≥−4有解,∵不等式组的解集为m<x≤4,∴m<4,方程组mx+y=5①2x+y=1②,①-②得:(m﹣2)x=4,解得:x=4m−2,把x=4m−2代入②得:8m−2+y=1,解得:y=1−8m−2,∵x与y都为整数,∵m<4,∴m-2<2,且m≠2,∴m-2=1或﹣1或﹣2或﹣4,解得:m=3或1或0或﹣2,故符合条件的所有整数m的个数为4个.故选:C.【点睛】此题考查了二元一次方程组的整数解,解一元一次不等式组,熟练掌握各自的解法是解本题的关键.29.(2022·重庆忠县·七年级期末)若整数a使关于x≤2x59x−a13至少有1个整数解,且使关于x,y的方程组ax+2y=−4x+y=4的解为正整数,那么所有满足条件的a值之和为()A.﹣17B.﹣16C.﹣14D.﹣12【答案】B【分析】根据不等式组求出a的范围,然后再根据关于x,y的方程组ax+2y=−4x+y=4的解为正整数得到a−2=−4或−6或−12a−2=−6,从而确定所有满足条件的整数a的值的和.【详解】2x59x−a13整理得:x⩽2x>a+2,由不等式组至少有1个整数解,得到a+2<2,解得:a<0,解方程组ax+2y=−4x+y=4,得x=−12a−2y=4a4a−2,∵关于x,y的方程组ax+2y=−4x+y=4的解为正整数,∴a−2=−4或−6或−12,解得a=−2或a=−4或a=−10,∴所有满足条件的整数a的值的和是−16.故选:B.【点睛】本题考查解一元一次不等式组,学生的计算能力以及推理能力,解题的关键是根据不等式组以及二元一次方程组求出a的范围,本题属于中等题型.30.(2022·重庆綦江·七年级期末)如果关于x、y的方程组3x+2y=m+12x+y=m−1中x>y,且关于x的不等式组x−1 2<1x35x+2≥x+m有且只有4个整数解,则符合条件的所有整数m的和为()A.8B.9C.10D.11【答案】D【分析】解二元一次方程组求出x,y的值,根据x>y得到关于m的不等式,根据不等式组只有4个整数解求出m的取值范围,取交集,找出符合条件的所有整数m,即可求解.【详解】解:解方程组3x+2y=m+12x+y=m−1得x=m−3y=5−m,∵x>y,∴m−3>5−m,∴m>4,解不等式组x−12<1x35x+2≥x+m得x<5x≥m−24,∴m−24≤x<5,∵关于x的不等式组x−12<1x35x+2≥x+m有且只有4个整数解,∴0<m−24≤1,∴2<m≤6,∴4<m≤6,∴整数m为5和6,∴符合条件的所有整数m的和为11.故选:D.【点睛】本题考查解一元一次不等式组和解二元一次方程组,根据不等式组只有4个整数解求出m的取值范围是解题的关键.二、填空题(共15小题)31.(2022·江苏·南京市第一中学泰山分校七年级阶段练习)若不等式组x>ax−2<3无解,则a的取值范围为________.【答案】a≥5【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【详解】解:x−2<3解得x<5,∵不等式组x>ax−2<3无解,∴a≥5;故答案为:a≥5.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).32.(2022·湖北孝感·七年级期末)若关于x的不等式组2(x−1)>4x−a>0的解集为x>3,那么a的取值范围是_____.【答案】a≤3【分析】先解出每个不等式的解集,再根据不等式组的解集为x>3,,即可得到a的取值范围.【详解】解:2(x−1)>4①x−a>0②,由不等式①,得:x>3,由不等式②,得:x>a,∵关于x的不等式组2(x−1)>4x−a>0的解集为x>3,∴a≤3,故答案为:a≤3.【点睛】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.33.(2022·湖南永州·八年级期末)若关于x的不等式组{2x−b≥0x+a≤0的解集为3≤x≤4,则关于x的不等式ax+b <0的解集为_____.【答案】x>32【分析】分别求出每一个不等式的解集,确定不等式组的解集,由已知解集得出a、b的值,代入不等式,求解即可.【详解】解:解不等式2x−b⩾0,得:x⩾b2,解不等式x+a⩽0,得:x⩽−a,∵不等式组的解集为3⩽x⩽4,∴b2=3,−a=4,则a=−4,b=6,∴关于x的不等式ax+b<0为:−4x+6<0,解得:x>32,故答案为:x>32.【点睛】本题考查的是解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.34.(2022·北京平谷·七年级期末)若x<a的解集中的最大整数解为2,则a的取值范围是_________.【答案】2<a≤3【分析】根据最大整数解的意义即可得到a的取值范围.【详解】解:∵x<a的解集中的最大整数解为2,∴2<a≤3,故答案为2<a≤3.【点睛】此题考查了最大整数解的意义,正确理解最大整数解的意义及范围是解题的关键.35.(2022·湖北·武汉市光谷实验中学七年级阶段练习)若关于x的不等式组,3−2x4<x−132x−m≤2−x3有且只有两个整数解,m=2n,则整数n的值为______.【答案】4【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于m的不等式组,进一步求得n的整数解.【详解】解:3−2x4<x−13①2x−m≤2−x3②,解不等式①得:x>1310,解不等式②得:x≤3m27,∴不等式组的解集为:1310<x≤3m27,∵不等式组只有两个整数解,1<1310<2,∴不等式组的两个整数解为:2和3,∴3≤3m27<4,解得:193≤m<263,∵m=2n,∵196≤n<266,∴整数n的值为4.故答案为:4.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于m的不等式组,难度适中.36.(2022·河南·鹿邑县基础教育研究室七年级期末)已知关于x的不等式组2x−m≥0x−n<0的整数解是−1,0,1,2,若m、n为整数,则n−m的值为______.【答案】5或6【分析】先解两个不等式,结合不等式组的整数解得出m、n的取值范围,结合m、n为整数可以确定m、n 的值,代入计算可得.【详解】解:解不等式2x﹣m≥0,得:x≥12m,解不等式x﹣n<0,得:x<n,∵不等式组的整数解是﹣1,0,1,2,∴﹣2<12m≤﹣1,2<n≤3,即﹣4<m≤﹣2,2<n≤3,∵m,n为整数,∴n=3,m=﹣3或m=﹣2,当m=﹣3时,n﹣m=3﹣(﹣3)=6;当m=﹣2时,n﹣m=3﹣(﹣2)=5;综上,n﹣m的值为5或6,故选:C.【点睛】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.37.(2022·黑龙江·大庆市庆新中学九年级阶段练习)关于x的不等式组2x−13<2−1+x>a恰好只有 4 个整数解,则a的取值范围为_________.【答案】−2≤a<−1【分析】先求出不等式组的解集,根据其只有四个整数解即可确定a的取值范围.【详解】解:2x−13<2①−1+x>a②解不等式①得x<3.5,解不等式②得x>a+1,根据题意,可得该不等式组的解集为a+1<x<3.5,∵不等式组只有4个整数解∴这4个整数解为3、2、1、0,∴−1≤a+1<0,解得:−2≤a<−1,所以a的取值范围是−2≤a<−1,故答案为:−2≤a<−1.【点睛】本题考查了不等式组,已知不等组解集的整数解情况确定参数的取值范围关键是灵活的表示不等式组的解集.38.(2022·湖北·+4≤0+m>0的整数解的和为-5,则m的取值范围为_______【答案】32<m≤2【分析】分别求出不等式组中不等式的解集,利用“大小小大取中间”表示出不等式组的解集,根据解集中整数解的和为-5,求得m的取值范围即可+4≤0+m>0解不等式2x+4≤0解得:x≤−2解不等式12x+m>0解得:x>−2m∴不等式组的解集为−2m<x≤−2∵不等式组的整数解和为-5∴−4≤−2m<−3解得:32<m≤2故答案为:32<m≤2【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.39.(2022·河南南阳·七年级期末)如果不等式组x<4x<3a+1的解集为x<3a+1,则a的取值范围为______.【答案】a≤1##1≥a【分析】利用不等式组确定解集的方法得到关于a的不等式,求解即可.【详解】解:∵不等式组x<4x<3a+1的解集为x<3a+1,∴3a+1≤4,解得a≤1,故答案为:a≤1.【点睛】本题考查了确定不等式组的解集,解一元一次不等式,掌握确定一元一次不等式组解集的方法是解决本题的关键.40.(2022·江西宜春·七年级期末)若整数a使关于x的不等式组x−12≤11x34x−a>x+1,有且只有45个整数解,则a的值为_____.【答案】﹣61,﹣60,﹣59【分析】不等式组整理后,根据有且只有45个整数解,确定出a的值即可.【详解】解:不等式组整理得:x≤25 x>a13,∵不等式组有且只有45个整数解,∴a13<x≤25,整数解为﹣19,﹣18,﹣17,...﹣1,0,1,2,3,4,...24,25,∴﹣20≤a13<﹣19,解得:﹣61≤a<﹣58,则整数a的值为﹣61,﹣60,﹣59.故答案为:﹣61,﹣60,﹣59.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.41.(2022·四川雅安·八年级期末)已知关于x,y的方程组2x+y=−4m+5x+2y=m+4的解满足x+y≤5,且2m﹣n <1.若m只有三个整数解,则n的取值范围为________.。

(完整版)一元一次不等式组含参数经典练习题

(完整版)一元一次不等式组含参数经典练习题

一元一次不等式组练习题1、已知方程⎩⎨⎧-=++=+②①m 1y 2x m 31y x 2满足0y x <+,则( )A. 1m ->B. 1m >C. 1m -<D. 1m <2、若不等式组⎩⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 1m ≤D. 1m >3、若不等式组⎩⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( )A. 1a -≤B. 1a -≥C. 1a -<D. 1a ->4、如果不等式组⎩⎨⎧<->-m x x x )2(312的解集是x <2,那么m 的取值范围是( )A 、m=2B 、m >2C 、m <2D 、m ≥25、如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .6、若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a < 7、关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = .8、已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ____9、若不等式组530,0x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A.m ≤53 B.m <53C.m >53 D.m ≥5310、关于x 的不等式组⎩⎨⎧x +152>x -32x +23<x +a 只有4个整数解,则a 的取值范围是 ( )A. -5≤a ≤-143B. -5≤a <-143C. -5<a ≤-143D. -5<a <-14311、已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩有五个整数解,这五个整数是____________,a 的取值范围是________________。

专题9.6一元一次不等式(组)中的含参问题专项训练(60道)(举一反三)(人教版)(原卷版)

专题9.6一元一次不等式(组)中的含参问题专项训练(60道)(举一反三)(人教版)(原卷版)

专题9.6 一元一次不等式(组)中的含参问题专项训练(60道)【人教版】考卷信息:本套训练卷共60题,题型针对性较高,覆盖面广,选题有深度,可深化学生对一元一次不等式(组)中的含参问题的理解! 一、单选题(共30小题)1.(2022·山东济宁·七年级期末)已知关于x 的不等式(1−a )x <2的解集为x <21−a ,则a 的取值范围为( ) A .a >0B .a >1C .a <0D .a <12.(2022·四川乐山·七年级期末)若关于x 的不等式组{2x−43≤x −1a −x >0的整数解恰有5个,则a 取值范围为( )A .2<a ≤3B .2≤a <3C .3<a ≤4D .3≤a <43.(2022·河南新乡·七年级期末)若关于x 的一元一次不等式组{8−x3<x A <0的解集为2<x <5,则多项式A可以是( ) A .x −5B .2x −5C .x −10D .3x −124.(2022·云南临沧·八年级期末)若整数a 使关于x 的不等式组{x−12≤6+x34x −a >x +1 ,有且只有19个整数解,且使关于y 的方程2y+a+31+y+10y+1=1的解为非正数,则a 的值是( )A .−13或−12B .−13C .−12D .−12或−115.(2022·重庆秀山·七年级期末)关于x 的方程k ﹣2x =3(k ﹣2)的解为非负数,且关于x 的不等式组{x −2(x −1)≤32k+x 3≥x有解,符合条件的整数k 的值的和为( )A .3B .4C .5D .66.(2022·重庆涪陵·七年级期末)若关于x 的一元一次不等式组{−5−x ≤13(x −a)3x +1>4x +2有解,则符合条件的所有正整数a 的和为( ) A .50B .55C .66D .707.(2022·福建漳州·七年级期末)若不等式组{x −4<0x ≥m有解,则m 的取值范围为( )A .m <4B .m >4C .m ≤4D .m ≥48.(2022·广东广州·七年级期末)若不等式组{x +9<5x +1x >m的解集为x >2,则m 的取值范围是( )A .m ≤2B .m <2C .m ≥2D .m >29.(2022·重庆·巴川初级中学校八年级期中)若关于x 的一元一次不等式组{x −14(4a −2)≤123x−12<x +3的解集是x ≤a ,且关于y 的方程2y −a −3=0有非负整数解,则符合条件的所有整数a 的个数为( )个 A .5B .4C .3D .210.(2022·广东云浮·七年级期末)若关于x 的一元一次不等式组{x −4<0x +m ≥6有解,则m 的取值范围为( )A .m >−2B .m ≤2C .m >2D .m <−211.(2022·重庆·四川外国语大学附属外国语学校七年级期末)若实数m 使关于x 的不等式组{3−2+x3≤x+322x−m2≤−1有解且至多有3个整数解,且使关于y 的方程2y =4y−m 3+2的解为非负整数解,则满足条件的所有整数m 的和为( ) A .15B .11C .10D .612.(2022·山东烟台·七年级期末)已知关于x 的不等式{x −m <0,5−2x ≤1 的整数解共有2个,则m 的取值范围为( ) A .m >3B .m ≤4C .3<m <4D .3<m ≤413.(2022·福建·泉州市城东中学七年级期中)若关于x 的方程4(2−x )+x =ax 的解为正整数,且关于x的不等式组{x−16+2>2x a −x ≤0有解,则满足条件的所有整数a 的值有( )个.A .1B .2C .3D .414.(2022·重庆荣昌·七年级期末)若关于x 的方程ax+32−2x−13=1的解为正数,且a 使得关于y 的不等式组{y +3>13y −a <1 恰有两个整数解,则所有满足条件的整数a 的值的和是( ) A .0B .1C .2D .315.(2022·江苏镇江·七年级期末)关于x 的不等式组{x ≤−1x >m的整数解只有2个,则m 的取值范围为( )A .m >−3B .m <−2C .−3≤m <−2D .−3<m ≤−216.(2022·黑龙江佳木斯·七年级期末)已知不等式组{x +a >1,2x −b <2解集为−2<x <3,则(a −b )2022的值为( ) A .1B .2022C .−1D .−202217.(2022·重庆丰都·七年级期末)若关于x 的不等式组{x−24<x−133x −m ≤3−x恰有2个整数解,且关于x 、y 的方程组{mx +y =43x −y =0也有整数解,则所有符合条件的整数m 的乘积为( )A .−6B .−2C .2D .018.(2022·重庆·七年级期末)若关于x 的不等式组{x−24<x−134x −m ≤4−x恰有2个整数解,且关于x ,y 的方程组{mx +y =43x −y =0 也有整数解,则所有符合条件的整数m 的和为( )A .−2B .−3C .−6D .−7 19.(2022·重庆铜梁·七年级期末)若a 使关于x 的不等式组{4(x +2)≥x +a −23x +3≥2有三个整数解,且使关于y的方程2y +a =5y+62有正数解,则符合题意的整数a 的和为( ) A .12B .9C .5D .320.(2022·浙江舟山·八年级期末)对于任意实数p 、q ,定义一种运算:p @q =pq +pq ,例如2@3=23+2×3.请根据上述定义解决问题:若关于x 的不等式组{2@x <4x@2≥m 有3个整数解,则m 的取值范围为是 ( )A .8≤m <5B .8<m ≤5C .8≤m ≤5D .8<m <521.(2022·重庆九龙坡·七年级期末)整数a 使得关于x ,y 的二元一次方程组{ax −y =113x −y =1的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组{14(2x +8)≥7x −a <2无解,则所有满足条件的a 的和为( )A .9B .16C .17D .3022.(2022·四川资阳·七年级期末)若关于x 的一元一次不等式组{2(x +1)<x +3x −a ≤a +5的解集是x <1,且a 为非正整数,则满足条件的a 的取值有( )个. A .1B .2C .3D .423.(2022·重庆江北·七年级期末)已知关于x 的不等式组{x >a,x ≤5至少有三个整数解,关于y 的方程y −3a =12的解为正数,则满足条件的所有整数a 的值之和为( ) A .−7B .−3C .0D .324.(2022·重庆巴南·七年级期末)若关于x 的不等式组{2x −1>7x −a ≤0无解,且关于x 的方程ax =3x +2的解为整数,则满足条件的所有整数a 的和为( )A .12B .7C .3D .125.(2022·重庆·七年级期末)若关于x 的一元一次不等式组{x −m ≥02x +1<3无解,关于y 的一元一次方程2(y −3)+m =0的解为非负数,则满足所有条件的整数m 的和为( ) A .14B .15C .20D .2126.(2022·重庆北碚·七年级期末)若关于x 的不等式组{x +2(x −1)≤−52k+x3≤x 无解,且关于y 的一元一次方程2(y +1)+3k =11的解为非负数,则符合条件的所有整数k 的和是( ) A .2B .3C .5D .627.(2022·福建省福州屏东中学七年级期末)已知关于x ,y 的方程组{x −3y =4−t x +y =3t,其中−3≤t ≤1,若M =x −y ,则M 的最小值为( ) A .−2B .−1C .2D .328.(2022·重庆·巴川初级中学校七年级期中)如果整数m 使得关于x 的不等式组{x −m >0 x−43−x ≥−4有解,且使得关于x ,y 的二元一次方程组{mx +y =52x +y =1的解为整数(x ,y 均为整数),则符合条件的所有整数m 的个数为( ) A .2个B .3个C .4个D .5个29.(2022·重庆忠县·七年级期末)若整数a 使关于x 的不等式组{x+13≤2x+59x−a2>x−a+13至少有1个整数解,且使关于x ,y 的方程组{ax +2y =−4x +y =4的解为正整数,那么所有满足条件的a 值之和为( )A .﹣17B .﹣16C .﹣14D .﹣1230.(2022·重庆綦江·七年级期末)如果关于x 、y 的方程组{3x +2y =m +12x +y =m −1中x >y ,且关于x 的不等式组{x−12<1+x 35x +2≥x +m有且只有4个整数解,则符合条件的所有整数m 的和为( )A .8B .9C .10D .11二、填空题(共15小题)31.(2022·江苏·南京市第一中学泰山分校七年级阶段练习)若不等式组{x >a x −2<3无解,则a 的取值范围为________.32.(2022·湖北孝感·七年级期末)若关于x 的不等式组{2(x −1)>4x −a >0 的解集为x >3,那么a 的取值范围是_____.33.(2022·湖南永州·八年级期末)若关于x 的不等式组{2x −b ≥0x +a ≤0的解集为3≤x ≤4,则关于x 的不等式ax +b<0的解集为 _____.34.(2022·北京平谷·七年级期末)若x <a 的解集中的最大整数解为2,则a 的取值范围是_________.35.(2022·湖北·武汉市光谷实验中学七年级阶段练习)若关于x 的不等式组,{3−2x4<x−132x −m ≤2−x 3有且只有两个整数解,m =2n ,则整数n 的值为______.36.(2022·河南·鹿邑县基础教育研究室七年级期末)已知关于x 的不等式组{2x −m ≥0x −n <0的整数解是−1,0,1,2,若m 、n 为整数,则n −m 的值为______.37.(2022·黑龙江·大庆市庆新中学九年级阶段练习)关于 x 的不等式组{2x−13<2−1+x >a恰好只有 4 个整数解,则 a 的取值范围为_________.38.(2022·湖北·广水市杨寨镇中心中学七年级阶段练习)不等式组{2x +4≤012x +m >0 的整数解的和为5,则m的取值范围为_______39.(2022·河南南阳·七年级期末)如果不等式组{x <4x <3a +1的解集为x <3a +1,则a 的取值范围为______.40.(2022·江西宜春·七年级期末)若整数a 使关于x 的不等式组{x−12≤11+x 34x −a >x +1,有且只有45个整数解,则a 的值为 _____.41.(2022·四川雅安·八年级期末)已知关于x ,y 的方程组{2x +y =−4m +5x +2y =m +4的解满足x +y ≤5,且2m ﹣n<1.若m 只有三个整数解,则n 的取值范围为________.42.(2022·黑龙江·大庆外国语学校八年级期中)关于x 的不等式组{2x −5<0x −a >0无整数解,则a 的取值范围为_____.43.(2022·全国·河南省淮滨县第一中学七年级期末)已知不等式组{3x +a <2x,−13x <53x +2, 有解但没有整数解,则a 的取值范围为________.44.(2022·福建·平潭第一中学七年级期末)已知关于x 的不等式组{3x +m <0x >−5的所有整数解的和为﹣9,m 的取值范围为_________45.(2022·全国·七年级专题练习)已知关于x 的不等式组{x +2>0x −a ≤0的整数解共有4个,则a 的最小值为__________.三、解答题(共15小题)46.(2022·四川宜宾·七年级期中)已知关于x 的不等式组{2x +4>03x −k <6.(1)当k 为何值时,该不等式组的解集为−2<x <2? (2)若该不等式组只有4个正整数解,求k 的取值范围.47.(2022·四川宜宾·七年级期中)已知关于x 的不等式组{2x +4>03x −k <6.(1)当k 为何值时,该不等式组的解集为−2<x <2? (2)若该不等式组只有4个正整数解,求k 的取值范围.48.(2022·吉林·东北师大附中七年级期中)若关于x 的不等式组{x −a >−b,x +a ≤2b +1的解集为1<x ≤3,求a b 的值.49.(2022·江苏徐州·七年级期末)已知关于x 、y 的方程组{2x +y =5m −1x +2y =4m +1(m 为常数)(1)若x +y =1,求m 的值;(2)若−3≤x −y ≤5,求m 的取值范围.50.(2022·全国·七年级)定义新运算为:对于任意实数a 、b 都有a ⊕b =(a −b )b −1,等式右边都是通常的加法、减法、乘法运算,比如1⊕2=(1−2)×2−1=−3. (1)求2⊕3的值.(2)若x ⊕2<7,求x 的取值范围.(3)若不等式组{x ⊕1≤22x ⊕3>a恰有三个整数解,求实数a 的取值范围.51.(2022·全国·七年级)新定义:如果一元一次方程的解是一元一次不等式组的解中的一个,则称该一元一次方程为该不等式组的关联方程.(1)在方程①2x −1=0,②13x +1=0,③x −(3x +1)=−5中,不等式组{−x +3>x −43x −1>−x +2的关联方程是_____;(填序号)(2)若不等式组{x −2<11+x >−3x +6 的一个关联方程的根是整数,则这个关联方程可以是________;(写出一个即可)(3)若方程6−x =2x,7+x =3(x +13)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,直接写出m 的取值范围.52.(2022·河南周口·七年级期末)已知关于x 的不等式组{2x −m >13x −2m <−1(1)如果不等式组的解集为6<x <7,求m 的值; (2)如果不等式组无解,求m 的取值范围;53.(2022·江苏·泰州中学附属初中七年级阶段练习)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x ﹣6=0的解为x =3,不等式组{x −1>0x <4的解集为1<x <4,因为1<3<4,所以称方程2x ﹣6=0为不等式组{x −1>0x <4的关联方程.(1)在方程①3x ﹣3=0;②23x +1=0;③x ﹣(3x +1)=﹣9中,不等式组{2x −8<0−4x −3<x +2的关联方程是 .(填序号)(2)若不等式组{x −12<32x −3>−x +5 的一个关联方程的解是整数,则这个关联方程可以是 . (写出一个即可)(3)若方程2x −1=x +2,x +5=2(x +12)都是关于x 的不等式组{x +3>2a x ≤a +8的关联方程,且关于y 的不等式组{y −4<02y +1>a −2y恰好有两个奇数解,求a 的取值范围.54.(2022·河南省淮滨县第一中学七年级单元测试)已知,关于x 的不等式组{x +1>m x −1≤n有解.(1)若上不等式的解集与{1−2x <53x−12≤4 的解集相同,求m +n 的值; (2)若上不等式有4个整数解 ①若m =−1,求n 的取值范围;②若n =2m ,则m 的取值范围为______.55.(2022·广东江门·七年级期末)已知方程组{x −y =1+3a x +y =−7−a中x 为负数,y 为非正数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式2ax +3x >2a +3的解集为x <1 56.(2022·北京·人大附中西山学校七年级期末)若关于x 的不等式组{2x −a <1x −5b >3的解集为−1<x <1,则a +5b 的值为________.57.(2022·河南·商水县希望初级中学七年级期中)已知方程组{x +y =−7−a x −y =1+3a的解x 为非正数,y 为负数.(1)求a 的取值范围: (2)化简|a −3|+|a +3|;(3)在a 的取值范围内,当a 取何整数时,不等式2ax +x >2a +1的解为x <1?58.(2022·福建·龙海二中一模)已知对于任意实数a ,b ,定义min{a,b}的含义为:当a ≥b 时,min{a,b}=b ;当a <b 时,min{a,b}=a.例如:min{1,−2}=−2,min{−3,−3}=−3. (1)若min{−2k +5,−1)=−1,求k 的取值范围;(2)解不等式组:{x +1≥x−321−3(x −1)>8−x设不等式组的最大整数解为m ,求min{m,−2.5}的值.59.(2022·甘肃白银·八年级期中)已知关于x ,y 的不等式组{x +k ≤5−2x4(x −34)≥x −1, (1)若该不等式组的解为23≤x ≤3,求k 的值;(2)若该不等式组的解中整数只有1和2,求k 的取值范围.60.(2022·江苏·扬州市江都区华君外国语学校七年级阶段练习)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的伴随方程,这个根在数轴上对应的点该不等式组的伴随点. (1)在方程①23x +1=0,②x −(3x +1)=−5,③3x −1=0中,不等式组{−x +2>x −5,5x −1>x +2 的伴随方程是 ;(填序号)(2)如图,M 、N 都是关于x 的不等式组{x <2x −m x −5≤m的伴随点,求m 的取值范围.(3)不等式组{−x >−2x +12x ≤m +2的伴随方程的根有且只有2个整数,求m 的取值范围.。

一元一次不等式组含参数经典练习题

一元一次不等式组含参数经典练习题

一元一次不等式组含参数经典练习题1、已知方程组begin{cases}2x+y=1+3m\\x+2y=1-mend{cases}满足$x+y-1$ B。

$m>1$ C。

$m<-1$ D。

$m<1$2、若不等式组begin{cases}x+9<5x+1\\x>m+1end{cases}的解集为$x>2$,则$m$的取值范围是()A。

$m\leq 2$ B。

$m\geq 2$ C。

$m\leq 1$ D。

$m>1$3、若不等式组begin{cases}a-x>\dfrac{1}{x+1}\\x+1>aend{cases}无解,则$a$的取值范围是()A。

$a\leq -1$ B。

$a\geq -1$ C。

$a-1$4、如果不等式组begin{cases}2x-1>3(x-2)end{cases}的解集是$x2$ C、$m<2$ D、$m\geq 2$5、如果不等式组begin{cases}dfrac{x}{2}+a\geq 2\\2x-b<3end{cases}的解集是$0\leq x<1$,那么$a+b$的值为.6、若不等式组begin{cases}1-2x>x-2\\x+a\geq 0end{cases}有解,则$a$的取值范围是()A。

$a>-1$ B。

$a\geq -1$ C。

$a\leq 1$ D。

$a<1$7、关于$x$的不等式组begin{cases}x>2\\x<3end{cases}的解集是()$x\in (\。

\ )$ 8、已知关于$x$的不等式组begin{cases}x>-3\\x\leq 1end{cases}的解集是()$x\in (\。

\ )$ 9、若不等式组begin{cases}15>x-3\\x+\dfrac{2}{3}<x+aend{cases}的解集是$x>-1$,则$m=$()$m=$10、关于$x$的不等式组begin{cases}2x+2<3\\dfrac{x+2}{3}>x+aend{cases}只有4个整数解,则$a$的取值范围是()A。

含参数的一元一次不等式题选

含参数的一元一次不等式题选

含参数的一元一次不等式题选
1、若关于x 的方程233=+a x 的解是正数,则a 的取值范围是 。

变式:若关于x 的方程233=+a x 的解是非负数,则a 的取值范围是 。

2、若关于x 的方程4
152435-=-m m x 的解是非正数,则m 的取值范围是 。

3、已知实数x ,y ,m 满足032=++++m y x x ,且y 为负数,则m 的取值范围是 。

4、已知02=-y x 且y x >-5,则x ,y 的取值范围分别是 , 。

5、若关于x 的方程3x+2a=0的解是2,求a 的值。

变式:若关于x 的不等式023≤+a x 的解集是2≤x ,求a 的值。

6、如果方程3x+2a=12和方程3x-4=2的解相同,求a 的值。

变式:如果关于x 的不等式1223≤+a x 和不等式243≤-x 的解集相同,求a 的值。

7、如果关于x 的不等式
m x x --≥+21232的解集为2≤x ,求m 的值
8、已知关于x 的方程
m x m x =--+2
123的解的负数,求m 的取值范围。

9、已知关于x ,y 的方程组⎩⎨⎧=+=-a y x y x 623的解满足不等式3<+y x ,求实数a 的取值范围。

2023浙教版八上数学期末专题复习 含参一元一次不等式专练

2023浙教版八上数学期末专题复习  含参一元一次不等式专练

含参一元一次不等式专练一、选择题1.已知关于x 的不等式(4)4a x a -<-的解集为1x <-,则a 的取值范围是( ) A .4a >B .4a ≠C .4a <D .4a2.已知不等式组2<x ﹣1<4的解都是关于x 的一次不等式3x ≤2a ﹣1的解,则a 的取值范围是( ) A .a ≤5B .a <5C .a ≥8D .a >83.不等式组3x x a >⎧⎨>⎩的解是x >a ,则a 的取值范围是( )A .a <3B .a =3C .a >3D .a ≥34.不等式组53351x x x a -<+⎧⎨<+⎩的解集为4x <,则a 满足的条件是( )A .a 3<B .3a =C .3a ≤D .3a ≥5.若不等式组有解,则a 的取值范围是( ) A .a≤﹣2B .a≥﹣2C .a <﹣2D .a >﹣26.已知关于x 的不等式21x m x -<-的正整数解是1,2,3,则m 的取值范围是( ) A .34m <B .34m <C .811m <D .811m <7.整数a 使得关于x 的不等式组6202()3x x a x ->⎧⎨+≥+⎩至少有4个整数解,且关于y 的方程1﹣3(y ﹣2)=a有非负整数解,则满足条件的整数a 的个数是( ) A .6个B .5个C .3个D .2个8.已知关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥,且关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,那么所有符合条件的整数a 的个数为( ) A .4个B .3个C .2个D .1个9.关于x 的不等式组3420x ax -<⎧⎨->⎩有3个正整数解,且关于x 方程2x ﹣a =2有整数解,则满足条件的所有整数a 的值之和为( ) A .25B .26C .27D .3910.如果关于x的不等式组2030x ax b-≥⎧⎨-≤⎩的整数解仅有2x=、3x=,那么适合这个不等式组的整数a、b组成的有序数对(,)a b共有()A.3个B.4个C.5个D.6个11.如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组31252130ya y+⎧≤⎪⎨⎪+-≤⎩有解,那么符合条件的所有整数a的个数为()A.3B.4C.5D.612.有两个正数a,b,且a<b,把大于等于a且小于等于b的所有数记作[a,b].例如,大于等于1且小于等于4的所有数记作[1,4].若整数m在[5,15]内,整数n在[﹣30,﹣20]内,那么的一切值中属于整数的个数为()A.6个B.5个C.4个D.3个二、填空题13.若不等式组x bx a-<⎧⎨+>⎩的解集为23x-<<.则关于x、y的方程组521ax yx by+=⎧⎨-=⎩的解为_____________.14.已知关于x、y的二元一次方程组253x y ax y a+=⎧⎨-=+⎩的解满足x>y,且关于x的不等式组213147212xx a-⎧≥⎪⎨⎪+⎩<无解,那么所有符合条件的整数a的和为_____.15.若不等式组240xx m->⎧⎨<⎩无解,则m的取值范围是______.16.一个三角形的三边长均为整数.已知其中两边长为3和5,第三边长x是不等式组212357213x xx x⎧-+⎪⎨⎪->+⎩的正整数解.则第三边的长为:______.17.已知不等式组32,152,33x a xx x+<⎧⎪⎨-<+⎪⎩有解但没有整数解,则a的取值范围为_____.18.关于x的不等式组1(25)131(3)2x xx x a⎧+>+⎪⎪⎨⎪+≤+⎪⎩的所有整数解的和为﹣5,则a的取值范围是_____.nm19.关于x 的不等式组23112x a x x -+<⎧⎪⎨-+⎪⎩恰有3个整数解,则a 的取值范围是_______.20.定义:把的值叫做不等式组的“长度”若关于的一元一次不等式组解集的“长度”为3,则该不等式组的整数解之和为______.21.对非负实数“四舍五入”到个位的值记为,即当为非负整数时,若,则.如,.若,则实数的取值范围是__________.22.对于实数x ,y 规定“x △y =ax ﹣by (a ,b 为常数)”.已知2△3=4,5△(﹣3)=3(1)a +b =___.(2)已知m 是实数,若2△(﹣m )≥0,则m 的最大值是 ___. 三、解答题23.关于x 、y 的方程组731x y a x y a +=+⎧⎨-=+⎩的解满足0x <,0y >.求a 的取值范围.24.对,定义一种新运算(中,均为非零常数).例如:;已知,.(1)求,的值;(2)若关于的不等式组恰好只有个整数解,求的取值范围.25.阅读下面的材料:对于实数,我们定义符号的意义为:当时,;当时,,如:.根据上面的材料回答下列问题:(1)______;(2)当时,求x 的取值范围.b a -a x b ≤≤x 0230x a x a +≥⎧⎨-+≤⎩x ()x n 0.50.5n x n -≤<+()x n =()1.341=()4.865=()0.516x -=x x y (,)()(3)F x y ax by x y =++a b (1,1)44F a b =+(3,1)0F =(0,1)9F =-a b F (31,)(6,12)27F t t kF t t +≥⎧⎨-<⎩1k ,a b min{,}a b a b <min{,}a b a =a b min{,}a b b =min{4,2}2,min{5,5}5-=-=min{1,3}-=2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭26.如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.例如方程的解为,不等式组的解集为,因为2<3<5,所以,称方程为不等式组的关联方程.(1)若不等式组的一个关联方程的解是整数,则这个关联方程可以是__________________(写一个即可)。

含参数一元一次不等式【精】

含参数一元一次不等式【精】

含参数一元一次不等式【精】1、不等式 $ax>b$ 的解集是 $x>b/a$,则 $a$ 的取值范围是 $a>0$。

2、不等式 $(a-1)x>1-a$ 的解为 $x>-1$,则 $a$ 的取值范围是 $a<1$。

3、已知关于 $x$ 的不等式 $(1-a)x>2$ 的解集为 $x<2/(1-a)$,则 $a$ 的取值范围是 $a<1$。

4、不等式 $mx-2(m-6)/3$。

5、如果关于 $x$ 的不等式 $(a-1)x>a+5$ 和 $2x<4$ 的解集相同,则 $a$ 的值为 $-3$。

6、已知关于 $x$ 的不等式 $(4a-3b)x>2b-a$ 的解集是 $x<-2/(4a-3b)$。

9、已知 $-4$ 是不等式 $ax>-5$ 的解集中的一个值,求$a$ 的取值范围。

答案为 $a<5/4$。

10、若不等式组 $\begin{cases} x>m \\ x<2 \end{cases}$ 有解,那么 $m$ 的取值范围是 $m<2$。

11、如果不等式组 $\begin{cases} x>m \\ x<8\end{cases}$ 无解,那么 $m$ 的取值范围是 $m\geq 8$。

12、如果不等式组 $\begin{cases} -x+2<x-6 \\ x-6<2x-1\end{cases}$ 有解,则 $m$ 的取值范围是 $m<2$。

14、不等式组 $\begin{cases} x\leq a \\ x>a+1\end{cases}$ 无解,则 $a$ 的取值范围是 $a\leq -1$。

15、若不等式组 $\begin{cases} 3x+23$,则 $m$ 的取值范围是 $m\leq 2$。

17、不等式组 $a+2x>x/3$ 无解,则 $a$ 的取值范围是$a\geq 1$。

含参的一元一次不等式(组)问题练习

含参的一元一次不等式(组)问题练习

含参的一元一次不等式(组)问题练习介绍本练旨在帮助学生熟悉解决含有参数的一元一次不等式(组)问题。

通过这些练,学生将能够加深对一元一次不等式的理解,并提高解决这类问题的能力。

练题目题目一:解方程组:ax + b > 0其中a、b为参数,请求x的取值范围。

题目二:求解不等式:ax + b < c其中a、b、c为参数,请求x的取值范围。

题目三:解方程组:ax + b > cdx + e < f其中a、b、c、d、e、f为参数,请求x的取值范围。

答案与解析题目一:根据不等式`ax + b > 0`,我们可以进行如下推导:- 当a > 0时,解为 x > -b/a。

- 当a < 0时,解为 x < -b/a。

题目二:根据不等式`ax + b < c`,我们可以进行如下推导:- 当a > 0时,解为 x < (c - b)/a。

- 当a < 0时,解为 x > (c - b)/a。

题目三:根据方程组ax + b > cdx + e < f我们可以分别求解这两个不等式:- 不等式`ax + b > c`,当a > 0时,解为 x > (c - b)/a;当a < 0时,解为 x < (c - b)/a。

- 不等式`dx + e < f`,当d > 0时,解为 x < (f - e)/d;当d < 0时,解为 x > (f - e)/d。

通过对以上两个不等式的解进行交叉比较,得到最终的x的取值范围。

总结通过这些练习,学生可以进一步理解含参的一元一次不等式(组)问题,并学会正确推导及求解这一类问题。

希望这些练习能帮助学生提高数学解题能力。

一元一次不等式(组)培优训练(参数问题)

一元一次不等式(组)培优训练(参数问题)

一元一次不等式(组)培优训练(参数问题) 拔高级训练:1、已知关于x ,y 的二元一次方程组⎩⎨⎧-=++=-222323t y x t y x ,当A=x -2y 且-1<t ≤2,求A 的取值范围.2、若关于x ,y 的二元一次方程组⎩⎨⎧=++=+333y x a t y x 的解满足x+y<505,则a 的取值范围是( )A. a>2016B.a<2016C.a>505D.a<5053、已知关于x ,y 的方程组⎩⎨⎧-=++=+m y x m y x 12312的解x ,y 满足x+y1<1,且m 为正数,求m 的取值范围.4、已知关于x ,y 的方程组⎩⎨⎧-=-+=+34272a y x a y x . (1)若a=2,求方程组的解;(2)若方程组的解x ,y 满足x>y ,求a 的取值范围并化简110118+-+a a5、若关于x 的不等式组⎩⎨⎧≥-≥-0250x m x 有解,则m 的取值范围是?6、关于x 的不等式组⎩⎨⎧->-<-)1(2130x x m x 无解,那么m 的取值范围为( ) A. m ≤-1 B.m<-1 C.-1<m ≤0 D.-1≤m<07、(1)若不等于组⎩⎨⎧>≤<k x x 21无解,则k 的取值范围是( ) A.k ≤2 B.k<1 C.k ≥2 D.1≤k<2(2)已知关于x 的不等式组⎩⎨⎧>-≥-1250x a x 只有四个整数解,则实数a 的取值范围是________. (3)定义[]x 表示不大于x 的最大整数,即x 的整数部分,例如[]47.4=.①根据定义,[][][]______;4.1_____,2_____,=-==π②比较[][]1,,1,++x x x x 的大小关系,按照从小到大的顺序用不等号连接的结果为____________________________; ③解方程:412213+=⎥⎦⎤⎢⎣⎡-x x8、若整数使关于的x 方程x +2a=1的解为负数,且使关于x 的不等式组⎪⎩⎪⎨⎧+≥->--31210)(21x x a x 无解,则所有满足条件的整数a 的值之和是( )A.5B.7C.9D.109、关于x 、y 的方程组⎩⎨⎧+=+-=+ky x k y x 13233的解满足x+y>0,且关于x 的不等式组⎪⎩⎪⎨⎧≥+≤--x x k x x 323)1(2有解,则符合条件的整数k 的值的和为( )A.2B.3C.4D.510、已知关于x 的不等式组⎩⎨⎧<+>-13430x a x 有且只有3个整数解,则a 的取值范围是( ) A.a>-1 B.-1≤a<0 C.-1<a ≤0 D.a ≤0培优级训练:1、已知⎩⎨⎧+=+=+12242k y x k y x 且0<y -x<1,则k 的取值范围是( )A.211-<<-kB.210<<kC.10<<kD.121<<k 2、如果关于x 的不等式组⎩⎨⎧<->-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有______个.3、阅读以下材料:对于三个数a,b,c ,用M{a ,b ,c}表示这个三个数中最小的数,例如:M{-1,2,3}=343321-=++;⎩⎨⎧->--≤=--=-)1(1)1(},2,1min{;1}3,2,1min{a a a a 解决下列问题:(1)填空:如果min{2,2x+2,4-2x}=2,则x 的取值范围为_________.(2)如果M{2,x+1,2x}=min{2,x+1,2x},求x.4、社会主义核心价值观"富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善"体现了社会主义核心价值理念.我们用"核心符号"[x]来表示不大于x 的最大整数(如[1.5]=1,[-1.5]=-2,我们把满足[x]=a (a 为常数)的x 取值范围叫做的核心范围)(如[x]=3的x 的核心范围为3≤x<4,[x]=-1的x 的核心范目-1≤ x<0).(1)请直接写出[2.6]的值和[x]=1的的核心范围;(2)己知关于x 的不等式⎩⎨⎧<->a x x ]2.1[有且只有两个整数解,写出这两个整数解并求出a 的取值范围.5、先阅读理解下面的例题,再按要求解答下列问题:例题:对于(x -2)(x -4)>0,这类不等式我们可以通过下面的解题思路来分析:由有理数的乘法法则"两数相乘,同号得正",可得①⎩⎨⎧<->-0402x x ,②⎩⎨⎧<-<-0402x x .从而将陌生的高次不等式化为学过的一元一次不等式年解不等式组,分别去解两个不等式组即可求得原不等式的解集,即:解不等式组①得x>4,解不等式组②得x<2,所以(x -2)(x -4)>0的解集为x>4或x<2.请利用上述解题思想解决下面的问题:(1)请直接写出(x -2)(x -4)<0的解集;(2)对于0>nm ,请根据除法法则化为我们学过的不等式(组); (3)求不等式013>-+x x 的解集.6、先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x ²-4>0.解:∵x ²-4=(x +2)(x -2),∴x ²-4>0可化为(x +2)(x -2)>0.由有理数的乘法法则"两数相乘,同号得正",得①⎩⎨⎧>->+0202x x ,②⎩⎨⎧<-<+0202x x 解不等式组①,得x >2,解不等式组②,得x<-2.∴x ²-4>0的解集为x >2或x<-2,即一元二次不等式x ²-4>0的解集为x >2或x<-2.(1)一元二次不等式x ²-16>0的解集为______________.(2)分式不等式031>--x x 的解集为______________.课堂检测:1、已知关于x 、y 的方程组⎩⎨⎧=++=-ay x a y x 523的解满足x>y>0,求a 的取值范围.2、已知a>1,则a x x a -=-2)2(2中x 的取值范围是多少?3、若关于x 不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A.35≤m B.35<m C.35>m D.35≥m4、若关于x 的不等式组⎩⎨⎧+≥++≤)1(341m x m x 无解,则m 的取值范围是__________.5、已知关于x 的不等式a ≤x<b 的整数解为7,8,9,10.当a 、b 为实数时,a 、b 的取值范围分别为________、__________.。

一元一次不等式(组)中参数取值范围的解题方法和技巧(专项练习)八年级数学下册基础知识专项讲练(北师大

一元一次不等式(组)中参数取值范围的解题方法和技巧(专项练习)八年级数学下册基础知识专项讲练(北师大

专题2.14 一元一次不等式(组)中参数取值范围的解题方法与技巧(专项练习)一、单选题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3 C .a >3 D .a ≤3 2.已知关于x 的不等式组15x a x b -≥⎧⎨+≤⎩的解集是3≤x ≤5,则+a b 的值为( ) A .6 B .8C .10D .12 3.关于x 的方程26a x -=的解是非负数,那么a 满足的条件是( ) A .3a > B .3a ≤ C .3a < D .3a ≥ 4.已知关于x 的不等式组3x 05m x +⎧⎨-⎩<>的所有整数解的和为-9,则m 的取值范围( ) A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m <-4 5.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<- B .74a -≤≤- C .74a -≤<- D .74a -<≤- 6.若mx 5m >,两边同除以m 后,变为x 5<,则m 的取值范围是( ) A .m 0> B .m 0< C .m 0≥ D .m 0≤ 7.若实数3是不等式2x a 20--<的一个解,则a 可取的最小整数为( ) A .2 B .3 C .4 D .58.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ).A .8-B .8C .10D .26二、填空题9.已知不等式组11x x a >⎧⎨<-⎩无解,则a 的取值范围为__. 10.已知不等式1322x x -≥ 与不等式30x a -≤的解集相同,则a =_______. 11.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 12.在平面直角坐标系中,点A ,B 的坐标分别为(3,5),(3,7),直线y =2x +b 与线段AB 有公共点,则b 的取值范围是______.13.若不等式组52355x x x a+≤-⎧⎨-+<⎩无解,则a 的取值范围是______.14.如图,直线y =3x 和y =kx +2相交于点P (a ,3),则不等式3x >kx +2的解集为_____.15.若关于x 的不等式0x a -<的正整数解只有3个,则a 的取值范围是________________. 16.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则整数解是________,m 的取值范围是________.17.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______. 18.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________. 19.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集为55x -≤<,则a b 的值为___________. 20.若不等式组31x x m <⎧⎨>-⎩无解,则m 的取值范围是_____. 21.若关于x 的不等式组25011222x x m +>⎧⎪⎨+⎪⎩,有四个整数解,则m 的取值范围是____________.22.若关于x 的不等式23x a +的解集如图所示,则常数a =__________.23.关于x ,y 的二元一次方程组22123x y m x y +=+⎧⎨+=⎩的解满足不等式1x y ->,则m 的取值范围是______.24.已知直线()110y kx k =+<与直线()20y nx n =>的交点坐标为11,22n ⎛⎫⎪⎝⎭,则不等式组42nx kx nx -<+<的解集为________. 25.关于x ,y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣1,则m 的取值范围是_____.26.若不等式00x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________. 27.关于x 的不等式组0321x a x -≥⎧⎨->⎩有3个整数解,则a 的取值范围是________. 28.若x y >,且(2)(2)a x a y -<-,则a 的取值范围是________.29.若关于x 的不等式组2()102153x m x 的解集为76x -<<-,则m 的值是______.30.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____.三、解答题31.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围;(2)试化简1a a 2-++.32.如图,直线y=kx+b 经过点A (5,0),(1,4).(1)求直线AB 的解析式;(2)如图,若直线y=mx+n (m >0)与直线AB 相交于点B ,请直接写出关于x 的不等式mx+n <4的解.33.(1)关于x 的方程32x m m x +=- 与方程()3423x x +=-的解互为倒数,求m 的值. (2)已知关于x 的方程()()1232x x a -=+的解适合不等式312x a -+>,求a 的取值范围.参考答案1.B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .【点拨】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.D【分析】先求出两个不等式的解集,再求其公共解,再根据不等式组的解集列出求出a 、b 的值,再代入代数式进行计算即可得解.【详解】15x a x b -≥⎧⎨+≤⎩①②, 由①得,x ≥a +1,由②得,x ≤b−5,∵不等式组的解集是3≤x ≤5,∴a +1=3,b−5=5,解得a =2,b =10,所以,a +b =2+10=12.故选:D .【点拨】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 3.D【分析】先用含字母a 的式子表示出x ,再根据题意建立不等式求解即可.【详解】解方程得:26x a =-,由题意得:260a -≥,解得: 3a ≥,故选:D .【点拨】本题考查一元一次方程的解及解一元一次不等式,准确根据解的情况建立关于参数的不等式并求解是解题关键.4.C【分析】先求解不等式组,再根据条件判断出含参代数式的范围,从而求得参数的范围即可.【详解】 解原不等式得:35m x x ⎧<-⎪⎨⎪>-⎩,即53m x -≤<-, 由所有整数解的和为-9,可知原不等式包含的整数为-4,-3,-2或-4,-3,-2,-1,0,1,当整数为-4,-3,-2时,则13m -2<-≤-,解得:36m ≤<, 当整数为-4,-3,-2,-1,0,1时,则23m 1<-≤,解得:63m -≤<-, 故选:C .【点拨】本题考查含参不等式组求解问题,熟练掌握对含参代数式范围的确定是解题关键. 5.D【分析】先解不等式得出23a x -≤,然后根据不等式只有2个正整数解可知正整数解为1和2,据此列出不等式组求解即可.【详解】解:32x a +,32x a ∴-,则23a x -, ∵不等式只有2个正整数解,∵不等式的正整数解为1、2,则2233a -≤<, 解得:74a -<-,故答案为D .【点拨】本题主要考查一元一次不等式的整数解,正确求解不等式并根据不等式的整数解的情况列出关于某一字母的不等式组是解答本题的关键.6.B【分析】利用不等式的性质判断即可.【详解】解:若mx 5m >,两边同除以m 后,变为x 5<,则m 的取值范围是m 0<.故选:B .【点拨】此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.7.D【分析】将x 3=代入不等式得到关于a 的不等式,求解即可.【详解】根据题意,x 3=是不等式的一个解,∴将x 3=代入不等式,得:6a 20--<,解得:4a>,则a可取的最小整数为5,故选:D.【点拨】此题考查不等式的解的定义,解一元一次不等式,正确理解不等式的解的定义将x=3代入得到关于a的不等式是解题的关键.8.A【分析】解不等式组和方程得出关于x的范围及x的值,根据不等式组有4个整数解和方程的解为整数得出k的范围,继而可得整数k的取值.【详解】解:解关于x的方程9x-3=kx+14得:179xk =-,∵方程有整数解,∴9-k=±1或9-k=±17,解得:k=8或10或-8或26,解不等式组155222228xxx kx+⎧>+⎪⎪⎨-⎪≥-⎪⎩得不等式组的解集为2528kx-≤<,∵不等式组有且只有四个整数解,∴20128k-<≤,解得:2<k≤30;所以满足条件的整数k的值为8、10、26,故选:A.【点拨】本题主要考查方程的解和一元一次不等式组的解,熟练掌握解方程和不等式组的能力,并根据题意得到关于k的范围是解题的关键.9.2a【分析】求出不等式组中每个不等式的解集,根据已知即可得出关于a 的不等式,即可得出答案.【详解】 解:不等式组11x x a >⎧⎨<-⎩无解, 11a ∴-,解得:2a ,故答案为:2a .【点拨】本题考查了一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式,题目比较好,难度适中.10.6-【分析】首先根据解不等式的方法,求出两个不等式的解集2x -≤和3a x ≤,根据两个不等式的解集相同,可知23a =-,进而求出答案. 【详解】 解: 解不等式1322x x -≥得:2x -≤, 解不等式30x a -≤得:3a x ≤, 两个不等式的解集相同, ∴23a =-, ∴6a =-.故答案为:6-.【点拨】本题考查了解一元一次不等式,熟知解一元一次不等式的基本步骤是解题的关键. 11.2a ≤【分析】根据不等式组的公共解集即可确定a 的取值范围.【详解】由不等式组2x a x >⎧⎨>⎩的解为2x >, 可得2a ≤.故答案为:2a ≤.【点拨】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.12.-1≤b ≤1【分析】由一次函数图象上点的坐标特征结合直线与线段有公共点,即可得出关于b 的一元一次不等式,解之即可得出b 的取值范围.【详解】解:当x=3时,y =2×3+b=6+b ,∴若直线y =2x +b 与线段AB 有公共点,则6567b b +≥⎧⎨+≤⎩,解得-1≤b ≤1 故答案为:-1≤b ≤1.【点拨】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征结合直线与线段有公共点,列出关于b 的一元一次不等式是解题的关键.13.172a ≤ 【分析】先解一元一次不等式组,再根据不等式组无解即可得出a 的取值范围.【详解】解:解一元一次不等式组52355x x x a +≤-⎧⎨-+<⎩, 得:725x x a⎧≤-⎪⎨⎪>-⎩,∵不等式组无解,∴752a -≥-, 解得:172a ≤, 故答案为:172a ≤. 【点拨】本题考查了一元一次不等式组的解法、一元一次不等式的解法,会根据不等式组无解求解参数a 的取值范围是解答的关键.14.x >1【分析】先把点P (a ,3)代入直线y =3x 求出a 的值,故可得出P 点坐标,再根据函数图象进行解答即可.【详解】解:∵直线y =3x 和直线y =kx +2的图象相交于点P (a ,3),∵3=3a ,解得a =1.∵P (1,3).由函数图象可知,当x >1时,直线y =3x 的图象在直线y =kx +2的图象的上方, ∵3x >kx +2的解集为x >1.故答案为:x >1.【点拨】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.15.3<a ≤4【分析】先求出不等式0x a -<的解集,然后再根据只有3个正整数解,确定出a 的取值范围即可.【详解】解:∵0x a -<∴x <a∵关于x 的不等式0x a -<的正整数解只有3个,∴3<a ≤4.故答案为:3<a ≤4.【点拨】本题主要考查了解一元一次不等式和一元一次不等式的整数解的相关知识点,根据不等式的解集得到关于m 的不等式组成为解答本题的关键.16.3,4,5,6 67m <≤【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有4个整数解即可求得m 的范围.【详解】0721x m x -<⎧⎨-≤⎩①②, 由①得:x m <,由②得:26x ≥,3x ≥,∵不等式组的整数解共有4个,∴整数解为3,4,5,6,∴m 取值范围为67m <≤.故答案为:3,4,5,6;67m <≤.【点拨】本题考查了不等式组的解法及整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.-54<a <4 【分析】先解方程组用含a 的式子表示方程组的解,根据方程组的解是正数,列出关于a 的不等式组,再求解.【详解】解:3951x y a x y a +=+⎧⎨-=+⎩①②, ①+②得:2810x a =+,45x a =+,①-②得:228y a =-+,4y a =-+,所以,原方程组的解为:454x a y a =+⎧⎨=-+⎩, ∵ 方程组的解为正,∴45a +>0且4a -+>0, 解得:-54<a <4, 故填:-54<a <4. 【点拨】本题考查了方程组的解法,以及一元一次不等式组的解法,解此类问题要先用字母a 表示方程组的解,再根据题意,列不等式组,最后求解.18.1a <-【分析】先求出不等式组中第二个不等式的解,再结合数轴,根据不等式组有解即可得.【详解】 解103x a ->得:3x a >, 在数轴上表示两个不等式的解如下:要使不等式组有解,则33a <-,解得1a <-,故答案为:1a <-.【点拨】本题考查了一元一次不等式组的解,熟练掌握不等式组的解法是解题关键.19.1914- 【分析】先求出不等式组中两个不等式的解,再根据不等式组的解集可得一个关于a 、b 的二元一次方程组,解方程组可得a 、b 的值,然后代入即可得.【详解】221x a b x a b -≥⎧⎨-<+⎩①②, 解不等式①得:x a b ≥+, 解不等式②得:212a b x ++<, 由题意得:52152a b a b +=-⎧⎪⎨++=⎪⎩, 解得1914a b =-⎧⎨=⎩, 则1914a b =-, 故答案为:1914-. 【点拨】本题考查了解一元一次不等式组、二元一次方程组,熟练掌握不等式组和方程组的解法是解题关键.20.4m ≥【分析】利用不等式组取解集的方法进行判断即可得到关于m 的不等式,再解不等式即可得解.【详解】解:∵不等式组31x x m <⎧⎨>-⎩无解 ∴13m -≥∴4m ≥.故答案是:4m ≥【点拨】本题考查了由一元一次不等式的解集确定参数,熟练掌握不等式组取解集的方法是解题的关键,一般有两种方法,数周表示法,或者口诀(大大取大,小小取小,大小小大中间找,大大小小无处找).21.32m -<-【分析】解不等式组的两个不等式,根据其整数解的个数得出1≤4+m <2,解之可得.【详解】 解:25011222x x m +>⎧⎪⎨+⎪⎩①②, ①式化简得25x >-, ∴52x >-, ②式化简得4x m +,542x m ∴-<+, 又∵该不等式组有4个整数解,∴整数解为2-,1-,0,1.故142m +<,得4142m m +⎧⎨+<⎩, 解得3m -,2m <-,故m 的取值范围为32m -<-,故答案为:32m -<-.【点拨】本题主要考查不等式组的整数解问题,根据不等式组的整数解的个数得出关于m 的不等式组是解题的关键.22.5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集,再求出所给不等式的解集与已知解集相比较即可求出a 的值. 【详解】由图可知x 的解集为1x -,∵23x a +,∴23x a -, 32a x -, 312a -∴=-, 32a -=-,5a =.故答案为5.【点拨】 本题考查在数轴上表示一元一次不等式的解集,熟知实心圆点与空心圆点的区别是解题关键.23.32m >【分析】将两个方程相减得到x y -,再根据题意建立不等式求解即可.【详解】 22123x y m x y +=+⎧⎨+=⎩①②,由①-②得=22x y m --, 建立不等式221m ->,解得32m >, 故答案为:32m >. 【点拨】 本题考查解一元一次不等式、二元一次方程的解,解答本题的关键是明确题意,明确它们各自的解答方法.24.1<x <3【分析】根据一次函数的图象与性质,将11,22n ⎛⎫ ⎪⎝⎭代入()110y kx k =+<,可得k =n−2,将42nx kx nx -<+<化为不等式组4(2)2(2)2nx n x n x nx -<-+⎧⎨-+<⎩,解此不等式组即可得解. 【详解】解:把11,22n ⎛⎫ ⎪⎝⎭代入y 1=kx +1,可得12n =12k +1, 解得k =n−2.∴y 1=(n−2)x +1.则42nx kx nx -<+<可化为4(2)2(2)2nx n x n x nx -<-+⎧⎨-+<⎩. 解此不等式组得:1<x <3.∴不等式组42nx kx nx -<+<的解集为1<x <3.故答案为:1<x <3.【点拨】本题考查了一次函数与一元一次不等式的关系,解题的关键是理清题意并建立相应的一元一次不等式组进而求解.25.3m <【分析】先将方程组中的两个方程相加化简可得2x y m +=-+,再代入1x y +>-可得一个关于m 的一元一次不等式,然后解不等式即可得.【详解】23224x y m x y +=-+⎧⎨+=⎩, 两个方程相加得:3336x y m +=-+,即2x y m +=-+,由题意得:21m -+>-,解得3m <,故答案为:3m <.【点拨】本题考查了二元一次方程组、一元一次不等式,熟练掌握二元一次方程组的特殊解法是解题关键.26.2a =-、3b =【分析】由于不等式组00x b x a -<⎧⎨+>⎩有解,则解不等式组得到-a <x <b ,然后与2<x <3进行对比即可确定a 和b 的值.【详解】解:∵不等式组00x b x a -<⎧⎨+>⎩的解集为2<x <3,而解不等式组00x b x a -<⎧⎨+>⎩得-a <x <b ,∴-a=2,b=3,即a=-2,b=3.故答案为:2a =-、3b =.【点拨】本题考查了不等式的解集,掌握不等式的性质是解题的关键.27.32a -<≤-【分析】先解出不等式组,根据它有3个整数解求出a 的取值范围.【详解】解:解不等式组得1a x ≤<,∵它有3个整数解,∴解是-2,-1,0,∴32a -<≤-.故答案是:32a -<≤-.【点拨】本题考查函参不等式组求参数问题,解题的关键是掌握解不等式组的方法.28.2a <【分析】根据不等式的性质,两边同时乘一个负数不等号改变,求出a 的取值范围.【详解】解:∵x y >,而(2)(2)a x a y -<-,∴20a -<,即2a <.故答案是:2a <.【点拨】本题考查不等式的性质,解题的关键是掌握不等式的性质.29.152【分析】 先解不等式组得出其解集为1262mx ,结合76x -<<-可得关于m 的方程,解之可得答案.【详解】解:2()102153x m x ①②由∵得:2210x m +->,221x m >-+, 12x m >-+由∵得:212x <-,6x <-, ∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=- 152m ∴= 【点拨】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键. 30.2﹤a ≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a 的取值范围即可.【详解】解:解不等式3112x +-<得:x ﹥﹣1, ∴原不等式组的解集为:﹣1﹤x ﹤a ,∵不等式组有3个整数解,∴2﹤a ≤3,故答案为:2﹤a ≤3.【点拨】本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a 的取值范围是解答的关键,必要时可借助数轴更直观.31.(1)a 1>;(2)2a 1+.【分析】(1)根据不等式的基本性质,得到关于a 的不等式,即可求解;(2)根据求绝对值的法则以及a 的范围,即可得到答案.【详解】(1)∵ 关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-, ∴ 1a 0-<,∴ a 1>∵2()由(1)得a 1>, ∴1a 0-<,a 20+>, ∴1a a 2a 1a 22a 1-++=-++=+.【点拨】本题主要考查不等式的性质以及求绝对值的法则,熟练掌握不等式的性质是解题的关键. 32.(1)5y x =-+;(2)x <1.【分析】(1)先设出直线AB 的解析式,利用待定系数法求AB 的解析式即可,(2)利用函数的增减性和x=1时的函数图像上点的位置来求即可.【详解】解:(1)∵直线y=kx+b 经过点A (5,0)、B (1,4),∴504k b k b +=⎧⎨+=⎩, 解方程组得15k b =-⎧⎨=⎩, ∴直线AB 的解析式为y=﹣x+5;(2)∵直线y=mx+n (m >0)与直线AB 相交于点B (1,4),∴当x=1时,mx+n=4,∵m >0,∴函数y=mx+n 随x 的增大而增大,∴关于x 的不等式mx+n <4的解集是x <1.【点拨】本题考查一次函数与一元一次不等式,掌握一次函数解析式的求法,以及一次函数与一元一次不等式的关系,会求函数值,会比较函数值的大小关系是解题关键.33.(1)85m =;(2)113a <-. 【分析】 (1)首先解方程()3423x x +=-,得到12x =,根据两个方程解是互为倒数,可知另一个方程的解为2x =,将2x =代入方程32x m m x +=-即可; (2)首先解方程()()1232x x a -=+,得到143x a =+,根据方程()()1232x x a -=+的解适合不等式312x a -+>,所以将143x a =+代入不等式,求出答案即可. 【详解】解:(1)()3423x x +=- 解方程得:12x =, 两个方程解是互为倒数,∴另一个解为:2x =,将2x =代入方程32x m m x +=-, 得:2232m m +=-,解得:85m =. 故m 的值为85. (2)()()1232x x a -=+ 112622x x a -=+ 31622x a =+ ∴143x a =+, 方程()()1232x x a -=+的解适合不等式312x a -+>, ∴将143x a =+代入312x a -+>,得: 134123a a ⎛⎫-⨯++> ⎪⎝⎭1212a a --+>311a ->113a <- 故a 的取值范围为:113a <-. 【点拨】本题考查了倒数,一元一次方程的解和解一元一次方程,方程和不等式的综合题,正确求出方程的解是解题的关键.。

一元一次不等式(组)含参数问题 专题训练(2)

一元一次不等式(组)含参数问题 专题训练(2)

一元一次不等式(组)含参数问题专题训练(2)
一、选择题(每题5分,共30分)
6.若不等式组的解为x<﹣a,则下列各式中正确的是()
A.a+b≤0B.a+b≥0C.a﹣b<0D.a﹣b>0
9.若关于x的不等式组无解,则a的取值范围是()
A.a≤1B.a<1C.a≥1D.a>1
13.已知不等式组的整数解有三个,则a的取值范围是()
A.1<a≤2B.2≤a<3C.1<a<2D.1≤a<2
17.若x<﹣2是关于x的一元一次不等式ax﹣2>0的解集,则关于y的方程ay+2=0的解为()A.y=1B.y=﹣1C.y=2D.y=﹣2
29.已知关于x的二元一次方程组,若x+y>4,则m的取值范围是()A.m>2B.m<4C.m>5D.m>6
38.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7B.4<m<7C.4≤m≤7D.4<m≤7
二、填空题(每题10分,共70分)
2.若|2x﹣1|=1﹣2x,则x的取值范围是.
4.已知关于x的不等式(2a﹣b)x>a﹣2b的解是,则关于x的不等式ax+b<0的解为.
22.已知方程组的解满足不等式4x﹣5y<9.则a的取值范围是.
28.当k时,不等式(k+2)x|k|﹣1+5<0是一元一次不等式.
42.若不等式5(x﹣2)+8≤6(x﹣1)+7的最小整数解是方程3x﹣ax=﹣3的解,则﹣|10﹣a2|的值是.46.关于x的不等式组恰好只有4个整数解,则a的取值范围为.
48.如果关于x的方程有非正整数解,且关于x的不等式组有解,那么符合条件的所有整数a的和是.。

(完整版)一元一次不等式含参问题

(完整版)一元一次不等式含参问题

一元一次不等式含参问题类型一根据不等式租的整数解情况确定字母的取值范围例1.不等式组有3个整数解,则m的取值范围是.变式练习1.不等式组有3个整数解,则m的取值范围是.变式练习2.已知关于x的不等式组只有3个整数解,则实数a的取值范围是.变式练习3。

已知关于x的不等式组,仅有4个整数解,则实数a的取值范围是.变式练习4。

已知关于x的不等式组,仅有4个整数解,则实数a的取值范围是.类型二根据不等式组的解集确定字母的取值范围例2.已知关于x的不等式组无解,则a的取值范围是.变式练习1.若关于x的不等式组有解,则实数a的取值范围是.变式练习2.若不等式的解集为x >3,则a 的取值范围是 .变式练习3.若关于x 的不等式的解集为x <2,则a 的取值范围是 .变式练习4.已知不等式组无解,则a 的取值范围是 .类型三 根据未知数解集或者未知数间的关系确定字母的取值范围例3。

已知方程组⎩⎨⎧-=++=+m y x m y x 12312满足,求m 的取值范围变式练习1.若关于x,y 的二元一次方程组的解满足x+y <2,则a 的取值范围为 .2.已知⎩⎨⎧+=+=+12242k y x k y x 且的取值范围为则k y x ,01-〈-〈 .例4. 已知关于x 的不等式(1﹣a )x >2的解集为x <,则a 的取值范围是 .变式练习1.不等式(x ﹣m )>3﹣m 的解集为x >1,则m 的值为 .2.若关于x 的不等式3m ﹣2x <5的解集是x >3,则实数m 的值为 .3.若不等式ax+b<0的解集是x>﹣1,则a,b应满足的条件有.综合练习1.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )A.14 B.7 C.﹣2 D.22.不等式组的解集是x>﹣1,则a的取值范围是.3.若关于x的一元一次不等式组无解,则a的取值范围是.4.若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为.5.已知关于x的不等式组无解,则a的取值范围是.6。

带参数的一元一次不等式习题

带参数的一元一次不等式习题

含参数的一元一次不等式组的解集1、⑴不等式组12x x 的解集是 .⑵不等式组12x x 的解集是 .⑶不等式组14xx 的解集是 .⑷不等式组45xx 的解集是 .2、关于x 的不等式组12x m xm的解集是1x,则m =.3、如图是表示某个不等式组的解集,则该不等式组的整数解的个数是()A. 4B. 5C. 6D. 74、不等式组.32,281x >x x 的最小整数解是() A .-1 B.0 C.2 D .35、满足21x 的所有整数为___________ __.6、满足21x的所有整数为________________ __.7、请写出一个只含有三个整数1、2和3的解集为。

(1)若不等式组ax x 2的解集是2x,则a 的取值范围为(2)若不等式组a x x 2的解集时2x a ,则a 的取值范围为(3)若不等式组ax x 2无解,则a 的取值范围为变式1:若不等式组a x x 0只含有三个整数1、2和3,则a 的取值范围为;变式2:若不等式组axx 0只含有三个整数1、2和3,则a 的取值范围为;变式3:关于x 的不等式组010xax,只有3个整数解,则a 的取值范围是()A. -3≤a ≤-2B. -3≤a <-2C. -3<a ≤-2D. -3<a <-2例3、拓展应用(1)若不等式组12x xm有解,则m 的取值范围是().A .m<2B .m ≥2C .m<1D .1≤m<2(2)不等式组10a x a x 的解集中的任一个x 值均不在2x5范围内,则a 的范围为。

1、不等式组2131x x的解集是()A.2xB.1xC.12x D .无解2、已知a b 0,那么下列不等式组中有解的是()A .bxa x B .bxa x C .bxax D .bxax 3、已知不等式组axx 1无解,则a 的取值范围是()A.a ≤1B.a ≥1C.a <1D.a >14、不等式a ≤x ≤3只有5个整数解,则a 的范围是5、若不等式组3212m xm x 的解集中的任何一个x 值均不在1x<3范围内,则m 的取值范围为.含参数的一元一次不等式专题1、由x<y 得到ax>ay 的条件是( ) A 、a ≥0 B 、a ≤0 C 、a>0 D 、a<02、△ABC 的三条边分别是5、9、a 3,则a 的取值范围是(单位:cm )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式(组)含参数问题专项练习
一、选择填空
1. 如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <1
2. a 、b 是有理数,下列各式中成立的是( ).
(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b
(C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b
3. |a |+a 的值一定是( ).
(A)大于零 (B)小于零 (C)不大于零 (D)不小于零
4. 若由x <y 可得到ax >ay ,应满足的条件是( ).
(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0
5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).
(A)a <0 (B)a >-1 (C)a <-1 (D)a <1
6. 若不等式组⎩⎨
⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2
(B)k ≥2 (C)k <1 (D)1≤k <2 7. 不等式组⎩⎨
⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1
8. 对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知34
11<<d b ,则b +d 的值为_________. 9. 如果a 2x >a 2y (a ≠0).那么x ______y .
10. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.
11. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.
12. k 满足______时,方程组⎩
⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1. 二、解下列不等式组:
(1)⎪⎩⎪⎨⎧≤--<+2123932x x (2)()2 1.55261x x x x ≤+⎧⎪⎨->-⎪⎩ (3)()72321235312
x x x x x -⎧+>+⎪⎪⎨-⎪>-⎪⎩
(4) ()43321311522x x x x -<+⎧⎪⎨->-⎪⎩ (5)⎪⎪⎩⎪⎪⎨⎧>+>->+;
116,0)3(21,312x x x (6) 95)31(27≤-≤-x
三、解答题:
1、 x 为何值时,代数式2)1(3+-x 的值比代数式33
1-+x 的值大。

2、m 为何值时,方程 的解是非正数.
3、已知关于x 、y 的方程组⎩⎨⎧=-=+m
y x y x 212。

(1)求这个方程组的解;
(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1。

4、已知方程组⎩
⎨⎧-=-+=+172652y x k y x 的解为负数,求k 的取值范围. 5、已知关于x 的不等式组4(1)23,617x x x a x -+>⎧⎪+⎨-<⎪⎩
有且只有三个整数解,求a 的取值范围. 6、若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .
7、已知关于x ,y 的方程组⎩
⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围. 8、已知方程组⎩⎨⎧-=++=+②①m
y x m y x 12,312的解满足x +y <0,求m 的取值范围. 9、适当选择a 的取值范围,使1.7<x <a 的整数解:
(1) x 只有一个整数解;
(2) x 一个整数解也没有.
10、当3
10)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集. 11、已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.
12、(类型相同)当k 取何值时,方程组⎩⎨⎧-=+=-5
2,53y x k y x 的解x ,y 都是负数.
13、(类型相同)已知⎩
⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围. 14、已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-0
2,43x a x 的解集是x >2,求a 的值.
15、关于x 的不等式组⎩
⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围. 16(类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?
4152435-=-m m x。

相关文档
最新文档