《数学史》几何学的变革(上)
(完整版)数学史与数学教育答案
数学史与数学教育绪言(一)1【单选题】(A)于1758年出版的著作《数学史》是世界上第一部数学史经典著作。
A、蒙蒂克拉B、阿尔弗斯C、爱尔特希D、傅立叶2【单选题】首次使用幂的人是(C)。
A、欧拉B、费马C、笛卡尔D、莱布尼兹3【单选题】康托于(B)年起开始出版的《数学史讲义》标志着数学史成了一门独立的学科。
A、1870B、1880C、1890D、19004【判断题】历史上最早的数学史专业刊物是1755年起开始出版的《数学历史、传记与文献通报》。
X5【判断题】公元前5世纪的《希腊选集》中记载了关于丢番图年龄的诗文。
(X)数学史与数学教育绪言(二)1【单选题】卡约黎的著作《数学的历史》出版于(B)年。
A、1890B、1894C、1898D、19022【单选题】史密斯的著作《初等数学的教学》出版于(A)。
A、1900B、1906C、1911D、19133【单选题】(D)数学史教授卡约黎倡导为教育而研究数学史。
A、德国B、法国C、英国D、美国4【判断题】四等分角以及倍立方问题同属于三大几何难题,是被证明无法用尺规做出的。
(X)5【判断题】史密斯倡导建立了ICMI。
(V)数学史与数学教育绪言(三)1【单选题】Haeckel的生物发生定律应用于数学史中即为(C)。
A、基础重复原理B、往复创新原理C、历史发生原理D、重构升华原理2【单选题】史密斯的数学史课程最早开设于(C)年。
A、1889B、1890C、1891D、18923【单选题】《如何解题》、《数学发现》的作者是(C)。
A、庞加莱B、弗赖登塔尔C、波利亚D、克莱因4【判断题】M.克莱因认为学生学习中遇到的困难也是数学家历史上遇到的困难,数学史可以作为数学教育的指南。
(V)5【判断题】18世纪欧洲主流学术观点不承认负数为数。
(V)数学史与数学教育绪言(四)1【单选题】HPM的研究内容不包括(D)。
A、数学教育取向的数学史研究B、基于数学史的教学设计C、历史相似性研究D、数学史融入数学科研的行动研究2【单选题】HPM的主要目标是促进三方面的国际交流与合作,其中不包括。
07924_数学史简介ppt课件
代数学发展
古印度数学家在代数学方面取得重 要成就,如求解一元二次方程等。
几何学贡献
对几何学有独特见解,如提出相似 形和勾股定理的印度证明等。
10
古代中国数学
《九章算术》
筹算法
古代中国最重要的数学著作之一,涵 盖了算术、代数、几何等多个领域的 知识。
运用筹算进行数值计算,体现了古代 中国数学的独特思维方式和计算技巧 。
01
02
03
04
高斯
德国数学家和物理学家,被誉 为“数学王子”。
数论
高斯在数论领域取得了许多重 要成果,如证明了费马大定理
的特殊情况等。
非欧几何
高斯发现了非欧几里得几何的 存在,打破了欧几里得几何一
统天下的局面。
贡献
推动了数论和非欧几何的发展 ,为现代数学和物理学的研究
提供了新的思路和方法。
2024/1/26
中世纪大学对数学教育的重视,以及数学课程的 设置。
2024/1/26
13
阿拉伯数学
2024/1/26
阿拉伯数学的起源
01
阿拉伯帝国对数学的态度,以及阿拉伯数学家的贡献。
阿拉伯数字与代数
02
阿拉伯数字的发明与传播,以及阿拉伯数学家在代数领域的成
就。
阿拉伯几何与三角学
03
阿拉伯数学家在几何与三角学领域的贡献,以及对后世的影响
微积分学和射影几何学的 建立,使得变量成为数学 的研究对象,代表人物有 牛顿、莱布尼茨等。
数学的公理化、系统化以 及数学基础的研究成为主 要特点,代表人物有康托 尔、希尔伯特等。
计算机的出现推动了数学 的发展,产生了许多新的 分支和领域,如计算数学 、概率论与数理统计、运 筹学等。
《数学史》几何学的变革(下)解析
几何学的变革
几何,就是研究空间结 构及性质的一门学科。它是 数学中最基本的研究内容之 一,与分析、代数等等具有 同样重要的地位,并且关系 极为密切。
几何学发展
• 几何学发展历史悠长,内容丰富。它和代数、分析、 数论等等关系极其密切。
• 几何思想是数学中最重要的一类思想。目前的数学各 分支发展都有几何化趋向,即用几何观点及思想方法 去探讨各数学理论。
x1 x2 x ,y x3 x3
齐次坐标成为代数地推导包括对偶原理在内许多 射影几何基本结果的有效工具.但这种代数的方法遭 到了以庞斯列为首的综合派学者的反对,19世纪的射 影几何就是在综合的与代数的这两大派之间的激烈争 论中前进的. 支持庞斯列的数学家还有斯坦纳 (J.Steiner) 、沙 勒 (M.Chasles) 和施陶特 (K.G.C.von Staudt) 等,其中 施陶特的工作对于确立射影几何的特殊地位有决定性 的意义.
其次,非欧几何的出现打破了长期以来只有一 种几何学即欧几里得几何学的局面.
19世纪中叶以后,通过否定欧氏几何中这样或那样的公 设、公理,产生了各种新而又新的几何学,除了上述几种非 欧几何、黎曼几何外,还有如非阿基米德几何、非德沙格几 何、非黎曼几何、有限几何等等,加上与非欧几何并行发展 的高维几何、射影几何,微分几何以及较晚出现的拓扑学等, 19世纪的几何学展现了无限广阔的发展前景.
其中 aij 的行列式必须不为零.射影变换下的不变量有线性、 共线性、交比、调和点组以及保持圆锥曲线不变等.显然, 如果 ,射影变换就成了仿射变换. a31 a32 并且 0 a33 1
下表反映了以射影几何为基础的克莱因几 何学分类中一些主要几何间的关系:
在克莱因的分类中,还包括了当时的代数几何 和拓扑学.克莱因对拓扑学的定义是“研究由无限 小变形组成的变换的不变性”.这里“无限小变形” 就是一一对应的双方连续变换。
几何学发展史简介
“几何”一词,拉丁文是geometric,其源于希腊文ycouerpua(土地测量术)。
我国明末科学家徐光启(1562-1637)与意大利传教士利玛窦(R.Matteo,1553- 1610)1607年合译《几何原本》时首次采用。
几何学是一门古老而崭新的数学分支,其产生可追溯到距今8000年前的新石器时代。
最早始于人类生存及生产的需要,在长期生活、生产实践中,人们逐渐对图形有了一定的认识,形成了一些粗略的几何概念,归纳出一些有关图形的知识和经验,产生了初步的几何。
再经历代数学家的提炼和加工,逐渐形成了一门研究现实世界空间形式,即物体形状、大小和位置关系的数学分支,进而发展成为研究一般空间结构的数学分支。
几何学的发展大致经历了4个基本阶段。
1.实验几何的形成与发展几何学最早的产生可以用“积累几何事实,并企图建立起各个事实间的某种联系”来概括和描述。
源于人们观察天体位置、丈量土地、测量容积、制造生产工具等实践活动。
据考古资料记载,出土的十万年前的一些器皿上已出现的简略几何图案。
相传公元前2000年前大禹治水时,就已经能够使用规和矩等绘图工具进行测量和设计工作。
另外,从现存的古埃及、古巴比伦等国的史料可看出,在天文、测量中也大量地反映了几何图形与计算的知识。
然而,这一历史时期,尽管人们在观察实验的基础上积累了丰富的几何经验。
但在现存的史料中,未见这一时期总结出几何知识真实性的推理证明;某些计算公式仅是粗略和近似的;直至公元前7世纪以前,可以说是单纯地由经验积累,通过归纳而产生几何知识的阶段,被称为实验(归纳)几何阶段。
2.理论几何的形成与发展到了公元前7世纪,随着古埃及、古希腊之间贸易与文化的交流,埃及的几何知识逐渐传入希腊并得到巨大的发展。
这一时期,人们对几何知识开始了逻辑推理与论证,古希腊的泰勒斯(Thales,约公元前625一前547)首先证明了“对顶角相等”、“等腰三角形两底角相等”、“半圆上的圆周角是直角”等,因而被人们称为第一位几何学家;毕达哥拉斯(Pythagoras,公元前580一前501)学派首先证明了“三角形内角和等于二直角”、“勾股定理”、“只有五种正多面体”等。
第二章源头之一几何原本
《几何原本》后面各篇不再列出其它公理。这一 篇在公理之后,用48个命题讨论了关于直线和由直 线构成的平面图形的几何学,其中第47命题就是著 名的勾股定理:“在直角三角形斜边上的正方形(以 斜边为边的正方形) 等于直角边上的两个正方形。”
几何学的发展简史
几何学的发展历经了四个基本阶段:
一是经验事实的积累和初步整理
据考证西方的几何学就是起源于测地术.“几何 学”这个名词是我国明朝徐光启(1562—1633年) 译的,这个词的原义无论在拉丁文或希腊文都含“测 地术”的意思.
大约公元前1650年,埃及人阿默斯 (Ahrmes,生卒年月不详)手抄了一本书,即 后人所称的“阿默斯手册”,最早发现于埃及 底比斯的废墟中.公元1858年由英国的埃及学 者莱因德﹝A. H. Rhind﹞购得,故又名“莱因 德纸草书”.此书中载有很多关于面积的测量 法以及关于金字塔的几何问题.
第十三篇共有18个命题,主要研究五种正多面 体,并且证明了(凸的)正多面体不能多于五种。
第五公设的试证
在摆脱第五公设(也称平行公设)困扰的努力 中,第一个有影响的工作是由古希腊天文学家托 勒密完成的。在这次认真的尝试中,托勒密采取 的方式是直接证明法。他试图通过欧几里得的其 他九个公理、公设直接推导出第五公设。
第十篇是篇幅最大的一篇,包括115个
题.占全书四分之一,主要讨论无理量(与给定
的量不可通约的量),但是只涉及相当于 之类的无理量。
a b
第十一篇讨论空间的直线与平面的各种关系, 共有39个命题。
第十二篇利用穷竭法证明了“圆面积的比等于 直径平方的比”,还证明了棱锥之间、圆锥之间、 圆柱之间和球体之间的体积之比。值得指出的是: 欧几里得在任何地方都没有给出圆面积、球体积等 的计算。这并非他不知道早已存在的近似计算方法, 而是在他看来,这种计算属于实际测量而不用于理 论几何。
数学:数学史知识学习(三)
数学:数学史知识学习(三)1、名词解释数学能力正确答案:是顺利完成数学活动所具备的,而且直接影响其活动效率的一种个性心理特征,它是在数学活动过程中形成和发展起来的,并且在这类活动中表现出来的比较稳定的心理特征。
是系(江南博哥)统化了的,概括化了的哪些个体经验,是一种网络化的经验结构。
2、填空题对韦达所使用的代数符号进行改进的工作是由笛卡尔完成的,他用拉丁字母的前几个表示(),后几个表示()。
正确答案:已知量;未知量3、填空题数学史分期的依据主要有两大类,其一是根据()来分期,其一是根据()来分期;正确答案:数学学科自身的研究对象、内容结构、知识领域的演进;数学学科所处的社会、政治、经济、文化环境的变迁4、问答题简述微积分学产生的背景。
正确答案:1638年伽利略《关于两门新科学的对话》出版,为动力学奠定了基础,促使人们对动力学概念与定理作精确的数学描述。
望远镜的光程设计需要确定透镜曲面上任一点的法线和求曲线的切线,而炮弹的最大射程和求行星的轨道的近日点、近远点等涉及到求小数的最大值、最小值问题。
而求曲线所围成的面积、曲线长、重心和引力计算也将人们的兴趣激发起来。
在17世纪上半叶,几乎所有的科学大师都致力于为解决这些难题而寻求一种新的数学工具。
正是为解决这些疑难问题,一门新的学科——微积分便应运而生了。
5、填空题九章算术》的内容分九章,全书共()问,魏晋时期的数学家()曾为它作注;正确答案:246;刘徽6、填空题拉格朗日在《解析函数论》一书中,主张用()来定义导数,以此作为整个微分、积分演算的出发点而将微积分归结为“代数运算”。
正确答案:拉格朗日定理7、填空题关于古埃及数学的知识,主要来源于()。
正确答案:莱茵德纸草书和莫斯科纸草书8、名词解释巴比伦楔形文字泥板正确答案:现在我们研究巴比伦数学知识的积累最可靠的资料,它是用截面呈三角形的利器作笔,在将干而未干的胶泥板上斜刻写而成的,由于字体为楔形笔画,故称之为楔形文字泥板书。
数学史:几何图形的发展历程
数学史:几何图形的发展历程
几何学是数学的一个分支,研究空间和图形的形状、大小、相
对位置和性质。
在数学史上,几何学起源于古代文明,并发展成为
一门独立的学科。
古代埃及是几何学的诞生地之一。
在埃及,人们利用几何学来
测量土地的面积和建筑物的尺寸。
埃及人还发现了一些几何原理,
例如平行线的性质和三角形的性质。
这些原理为几何学的发展奠定
了基础。
另一个几何学的发源地是古希腊。
希腊的几何学家毕达哥拉斯
提出了著名的毕达哥拉斯定理,它描述了直角三角形边长之间的关系。
欧几里得则创立了《几何原本》,系统总结了希腊几何学的发
展成果,成为后世研究几何学的基本教材。
在几何学的发展中,还涌现出一些重要的数学家。
亚历山大的
阿基米德研究了圆锥曲线,给出了计算圆锥曲线面积的方法。
法国
数学家笛卡尔则将代数学与几何学结合起来,提出了笛卡尔坐标系。
随着科学技术的进步,几何学也得到了广泛的应用。
现代几何
学的发展成果广泛应用于物理学、工程学和计算机图形学等领域。
在计算机图形学中,几何学被用于构建三维模型、进行图像处理和
计算机辅助设计等方面。
总结起来,几何学的发展历程丰富而多样。
从古埃及到古希腊,再到现代科技时代,几何学一直在不断发展和应用。
它不仅帮助人
们认识和描述空间和图形的性质,还在科学技术的进步中发挥着重
要的作用。
数学史概论1
❖ 又经历了数万年的发展,这些办法用得 多了,就逐渐形成数的概念和记数的符 号,直到距今五千多年前,终于出现了书写 记数系统. 书写记数的出现使数与数之间 的书写运算成为可能.
❖ 数的概念最初不论在哪个地区都是从 1、2、3、4……这样的自然数开始的, 但是记数的符号却大不相同。
❖ 从古埃及紙草书象形文字记载中知道:
数学史概论
李文林 著
目录
❖ 第 0 章. 绪论
❖ 第 1 章. 河谷晨曦—数学的起源与早期发展
❖ 第 2 章. 喷薄出海—古希腊数学
❖ 第 3,4 章. 日照东方—古代与中世纪的东方数学
❖ 第 5 章. 冲破黑暗—文艺复兴与近代数学的兴起
❖ 第 6 章. 走向无穷—微积分的创立
❖ 第 7 章. 分析时代—18世纪数学略影
❖ 阿拉伯数字容易通过改变小数点位置而 产生变化。所以在特殊场合(如银行) 不能完全替代大写的汉字。
几何知识
古埃及陶罐
半坡遗址陶器残片
半坡遗址房屋基础
西汉彩帛女娲伏羲图案(新疆出土)
❖ 古埃及几何学产生于尼罗河泛滥后土地的重 新丈量;
❖ 古代印度几何学的起源与宗教实践密切相关;
❖ 古代中国,几何学起源更多地与天文观测相 联系。
二、河谷文明与早期数学
河谷文明:历史学家常把兴起于埃及、美索不 达米亚、中国和印度等地域的古代文明称为河谷文 明。早期数学就是在尼罗河、底格里斯河与幼发拉 底河、黄河与长江、印度河与恒河等河谷地带首先 发展起来的。
1、埃及数学
罗赛塔石碑 (1799 发现)
• 莱茵德纸草书:84个问题 • 莫斯科纸草书:25个问题
❖ 基本思路是10倍的80加4倍的80,恰好 是1120,即1120中含有14个80.
教学大纲(数学史)
《数学史》课程教学大纲一课程说明1.课程基本情况-课程名称:数学史英文名称:A History of Mathematics课程编号:2411220开课专业:数学与应用数学专业开课学期:第6学期学分/周学时:2/2课程类型:专业方向选修课2.课程性质数学史是师范与非师范本科数学专业必修的重要基础课程之一。
任何一门学科都有它自己的产生和发展的历史,数学史就是研究数学的发生、发展过程及其规律的一门学科。
它主要讨论的是数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
3.本课程的教学目的和任务讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,同时深刻理解本课程与初等数学的内在联系以指导中学数学的教学。
4.本课程与相关课程的关系、教材体系特点及具体要求本课程是线性代数、数学分析、微分方程、高等几何、概率统计等学科的基础课程。
不学数学史,在很大程度上数学知识体系是不健全的。
不了解数学史就不能全面的了解数学学科。
数学科学是一个不可分割的整体,它的生命力正是在于各个部分之间的联系,数学史是对数学各课程的高度综合与概括,是将数学各课程联系起来的一门综合性的数学课程,是研究数学各课程的相互关系的课程,所以学习数学史对于学习数学其它课程能产生非常巨大的积极影响。
5.教学时数及课时分配二教材及主要参考书1、李文林 .《数学史教程》.高等教育出版社,20002、李迪 .《中国数学通史》(第一版).江苏教育出版社,19973、李心灿.《当代数学大师》.北京航空航天大学出版社,19994、张楚廷.《数学文化》(第一版).高等教育出版社,20015、杜瑞芝 .《数学史辞典》(第一版).山东教育出版社,2000三教学方法和教学手段说明讲授。
四成绩考核办法本课程以教务处相关文件规定考核。
《数学史》朱家生版课后题目参考答案第一章
1.数学的起源于世界古老文明产生的关系11数本(1)班郭奇 2011041047 “数学”这个词在我们的生活中可谓是无处不在,他作为人类思维的表达形式,反映了人们的积极进取的意志、缜密周详的推理及对完美境界的追求。
“数学”与我们身边的其他学科也有着密切联系。
例如在天文学方面、医学方面、经济学方面等等。
大到天文地理,小到生活琐事,数学的魅力可谓是发挥的淋漓尽致。
然而关于数学的起源,却有着一个古老而神奇的传说。
相传在非常非常遥远的古代,有一天在黄河的波涛中突然跳出一匹“龙马”来,马背上驮着一幅图,图上画着许多神秘的数学符号,后来,从波澜不惊的河水中又爬出一只“神龟”来,龟背上也驮着一卷书,书中则阐述了数的排列方法。
马背上的图叫“河图”,乌龟背上的书叫做“洛书”,当“河图洛书”出现后,数学也就诞生了。
当然,这个也只不过是个传说罢了。
数学作为最古老的一门学科,他的起源可以上溯到一万多年以前。
但是,公元1000年以前的资料留存下来的极少,迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。
远在一万五千年以前,人类就可以相当逼真的描绘出人和动物的形象,这是萌发图形意识的最早证据。
后来就开始逐渐对圆形和直线型的追求,从而成为数学图形的最早的原型。
在日常的生活实践中又逐渐产生了记数的意识和系统。
人类摸索过许多种记数的方法,例如用石块记数,结绳记数等,最后逐步发展到现在我们所用的数字。
图形意识和记数意识发展到一定阶段,又产生了度量的意识。
从人类社会的发展史来看,人们对数学本质特征的认识也在不断变化和深化着。
欧几里得说过“数学的根源在于普通的常识,最显著的例子是非负整数。
”他的算术来自于普通常识中的非负整数。
而且直到十九世纪中叶,对于数的科学探索还停留在普通的常识。
因此,十九世纪以前,人们普遍认为数学是一门自然学科,经验学科,因为那时的数学与现实之间的联系非常密切。
随着数学研究的不断深入,从十九世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位。
《数学史》课件知识讲稿
农业,手工业与贸易的发 展推动了自然科学各学 科知识的积累.
胡夫金字塔大约建于 公元前2500年左右. 该金字塔呈正四棱锥 形, 面向东西南北四个 正方向,边长230.5m, 塔高146.6m. 其底基正方形边长的 相对误差不超过 1∶14000,四底角的 相对误差不超过 1∶27000,即不超过 12",四个方向的误差 也仅在2'~5'之间.
1.2.3古巴比伦的几何
已熟悉了长方形、直角三角形、等腰三角形以 及直角梯形面积的计算和长方体,以及特殊梯形为 底的直棱柱体积计算的一般规则,他们知道取直径 的三倍为圆周的长,取圆周平方的1/12为圆的面积, 还用底和高相乘求得直圆柱的体积.
古巴比伦人还有把相当复杂的图形拆成一些 简单图形的组合的本领.
4.关于数学美的研究
• 毕达哥拉斯学派还认为,“美是和谐与比例”, • 他们认为,最美的图形在平面上是圆,在空间
是球,整个地球、天体和宇宙是一个圆球,宇 宙中的各种物体都作均匀的圆周运动. • 最完美的数是10,因为10=1+2+3+4,并将 1,2,3,4称为四象. • 在音乐研究中他们发现,如果一根弦是另一根 弦长的两倍,那么两者发出的音就相差8度. 认 为音乐的基本原则是数量原则,音乐节奏的和 谐是由高低、长短、轻重各种不同的音调,按 照一定数量比例组成的.
古埃及的胡夫Khufu金字塔
古埃及纸草书
保存至今有关数学的纸草书主要有两种:兰德纸草书, 长544cm,宽33cm,共载有85个问题; 莫斯科纸草书, 长544cm,宽8cm,共载有25个问题.这两份纸草书都 是公元前2000年前后的作品,为古埃及人记录一些数学 问题的问题集.
(完整word版)《数学史》朱家生版+课后题目参考答案+第六章
1.解析几何产生的背景是什么?在那个时期哪些问题导致了人们对运用代数方法处理几何问题的兴趣?解析几何的实际背景更多的是来自对变量数学的需求.文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代.机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛、河道和堤坝的修建又提出了有关固体力学和流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题.在数学上就需要研究求曲线的切线问题.所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学.作为代数与几何相结合的产物――解析几何,也就在这种背景下问世了.2、笛卡尔研究解析几何的出发点是什么?他又是怎么得到解析几何思想的?答:笛卡儿对数学方法的深入研究,是他断定数学可以有效地应用到其他科学上去。
他分析了古代已有的几何学和当时已经定型的代数学的优缺点,批评希腊几何过于抽象,并且过多地依靠图形,而代数则使人受到某些规则和公式的约束.他提出“寻求另外一种包含这两门科学的好处而没有他们的缺点的方法。
”当他看到代数具有作为一门普遍的科学方法的潜力,便着手把代数用到几何上去。
在《几何学》一书中,他仿造韦达的方法,用代数来解决几何作图的问题,比希腊人有了明显进展。
(在变量的理解和应用上。
希腊人无法处理三个以上变量的乘积.而笛卡儿是从纯数学方面考虑,所以可以处理三个以上的变量的乘积。
)笛卡儿之所以能创立解析几何,主要是他勇于探索,勤于思考.运用科学方法的必然结果。
3。
阐述费马的主要数学成就。
(1)对解析几何的贡献费马独立于勒奈·笛卡儿发现了解析几何的基本原理。
1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。
数学史教案
第0章绪论教学目的:使学生了解什么是数学史,为什么要学习和怎样学习数学史。
教学内容:数学史研究数学概念、数学方法和数学思想的起源与发展,激起与社会政治、经济和一般文化的联系。
一、数学史的意义1、数学知识的积累性有必要了解数学史2、数学内容的多样性必须了解数学史3、数学历史的复杂性对数学史的了解可以使人们从前人的探索和奋斗中汲取教益,获得鼓舞和增强信心。
不了解数学史就不可能全面了解数学科学二、数学的文化特点1、抽象性2、精确性3、可靠性4、一般性5、艺术性不了解数学史,就不可能全面了解整个人类文明史三、什么是数学----历史的理解1、数学是量的科学-----亚里士多德2、数学是研究现实世界的空间形式与数量关系得科学-----恩格斯3、现代数学就是各种量之间的可能的,一般说是各种变化着的量的关系和相互联系的数学----前苏联4、数学这个领域已被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性四、数学史的分期1、数学的起源与早期发展(公元前6世纪)2、初等数学时期(公元前6世纪------公元16世纪)3、近代数学时期(公元前17世纪------公元18世纪)4、现代数学时期(公元19世纪------现在)第一章数学的起源与早期发展教学目的:使学生了解古埃及和古巴比伦人的数学成就。
教学内容:一、古埃及人的数学成就1、完成了基本的算术四则运算,并推广到了分数上;已经有了求近似平方根的方法。
2、已经有了算术级数和几何级数的知识。
3、已能处理包括一次方程和某些类型的二次方程的问题。
4、其几何知识的主要内容是关于平面图形和立体图形的求积法。
5、在求圆面积以及把圆分成若干相等部分的问题上,已经有了正确的知识。
6、已经熟悉比例的基本原理。
二、古巴比伦人的数学成就1、已经知道如何度量矩形、直角三角形和等腰三角形的面积,以及圆柱体和平行六面体等正多面体的体积。
2、对圆面积的度量稍逊于古埃及人。
数学史上的三次危机
数学史上的三次危机数学史上的三次危机数学,一直以来被视为完美的学科,其严密性和精确性使其成为科学领域中不可或缺的一部分。
然而,在数学发展的历史中,也曾出现了一些危机,这些危机在当时给数学发展带来了危机和挑战,同时也促进了数学的进一步发展。
本文将介绍数学史上的三次危机。
一、欧几里得的几何第五公设的危机欧几里得的几何学被誉为数学的经典之一,其《几何原本》一书是数学史上的重要著作之一。
在几何学中,第五公设曾给欧几里得的几何学带来了极大的困扰。
第五公设即欧几里得互异公设,它表述为:通过点外一直线上的一点,有且仅有一条直线与已知直线平行。
第五公设表明了直线是永远不接近的,并且得到了广泛的认可。
然而,在欧几里得时代之后,这一公设被证明存在问题:第五公设不能从其他的公设中推导出来,故其并不是基本公设之一。
这一问题被称为欧几里得几何学的第五公设危机。
在十九世纪,对第五公设进行了广泛的探究和研究,最终发现几何学并非只有欧几里得几何一种形态,而且在非欧几何学中,也可以建立独立的公设,而且可以在这些公设的基础上推导出与欧几里得几何学不同的结论。
二、无穷的危机无穷在数学中一直是一个重要的概念,在数学的发展中,无穷也曾带来了不少的问题和困扰。
十九世纪初,数学家们对狄利克雷级数进行了研究,这些级数在数学上存在一些人们无法解决的问题,比如说,对于一些狄利克雷级数,其和似乎可以按照任意数值来指定。
一个明显的例子是1 - 1 + 1 - 1 +…这个级数显然没有收敛值,因为无论加上还是减去一个1,它的和都不会发生变化。
因此,许多数学家为了避免这类问题的出现,尝试将无穷作为一个不可达到的限制。
然而,这种被限制的观点导致了数学在某些方面的停滞。
对于无穷的概念和理解,人们渐渐地摆脱这样的限制,开始主张在数学中应该采用更广泛的思想,这一思想成为了20世纪数学研究的基础。
三、集合论的危机集合论是数学中一个不可或缺的概念,在数学研究中发挥了至关重要的作用,然而,尽管在今天看来集合论是异常清晰明确的,但在19世纪末和20世纪初,集合论曾经引起过一场危机。
《数学史》考试练习题及答案
《数学史》考试练习题及答案一、单选题1. 1834年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( )。
A 、高斯B 、波尔查诺C 、魏尔斯特拉斯D 、柯西答案:B2. 在现存的中国古代数学著作中,最早的一部是()A 、《孙子算经》B 、《墨经》C 、《算数书》D 、《周髀算经》答案:D3. 1917年,()获美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。
A 、胡敦复B 、姜立夫C 、郑之蕃D 、胡明夫答案:D4. 1983年,中国的数学家丘成桐获得的数学奖是下列的哪一项?()A 、匈牙利科学院设立的波约奖B 、菲尔兹奖C 、沃尔夫奖D 、诺贝尔奖答案:B5. 首先获得四次方程一般解法的数学家是( ) 。
A 、塔塔利亚B 、卡当C 、费罗D 、费拉利答案:D6. 希腊论证数学的祖师之一是()A 、泰勒斯B 、柏拉图C 、亚里士多德D 、芝诺答案:A7. 就微分学与积分学的起源而言()A 、积分学早于微分学B 、微分学早于积分学C 、积分学与微分学同期D 、不确定答案:A8. 大数学家欧拉出生于( )A 、瑞士B 、奥地利C 、德国D 、法国答案:A9. 古埃及的数学知识常常记载在( )。
A 、纸草书上B 、竹片上C 、木板上D 、泥板上答案:A10. 数学教学与研究的结合,已成为今日西方大学普遍的传统。
这一传统来自哪两所大学?()A 、巴黎综合工科学校与高等师范学校B 、剑桥大学和牛津大学C 、歌廷根大学和柏林大学D 、清华大学和北京大学答案:A11. 《九章算术》的“少广”章主要讨论() 。
A 、比例术B 、面积术C 、体积术D 、开方术答案:D12. 中国古典数学发展的顶峰时期是()。
A 、两汉时期B 、隋唐时期C 、魏晋南北朝时期D 、宋元时期答案:D13. 最早使用“函数”(function)这一术语的数学家是( )A 、莱布尼茨B 、约翰·伯努利C 、雅各布·伯努利D 、欧拉答案:A14. 我国元代数学著作《四元玉鉴》的作者是()A 、秦九韶B 、杨辉C 、朱世杰D 、贾宪答案:C15. 最早采用位值制记数的国家或民族是( ) 。
高中数学史课件:第五章-几何学的发展课件人教版选修三
其中圆锥曲线的定义方法如下: [插入图5.25]
5.5 坐标几何与曲线方程思想
17世纪法国数学家笛卡尔和费马创 立的。这两位数学家敏锐地看到欧氏几 何方法的局限性,认识到利用代数方法 来研究几何问题,是改变传统方法的有 效途径。 并为此开始了各自的研究工 作,把代数方程和曲线、曲面的研究联 系在一起
如图5.11抛物线有内接三角形PQq,其中P与Qp中 点V的连线平行于抛物线的轴。阿基米德从物理的方法 发现:抛物线被Qp截得的抛物线弓形的面积,与三角 形QPq的面积之比是4:3。阿基米德进而使用穷竭法证 明
5.2.3 多边形数
[插入图5.12] [插入图5.13] [插入图5.14]
最早的演绎几何学
能在R和B之间选AB上的点S,使得RS<r-OR,但是,因 为OS<OR+RS,这意味着谬论:OS<r。类似地,能证明: OR不大于r。因此,我们必定有OR = r,于是定理得证。
5.8.3 公理集合的相容性
形式公理体系的相容性证明的模型方法 例如,平面几何公理系统的解析模型
5.6.2 非欧几何学的先兆
从反面证明第五公设,意大利耶稣会 教士、数学家萨凯里(1667~1733) 于1733年第一次发表了其极具特色的 成果。 [插入图5.30] 离开了求证第五公设的目标,朝向创 造非欧几何的目标靠拢但是,他们没 有认识到欧几里得几何并不是在经验 可证实的范围内描述物质空间性质的 唯一几何
5.4 三大作图问题与《圆锥曲线》
三个作图问题: 倍立方,即求作一立方体的边,使
该立方体的体积为给定立方体的两倍; 三等分角,即分一个给定的任意角
《数学史》朱家生版+课后题目参考答案+第二章
1、试从数学科学发展的角度,探讨古希腊把逻辑学中的演绎证明引入数学的理由,并进一步论述数学与逻辑的关系。
答:一般认为,数学是研究空间形式和数量关系的一门科学,逻辑是研究思维形式及其规律和方法的一门科学,但它们都完全撇开其内容,仅仅从形式方面加以研究,因而均具有高度的抽象性,所以在分类上它们同属于形式科学。
同时,数学和逻辑的应用都十分广泛,往往成为研究其它科学的工具,因此常常同被人们称为工具性科学。
围绕逻辑与数学的关系讨论下去,曾经形成三种意见──逻辑主义、形式主义和直觉主义。
其中逻辑主义、直觉主义,过多强调了数学和逻辑的同一性,而忽视了数学与逻辑的差异性。
因此,认识数学和逻辑的关系,在于把握二者关系的辩证性──同一、差异又互补。
研究中国传统数学中逻辑思想与方法的必要性一直以来,不论是在逻辑史学界,还是在数学史学界,对于中国传统数学中逻辑思想与方法的研究没有得到应有的重视。
但从下面我们简单论述来看,加强这方面的研究却具有显明的必要性。
一、从逻辑与数学的关系看数学与逻辑的研究对象虽各不相同,但它们的性质、特点却有很多共同和类似的地方,正因为如此,才使得它们关系十分密切,在内容和方法上可以互相运用和相互渗透。
一般认为,数学是研究空间形式和数量关系的一门科学,逻辑是研究思维形式及其规律和方法的一门科学,但它们都完全撇开其内容,仅仅从形式方面加以研究,因而均具有高度的抽象性,所以在分类上它们同属于形式科学。
同时,数学和逻辑的应用都十分广泛,往往成为研究其它科学的工具,因此常常同被人们称为工具性科学。
围绕逻辑与数学的关系讨论下去,曾经形成三种意见──逻辑主义、形式主义和直觉主义。
其中逻辑主义、直觉主义,过多强调了数学和逻辑的同一性,而忽视了数学与逻辑的差异性。
因此,认识数学和逻辑的关系,在于把握二者关系的辩证性──同一、差异又互补。
首先,肯定数学和逻辑的同一性。
这是因为:(1)数学和逻辑都是高度抽象的学科,数学是研究数量的形式结构的,逻辑是研究思维的形式结构的,形式结构都是高度抽象的,是抽象结构,它们的定义、定理、原理、法则等的正确性均不涉及各种事物具体内容;(2) 数学和逻辑都讲严格性,数学只有具有推理论证的严密性和结论的确定性或可靠性才成其为科学,逻辑也只有当它的推理论证严格而公理系统化时才形成科学;(3) 数学和逻辑都具有广泛的应用性,数学的应用自不待言,对逻辑而言可以肯定地说哪里有思维哪里就要逻辑,一切科学都在应用逻辑。
简述几何学的发展史
简述几何学的发展史发表时间:2011-03-14T09:37:38.280Z 来源:《新校园》理论版2010年第11期供稿作者:张镝[导读] 他们对射影几何作出了突出的贡献,但他们局限于将这种几何学作为欧氏几何的一部分来研究。
张镝(长春医学高等专科学校,吉林长春130031)摘要:本文简要的阐述了几何学思想的发展简史,包括欧氏几何的确立,射影几何的发展,解析几何、非欧几何的诞生与发展,直至几何学的统一。
关键词:几何学;发展史几何学是一门古老而实用的科学,是自然科学的重要组成部分。
在史学中,几何学的确立和统一经历了二千多年,数百位数学家做出了不懈的努力。
一、欧氏几何的创始公认的几何学的确立源自公元300 多年前,希腊数学家欧几里得著作《原本》。
欧几里得在《原本》中创造性地用公理法对当时所了解的数学知识作了总结。
全书共有13 卷,包括5 条公理,5 条公设,119 个定义和465 条命题。
这些公设和公理及基本定义成为《原本》的推理的基础。
欧几里得的《原本》是数学史上的一座里程碑,在数学中确立了推理的范式。
他的思想被称作“公理化思想”。
二、解析几何的诞生解析几何是变量数学最重要的体现。
解析几何的基本思想是在平面上引入“坐标”的概念,并借助这种坐标在平面上的点和有序实数对(x,y)建立一一对应的关系,于是几何问题就转化为代数问题。
解析几何的真正创立者应该是法国数学家迪卡儿和费马。
1637 年迪卡儿在《更好的指导推理和寻求科学真理的方法论》的附录《几何学》[1]中清晰的体现了解析几何的思想。
而费马则是在论平面和立体的轨迹引论中阐述了解析几何的原理,他在书中提出并使用了坐标的概念,同时建立了斜坐标系和直角坐标系。
三、非欧几何的诞生与发展非欧几何的诞生源于人们长久以来对欧几里得《原本》中第五公设即平行公设的探讨,但一直未得到公设的结论。
直到数学家高斯、波约和俄国数学家罗巴切夫斯基在自己的论著中都描述了这样一种几何,以“从直线外一点可以引不止一条直线平行于已知直线”作为替代公式,进行推理而得出的新的一套几何学定理,并将它命名为非欧几何,一般称为“罗氏几何”。
《数学史》几何学的变革(上)
9.1 欧几里得平行公设
直到18世纪末,几何领域仍然是欧几里得一统 天下.解析几何改变了几何研究的方法,但没有从 实质上改变欧氏几何本身的内容.
解析方法的运用虽然在相当长的时间内冲淡了 人们对综合几何的兴趣,但欧几里得几何作为数学 严格性的典范始终保持着神圣的地位.
然而,这个近乎科学“圣经”的欧几里得 几何并非无懈可击.事实上,公元前3世纪到18 世纪末,数学家们虽然一直坚信欧氏几何的完 美与正确,但有一件事却始终让他们耿耿于怀, 这就是欧几里得第五公设,也称平行公设.
欧氏几何公设:
(1)假定从任意一点到任意一点可作一直线; (2)一条有限直线可不断延长; (3)以任意中心和半径可以画圆; (4)凡直角部彼此相等; (5)若一直线落在两直线上所构成的同旁内角
和小于两直角,那么把两直线无限延长,它 们将在同旁内角和小于两直角的一侧相交。
第五公设
第五公设:若一直线落在两直线上,所构成的同旁
内角和小于两直角,那么把两直线无限延长,它们将 在同旁内角和小于两直角的一侧相交。
因此,从古希腊时代开始,数学家们就一直没有放 弃消除对第五公设疑问的努力.他们或者寻求以一个比较容 易接受、更加自然的等价公设来代替它,或者试图把它当作 一条定理由其他公设、公理推导出来.在众多的替代公设中, 今天最常用的是:
J.波约对高斯的答复深感失望,认为高斯想剽窃自己的成 果.
1840年俄国数学家罗巴切夫斯基关于非欧几何的德文著作 出版后,更使J.波约灰心丧气,从此便不再发表数学论文,而 他的父亲倒很开通,安慰他说:
“春天的紫罗兰在各处盛开.”
罗巴切夫斯基
罗巴切夫斯基
在非欧几何的三位发明人中,只有罗
巴切夫斯基最早、最系统地发表了自己的 研究成果,并且也是最坚定地宣传和捍卫 自己的新思想的一位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设给定了直线 a 和直线外一 点 A ,从 A 引 a 的垂直 线 AB .按照罗巴切夫斯基的基 本假设,至少存在两条直 线 b, b' ,通过点 A 且不与直线 a 相交 ( 注意图形在这里只起辅助 理解的作用,罗氏论证的并不是 我们普通平面上所作的图.
罗巴切夫斯基考虑所有过 A 不与 a 相交的直 线的极限情形,指出这样的极限直线有两条 c ( c 与 c ' ),并证明了它们也不与 a 相交.因此, 与 c ' ,便构成了所有不与 a 相交的直线的边界, 在这两条边界直线所成夹角 内的所有直线都不与 a 相交.
9.1 欧几里得平行公设
直到18世纪末,几何领域仍然是欧几里得一统 天下.解析几何改变了几何研究的方法,但没有从 实质上改变欧氏几何本身的内容. 解析方法的运用虽然在相当长的时间内冲淡了 人们对综合几何的兴趣,但欧几里得几何作为数学 严格性的典范始终保持着神圣的地位.
然而,这个近乎科学“圣经”的欧几里得 几何并非无懈可击.事实上,公元前3世纪到18 世纪末,数学家们虽然一直坚信欧氏几何的完 美与正确,但有一件事却始终让他们耿耿于怀, 这就是欧几里得第五公设,也称平行公设. 在欧氏几何的所有公设中,唯独这条公设 显得比较特殊.它的叙述不像其他公设那样简 洁、明了,当时就有人怀疑它不像是一个公设 而更像是一个定理,并产生了从其他公设和定 理推出这条公设的想法.
罗巴切夫斯基非欧几何的基本思想与高斯、 波约是一致的,即用与欧几里得第五公设相反 的断言:通过直线外一点,可以引不止一条而 至少是两条直线平行于已知直线,作为替代公 设,由此出发进行逻辑推导而得出一连串新几 何学的定理. 罗巴切夫斯基明确指出,这些定理并不包 含矛盾,因而它的总体就形成了一个逻辑上可 能的、无矛盾的理论,这个理论就是一种新的 几何学——非欧几里得几何学.
高斯
• 高斯(Johann Carl Friedrich Gauss)(1777 年—1855年),生于不伦瑞克,卒于哥廷根,德国著 名数学家、物理学家、天文学家、大地测量学家。 • 高斯的成就遍及数学的各个领域,在数论、非欧 几何、微分几何、超几何级数、复变函数论以及椭圆 函数论等方面均有开创性贡献。他十分注重数学的应 用,并且在对天文学、大地测量学和磁学的研究中也 偏重于用数学方法进行研究。
下见:希尔伯特的评价。
希尔伯特说:“19世纪最富有 启发性和最值得注意的成就是 非欧几里得几何的发现。”
9.2 非欧几何的诞生
前面讲过,在非欧几何正式建立之前,它的 技术性内容已经被大量地推导出来.但最先认识
到非欧几何是一种逻辑上相容并且可以描述物质
空间、像欧氏几何一样正确的新几何学的是高 斯.
萨凯里(意大利)最先使用归谬法来证明平 行公设.他在一本名叫《欧几里得无懈可击》 (1733)的书中,从著名的“萨凯里四边形”出发 来证明平行公设.
萨凯里四边形是一个等腰双直角四边形,其中 AC BD, ∠ A =∠ B ,且为直角 。萨凯里需要证明∠C=∠D且为直角。
萨凯里指出:不用平行公设容易证明∠C=∠D,并且顶角 具有三种可能性并分别将它们命名为 1.直角假设:∠C和∠D是直角; 2.钝角假设:∠C和∠D是钝角; 3.锐角假设:∠C和∠D是锐角. 可以证明,直角假设与第五公设等价.萨凯里的计划是证明 后两个假设可以导致矛盾,根据归谬法就只剩下第一个假设 成立,这样就证明了第五公设.
非欧几何的诞生
• “非欧几何”的名称来源 于高斯。他从 1799 年开始 意识到平行公设不能由其 他公理推出,并从 1813 年 起发展了这种平行公设在 其中不成立的新几何。
非欧几何的诞生
• 为了验证“非欧几何”应 用的可能性,他实际测量 了由三座山峰构成的三角 形,此三角形的三边分别 为 : 69 , 85 与 109 公 里 。 他发现其内角和比 1800 大 了近15〞。
萨凯里在假定直线为无限长的情况下,首先由 钝角假设推出了矛盾,然后考虑锐角假设,在这一 过程中他获得了一系列新奇有趣的结果,如三角形 三内角之和小于两个直角;过给定直线外一给定点, 有无穷多条直线不与该给定直线相交,等等. 虽然这些结果实际上并不包含任何矛盾,但萨 凯里认为它们太不合情理,便以为自己导出了矛盾 而判定锐角假设是不真实的.
下面回顾一下“欧氏几何公理、公设”:
欧氏几何公理:
(1)等于同量的量彼此相等; (2)等量加等量,和相等; (3)等量减等量,差相等; (4)彼此重合的图形是全等的; (5)整体大于部分。
欧氏几何公设:
(1)假定从任意一点到任意一点可作一直线; (2)一条有限直线可不断延长; (3)以任意中心和半径可以画圆; (4)凡直角部彼此相等; (5)若一直线落在两直线上所构成的同旁内角 和小于两直角,那么把两直线无限延长,它 们将在同旁内角和小于两直角的一侧相交。
罗巴切夫斯基后来为发展、阐释这种新几何 学而付出了毕生心血.
他生前发表了许多论著,其中1835--1838年 间的系列论文《具有完备的平行线理论的新几何 学原理》较好地表述了他的思想,而1840年用德 文出版的《平行理论的几何研究》则引起高斯的 关注,这使他在1842年成为德国哥廷根科学协会 会员.
突破具有两千年根基的欧氏几何传统的束缚, 需要更高大的巨人,这样的时机在19世纪初逐渐成熟, 并且也像解析几何、微积分的创立一样,这样的人物 出现了不止一位.
对非欧几何来说,他们是高斯、波约(J.Bolyai, 1802—1860)和罗巴切夫斯基(N.I.Lobachevsky,17931856).
罗巴切基称 c 与 c ' 为 a 的“平行线”,而落在角 口内的所有直线叫不相交直线.如果按不相交即 平行的意义理解,那么罗巴切夫斯基的几何里, 过直线外一点就可以引无穷多条直线与给定的直 线平行.
罗巴切夫斯基还将夹角 的一半称为“平行 角”,因 小于两直角,故平行角小于直角.罗 A 巴切夫斯基发现,平行角是点 到直线 a 的距离 d 的函数. 若把平行角记作 (d ) ,则 (d ) 2 时,就得到欧 d 0 氏平行公设.若 ,则 (d ) 单调增加且趋于 2 ; 而 d 时, (d )单调减少且趋于0.换句话说,如果 在离直线 a 很远处作与此直线垂线很小夹角的直线, 那么我们可以沿着这条“倾斜”的直线前进而永远不 与直线 a 相遇!
与萨凯里不同的是,兰伯特并不认为锐角假设导 出的结论是矛盾,而且他认识到一组假设如果不引起 矛盾的话,就提供了一种可能的几何.因此,兰伯特 最先指出了通过替换平行公设而展开新的无矛盾的几 何学的道路.
萨凯里、克吕格尔和兰伯特等,都可以看成 是非欧几何的先行者.
然而,当他们走到了非欧几何的门槛前,却 由于各自不同的原因或则却步后退 ( 如萨凯里在 证明了一系列非欧几何的定理后却宣布“欧几里 得无懈可击”),或则徘徊不前(兰伯特(瑞士) 在生前对是否发表自己的结论一直踌躇不定, 《平行线理论》一书是他死后由朋友发表的).
文艺复兴时期对希腊学术兴趣的恢复使欧洲数学 家重新关注起第五公设.在17世纪研究过第五公设的 数学家有沃利斯等.但每一种“证明”要么隐含了另 一个与第五公设等价的假定,要么存在着其他形式的 推理错误.而且,这类工作中的大多数对数学思想的 进展没有多大现实意义. 因此,在18世纪中叶,达朗贝尔曾把平行公设的 证明问题称为“几何原理中的家丑”.但就在这一时 期前后,对第五公设的研究开始出现有意义的进 展.在这方面的代表人物是意大利数学家萨凯里、德 国数学家克吕格尔和瑞士数学家兰伯特.
从高斯的遗稿中可以了解到,他从1799年开始意 识到平行公设不能从其他的欧几里得公理推出来,并 从1813年起发展了这种平行公设在其中不成立的新几 何. 他起先称之为“反欧几里得几何”,最后改称为 “非欧几里得几何”,所以“非欧几何”这个名称正 是来自高斯.
但他除了在给朋友的一些信件中对其非欧几何的 思想有所透露外,高斯生前并没有发表过任何关于 非欧几何的论著.这主要是因为他感到自己的发现 与当时流行的康德空间哲学相抵触,担心世俗的攻 击. 他曾在给贝塞尔 (P.W.Bessel) 的一封信中说: 如果他公布自己的这些发现,“黄蜂就会围着耳朵 飞”,并会“引起波哀提亚人(特指有世俗偏见的愚 人)的叫嚣”.
匈牙利数学家----波约
当声誉甚隆的高斯决定将自己的发现秘而不宣时,一位尚 名不见经传的匈牙利青年波约却急切地希望通过高斯的评价而 将自己关于非欧几何的研究公诸于世,波约的父亲F.波约是高 斯的朋友,也是一位数学家.
1832 年 2 月 14 日, F. 波约将他儿子的 一篇题为《绝对空间的科学》的 26 页文 章寄给高斯,这篇文章也作为F.波约刚 刚完成的一本数学著作的附录而发表, 其中论述的所谓“绝对几何”就是非欧 几何.F.波约请高斯对他儿子的论文发 表意见。
波约
然而高斯回信说: “称赞他(即J.波约)就等于称赞我自己.整篇文 章的内容,您儿子所采取的思路和获得的结果,与我 在30至35年前的思考不谋而合.”
J.波约对高斯的答复深感失望,认为高斯想剽窃自己的成 果. 1840年俄国数学家罗巴切夫斯基关于非欧几何的德文著作 出版后,更使 J.波约灰心丧气,从此便不再发表数学论文,而 他的父亲倒很开通,安慰他说:
萨凯里的工作激发了数学家们进一步的思 考. 1763 年,克吕格尔(德国)在其博士论文 中首先指出萨凯里的工作实际上并未导出矛盾, 只是得到了似乎与经验不符的结论.
克吕格尔是第一位对平行公设能否由其他 公理加以证明表示怀疑的数学家.他的见解启 迪兰伯特(瑞士)对这一问题进行了更加深入 的探讨.
1766年,兰伯特写出了《平行线理论》一书, 在这本书中,他也像萨凯里那样考虑了一个四边形, 不过他是从一个三直角四边形出发,按照第四个角是 直角、钝角还是锐角作出了三个假设.由于钝角假设 导致矛盾,所以他很快就放弃了它.
第五公设
第五公设:若一直线落在两直线上,所构成的同旁