小波变换与小波滤波课件

合集下载

一看就懂的小波变换ppt

一看就懂的小波变换ppt

8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:

小波变换入门.ppt

小波变换入门.ppt

f f
(2 j , x, (2 j , x,
y)
y)
2
j
x
y
f f
(x, (x,
y) y)
a a
(x, (x,
y)
y)
2
j
grad
f
(x,
y)
a
(x,
y)
37/103
整个图像的二进小波变换即矢量:
W (1) f (2 j , x, y)
T
W
(
T
2)
f
(2
j,
x,
y)
WT
f
(2
j,
x,
尺度空间的递归嵌套关系: 0 V1 V0 V1 L2 R
小波空间 W是j 和V j 之V间j1 的差,即 时丢V 失j 的信息V j。1 推出:
V0 W0 W1 Wj V j1
V0
Vj,它Wj 捕 V捉j1 由 逼近
V j1
L2 R
V j1
Vj
多分辨率的空间关系图
19/103
两尺度方程
1 ( x, y)
(x) (y)
2 ( x, y)
(x)(y)
3 ( x, y)
(x) (y)
与 (x, y)一起就建立了二维小波变换的基础。
26/103
图像的小波变换实现
1. 正变换 图像小波分解的正变换可以依据二维小波变换按如 下方式扩展,在变换的每一层次,图像都被分解 为4个四分之一大小的图像。
线性
设: xt g t ht
WTx a,b WTg a,b WTh a,b 平移不变性
若 xt WTx a,b,则 xt WTx a,b
伸缩共变性

小波变换课件

小波变换课件

消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)

《小波变换》课件

《小波变换》课件

离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。

小波变换课件 第1章 Haar小波

小波变换课件 第1章 Haar小波

第1章Haar小波分析1.1简介(近距离---小尺度) (高分辨率)(远距离---大尺度) (低分辨率)1.2 平均与细节设1234{,,,}x x x x 是一个信号序列。

定义它的平均和细节:1,0121,012()/2()/2a x x d x x =+⎫⎬=-⎭找出了1x 、2x 和1,0a 、1,0d 的关系。

这里,1,0a 是原信号前两个值1x 、2x 的平均。

又叫低频成分,反映前两个值1x 、2x 的基本特征或粗糙趋势;1,0d 反映了1x 、2x 的差别,即细节信息,又叫高频成分。

1,1341,134()/2()/2a x x d x x =+⎫⎬=-⎭找出了3x 、4x 和1,1a 、1,1d 的关系。

同样,1,1a 是原信号后两个值3x 、4x 的平均,1,1d 反映了3x 、4x 的细节。

我们把1,01,11,01,1{,,,}a a d d 看作是对1234{,,,}x x x x 实施了一次变换的结果。

变换还可以往下进行:0,01,01,1()/2a a a =+=1234(()/2()/2)/2x x x x +++ =1234()/4x x x x +++0,0a 是对4个信号元素最终的平均,它是原信号最基本的信息;0,01,01,1()/2d a a =-。

经过二次变换,我们得到了原信号的另一种表示:0,00,01,01,1{,,,}a d d d该序列叫做原序列的小波变换,0,00,01,01,1,,,a d d d 叫做小波系数。

还可以反过来表示:111,0211,0x a d x a d =+⎫⎬=-⎭这是用{1a ,1,0d }来恢复原信号1x 、2x ;321,1421,1x a d x a d =+⎫⎬=-⎭用{2a ,1,1d }来恢复原信号3x 、4x 。

也就是反变换。

小波变换过程的塔式算法:例如,1234{,,,}x x x x ={3,1,-2,4}最终的小波变换为0,00,01,01,1{,,,}a d d d =31{,,1,3}22-1.3 尺度函数与小波函数 (1)Haar 尺度函数不压缩:不位移 位移一个单位 位移k 个单位t1)-压缩1/12倍,不位移压缩1/12倍,位移一个单位 压缩1/2j倍,移位K 个单位一般,()(2)j j k t t k φφ=-,0,1,2,...,21j k =-◆ 几个术语1) 支撑(支集),(尺度)函数,()j k t φ不为零的区间,上例中为1[,]22j j k k +。

小波分析整理 第三章 小波变换ppt课件

小波分析整理 第三章  小波变换ppt课件
这样,a 和b 联合越来确定了对x(t) 分析的 中心位置及分析的时间宽度。
.
a b
.
小波函数的范数不变性: a(t)b 0 2 R a(t)b 2 d tR (t)2 dt(t)0 2
此式表明: ( t ) 经过平移与伸缩以后,其模量没有 改变。
在不同的尺度a 时,ψa b (t) 终能和母函数ψ(t) 有着相同的能量 。
当a<1时, ( t ) 被拉宽且振幅被压低, ab (t) 含有表现低 频分量的特征;当a>1时, ( t ) 被压窄且振幅被拉
高, ab (t )含有表现高频分量的特征。
(2t)
(2t 3)
a2
0
1 1.5
3
6
t
a 1 a1
2
(t)
0
1
(1 t) 2
0
1
(t 3)
3
6
t
( 1 t 3) 2
R
可以反映局部频率特性,但是窗函数一经设定,没有 自适应能力,不能满足低频部分需要时窗宽、频窗窄, 高频部分需要时窗窄、频窗宽的要求。
为此,定义窗函数的一般形式为:
w ~ab(t)a1/2(a tb) ( 其 他 形 式 w ~ a b(t)a 1 /2 (t ab )
它是经过平移和放缩的结果。
.
小波函数的频域特性: ^a(b)a1/2eib/a^(a) 此式表明, ( t ) 经过平移和伸缩以后得到的新
函数 a b (t )的频域特性随参数a的变化而变化。
.
2、小波变化的回复公式推导
任何一种变换应该是可逆的。为推导小波变换的
回复公式,先得推出与Fourier变换中类似的乘积
公式。
在Fourier变换中,有公式:2 1 R F [f(t)]F _[g(t)]dRf(t)_ g(t)dt

小波变换理论与方法ppt课件

小波变换理论与方法ppt课件
R
其中 g,t (t) g(t )eit g(t )eit ,窗口函数g(t)起着时
限作用,eit 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
10
短时傅里叶变换示意图
11
cos(440 t) x(t) cos(660 t)
傅里叶变换傅里叶变换小波变换小波变换小波变换的一些应用小波变换的一些应用1822年法国数学家傅里叶jfourier发表的研究热传导理论的热的力学分析提出每一个周期函数都可以表示成三角函数之和奠定了傅里叶级数的理论基础
1
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
2
一 傅里叶变换
E(|Wn(j,t)|2)=0
D(|Wn(j,t)|2)= Ψ t 2
j
26
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
Gabor变换的基本思想为:取时间函数 g(t) 1/ e4 t2/2 作为窗口函 数,然后用 g(t ) 通待分析函数相乘,τ是时间延迟,是窗函数 g(t)的中心,窗函数根据τ进行时移,然后再进行傅里叶变换:
Gf (, ) f (t)g(t )eitdt f (t), g,t (t)
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
27
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: Es si2 logsi2

小波变换课件

小波变换课件

小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。

小波变换ppt课件

小波变换ppt课件
在此添加您的文本16字
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。

小波变换原理与应用ppt课件

小波变换原理与应用ppt课件
3.小波变换的基本原理与性质
信号的时域表示和频域表示只适用于平稳信号,对于
非平稳信号而言,在时间域各种时间统计量会随着时 间的变化而变化,失去统计意义;而在频率域,由于 非平稳信号频谱结构随时间的变化而变化导致谱值失 去意义
幅度 A |Y(f)|
信 号 x(t)的 时 域 波 形 1
0.5
0
-0.5
2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.小波的发展历史——工程到数学
小波变换的概念是由法国从事石油信号处理的工程 师J.Morlet在1974年首先提出的,通过物理的直观和信 号处理的实际需要经验的建立了反演公式,当时未能 得到数学家的认可。幸运的是,1986年著名数学家 Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat 合作建立了构造小波基的同一方法枣多尺度分析之后 ,小波分析才开始蓬勃发展起来。
1.小波的发展历史——工程到数学
1909: Alfred Haar——发现了Haar小波 1980:Morlet——Morlet小波,并分别与20世纪70年代提
出了小波变换的概念,20世纪80年代开发出了连续小 波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解和 重构算法)
Rx(t1,t2)ExE(t)x(t1)x ( tx2)f(x)dRxx()m,x t2 t1
Ex2(t)
非平稳信号 不满足平稳性条件至少是宽平稳条件的信号

中科大小波变换课件——小波变换与滤波器组

中科大小波变换课件——小波变换与滤波器组

1 1 H 1 z G1 z z H 1 z G1 z z 2 2 1 H 0 z G0 z H 1 z G1 z z 2 1 H 0 z G0 z H 1 z G1 z z 2
n
G1 z z l H 0 z , 即g1 n 1 h0 n l
n
• •

这意味着 g 0 , h1 间及 g1 , h0 间满足下述关系。 ~ n, g ~ n 分别为 令 g g1 n, g 0 n 的首尾倒置, 1 0 则有 当 l 为奇数时: ~ g 0 n 2i , h1 n 2 j 0 ~ n 2i , h n 2 j 0 g
2.为使成为的延迟,纯延迟项应为纯延迟,即:
H 0 z G0 z H1 z G1 z cz
k
• •
1.抗混迭条件。 为使混迭项为零,常令分析滤波器与综合滤 波器间满足下述交叉关系:
G0 z z l H 1 z , 即g 0 n 1 h1 n l
1 0
• 当l
~ h g • 即 l 为奇数时, 与 的偶数移位交叉正交; ~ g h 当 l 为偶数时, 与 的奇数移位交叉正交, 称双正交关系。
~ n 2i 1, h n 2 j 0 g 1 为偶数时: 0 ~ n 2i 1, h n 2 j 0 g 1 0
小波变换与滤波器组
4.1 双通道多采样率滤波器组及其理想 重建条件
• • 一. 两个基本关系 1.

2.易位

因此得到下列等价关系

二. 双通道多采样率系统
Gi z 为合成滤波器。 • 图中H i z 为分析滤波器,

小波变换简介PPT课件

小波变换简介PPT课件
[H,V,D] = detcoef2 ('all',C,S,N) returns the horizontal H, vertical V, and diagonal D detail coefficients at level N.
47
X = waverec2(C,S,'wname')
reconstructs the matrix X based on the multi-level wavelet decomposition structure [C,S]
10
幅度
频率
时间窗
时间
时域加窗分析
时间
时频平面划分示意图
11
窗口傅立叶变换
12
窗口傅立叶变换
另一个缺点是:无论怎样离散化,都不能 使Gabor变换成为一组正交基;
而傅立叶变换经离散化后可得到按正交函 数展开的傅立叶级数。
13
1909: Alfred Haar
Alfred Haar对在函数空间中寻找一个与傅立叶类似 的基非常感兴趣。1909年他发现并使用了小波, 后来被命名为哈尔小波(Haar wavelets)
C 0
Wf
(a,b)a,b(t)dbda2a
a,b(t)
1 (t b)
aa
28
小波系数的意义
Wf (a,b)表示信号与尺度为a小波的相关程 度。小波系数越大,二者越相似。
F() f(t)ejtdt
W f(a,b)f(t) a,b(t)dt
29
连续小波变换的简单步骤
选择尺度为a确定的小波,与信号开始的 一段比较;
A = appcoef2(C,S,'wname',N)

小波变换课件

小波变换课件

学习交流PPT
29
3. 离散小波变换(续)
• 使用离散小波分析得到的小波系数、缩放因子 和时间关系如图所示。
• 图(a)是20世纪40年代使用Gabor开发的短时傅立叶 变换(short time Fourier transform,STFT)得到的时 间-频率关系图
• 图(b)是20世纪80年代使用Morlet开发的小波变换得 到的时间-缩放因子(反映频率)关系图。
轻的地球物理学家Jean Morlet提出了小波变换 WT(wavelet transform)的概念。 • 20世纪80年代,从STFT开发了CWT:
学习交流PPT
13
• Definition - Basis Functions: a set of linearly independent functions that can be used (e.g., as a weighted sum) to construct any given signal.
• 小波变换的主要算法由法国的科学家Stephane Mallat 提出 • S.Mallat于1988年在构造正交小波基时提出了多分 辨率分析(multiresolution analysis)的概念, 从空间上 形象地说明了小波的多分辨率的特性
• 提出了正交小波的构造方法和快速算法,叫做 Mallat算法。该算法统一了在此之前构造正交小波 基的所有方法,它的地位相当于快速傅立叶变换在 经典傅立叶分析中的地位。
where:
a = scale variable -缩放因子
k = time shift
-时间平移
h* = wavelet function -小波函数
用y = scaled (dilated) and shifted (translated) Mother wavelet

《小波变换简介》课件

《小波变换简介》课件

小波变换与小波包变换的异同
小波包变换是一种基于小波的变换方法,与 小波变换类似,不同的是小波包变换可以将 信号分解成更灵活的基函数库。
总结
1 小波变换是一种重要的信号处理方法
它可以将信号分解成不同频率的组件,支持非周期信号处理,具有时频局部化特性和压 缩性能。
2 在数字媒体技术中具有广泛的应用前景
小波变换简介
小波变换是一种处理非周期信号的重要方法。它不仅可以将信号分解成不同 的频率组件,而且具有时频局部化特性和良好的压缩性能。
什么是小波变换?
1
将信号分解成不同的频率组件
2
小波变换可以将信号分解成一组小波 基函数,每个小波基函数代表一种不
同的频率成分。
离散小波变换和连续小波变换
小波变换分为离散小波变换和连续小 波变换两种形式,分别适用于离散信 号和连续信号的处理。
小波变换在图像压缩、信号去噪和滤波、模式识别和分类等领域中具有广泛的应用前景。 Nhomakorabea1
快速算法
2
快速离散小波变换是提高离散小波变 换运算速度的重要算法,主要包括
Mallat算法、Lifting Scheme算法等。
基本算法
离散小波变换可以通过卷积操作和下 采样操作实现,包括一维和二维离散 小波变换。
小波变换与其他变换方法的比较
傅里叶变换和小波变换的区别
傅里叶变换是将信号分解成基频率的正弦或 余弦函数,而小波变换可以将信号分解成一 组不同尺度的小波基函数。
小波变换的特点
支持非周期信号处理
与傅里叶变换只能处理周 期信号不同,小波变换可 以处理非周期信号。
具有时频局部化特性
小波基函数具有时域和频 域的局部性,这意味着小 波变换可以更好地描述信 号的局部特征。

最新小波变换与小波滤波讲学课件

最新小波变换与小波滤波讲学课件
CWT的变换结果是许多小波系数C,这些系数是缩放因
子(scale)和平移(position)的函数。
16
基本小波函数ψ()的缩放和平移操作
(1) 缩放。就是压缩或伸展基本小波, 缩放系数越
小, 则小波越窄
f (t)
f (t)= (t); scale= 1
O
t
f (t) O
f (t)= (2t); scale= 0.5
FT将信号分解成一系列不同频率正弦波的叠加,小 波分析是将信号分解成一系列小波函数的叠加。而这 些小波函数都是由一个母小波函数经过平移与尺度伸 缩得来的。
用不规则的小波函数来逼近尖锐变化的信号显然要 比光滑的正弦曲线要好,同样,信号局部的特性用小 波函数来逼近显然要比光滑的正弦函数来逼近要好。
15
t
f (t) O
小波的缩放操作t
f (t)= (4t); scale= 0.25
基本小波函数ψ()的缩放和平移操作 17
(2) 平移。小波的延迟或超前。在数学上,函数f(t)延 迟k的表达式为f(t-k),
(a) 小波函数ψ(t); (b) 位移后的小波函数ψ(t-k)
18
1.5 小波变换的步骤
21
1.5 小波变换的步骤
小波尺度和信号频率的关系
大尺度 小尺度
信号的低频 信号的高频
22
1.6 离散小波变换(DWT)
在每个可能的缩放因子和平移参数下计算小波 系数,其计算量相当大,将产生惊人的数据量,而且 有许多数据是无用的。
如果缩放因子和平移参数都选择为2j(j>0且为
整数)的倍数, 即只选择部分缩放因子和平移参数 来进行计算, 就会使分析的数据量大大减少。
圆,轻巧又便宜的蒲扇。 蒲扇流传至今,我的记忆中,它跨 越了半 个世纪 ,

小波变换课件第4章小波变换的实现技术

小波变换课件第4章小波变换的实现技术

第4章 小波变换的实现技术Mallat 算法双正交小波变换的Mallat 算法:设{}n h h =、{}n g g =、{}n h h =、{}n g g =为实系数双正交小波滤波器。

h ,g 是小波分析滤波器,h ,g 是小波综合滤波器。

h 表示h 的逆序,即n n h h -=。

若输入信号为n a ,它的低频部份和高频部份以此为1n a -和1n d -,小波分解与重构的卷积算法:11()()n n n na D a h d D a g --⎧⎪=*⎨=*⎪⎩ n11()()n n a Uah Ud g --=*+*先进行输入信号和分析滤波器的巻积,再隔点采样,以形成低频和高频信号。

对于有限的数据量,通过量次小波转变后数据量大减,因此需对输入数据进行处置。

4.1.1 边界延拓方式 下面给出几种经验方式。

1. 补零延拓是假定边界之外的信号全数为零,这种延拓方式的缺点是,若是输入信号在边界点的值与零相差专门大,则零延拓意味着在边界处加入了高频成份,造成专门大误差。

实际应用中很少采用。

0121,0,,,,...,,0,0,......n s s s s -2.简单周期延拓将信号看做一个周期信号,即k n k s s +=。

简单周期延拓后的信号变成这种延拓方式的不足的地方在于,当信号两头边界值相差专门大时,延拓后的信号将存在周期性的突变,也就是说简单周期延拓可在边界引入大量高频成份,从而产生较大误差。

3. 周期对称延拓0121,,,...,,n s s s s -0121,,,...,,n s s s s -0121,,,...,,n s s s s -0,...s 1,...,n s -这种方式是将原信号在边界上作对称折叠,一般分二1)当与之做卷积的滤波器为奇数时,周期延拓信号为2)当与之做卷积的滤波器为偶数时,周期延拓信号为4. 滑腻常数延拓在原信号两头添加与端点数据相同的常数。

5. 光滑延拓在原信号两头用线性外插法补充采样值,即沿着信号两头包络线的一阶导数方向增加采样值。

专题讲座——小波变换PPT课件

专题讲座——小波变换PPT课件

第10页/共79页
部分小波波形
第11页/共79页
小波基函数
将小波母函数(t)进行伸缩和平移,
令伸缩因子(称尺度因子)为a,平移因子为,则:
a( , t)
a12(t
),a0,R
a
则称a( , t)是依赖参数a,的小波基函数。
将信号在这个函数系上分解,就得到连续小波变换
第12页/共79页
小波分析
• 小波变换通过平移母小波(mother wavelet) 可获得信号的时间信息,而通过缩放小波的 宽度(或者叫做尺度)可获得信号的频率特性。 对母小波的缩放和平移操作是为了计算小波 的系数,这些系数代表小波和局部信号之间 的相互关系。
第15页/共79页
CWT的变换过程图示
第16页/共79页
CWT小结
• 小波的缩放因子与信号频率之间的关系可以 这样来理解。缩放因子小,表示小波比较窄,
度量的是信号细节,表示频率w 比较高;相
反,缩放因子大,表示小波比较宽,度量的
是信号的粗糙程度,表示频率w 比较低。
第17页/共79页
离散小波变换
第18页/共79页
离散小波变换定义
任意L2(R)空间中的x(t)的DWT为:
__________
Wx ( j, k) R x(t) j,k (t) dt其中Biblioteka j( ,k t) 1 2j
(
t 2
j
k)
需要强调指出的是,这一离散化都是针对连续 的尺度参数和连续平移参数的,而不是针对时 间变量t的。
第4页/共79页
短时傅里叶变换STFT
确定信号局部频率特性的比较简单的方法是 在时刻ґ附近对信号加窗,然后计算傅里叶变 换。

小波基本理论及应用PPT课件

小波基本理论及应用PPT课件
小波变换通过选取不同的小波基函数, 对信号进行多尺度分解,得到信号在 不同尺度和频率上的系数,这些系数 可以反映信号在不同时间和频率上的 特征。
小波变换的应用领域
信号处理
小波变换在信号处理领域应用广泛,可 以用于信号的降噪、压缩、识别和分类
等。
模式识别
小波变换可以用于模式识别中的特征 提取和分类器设计,如人脸识别、语
小波基本理论及应用ppt课 件
目录
• 小波理论概述 • 小波变换的数学基础 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换在其他领域的应用
01
小波理论概述
小波的定义与特性
小波的定义
小波是一种特殊的函数,其时间窗和频率窗都可以改变,且在时间域和频率域 都具有很好的局部化特性。
在信号处理中,通过调整小波变换的尺度和平移参数,可 以得到信号在不同时间和频率下的局部信息,从而更好地 理解信号的特征和性质。
03
小波变换的算法实现
一维小波变换算法
一维小波变换算法是实现小波变换的基本方法之一,它通过对一维信号进行多尺度分析,将信号分解 成不同频率和不同时间分辨率的成分。
一维小波变换算法可以分为连续小波变换和离散小波变换两种,其中离散小波变换在实际应用中更为广 泛。
量子纠缠的检测
小波变换可以用于检测量子纠缠,有 助于理解和应用量子纠缠的性质。
量子计算中的优化问题
小波变换可以用于优化量子计算中的 某些问题,提高量子计算的效率。
量子模拟中的近似方法
小波变换可以用于近似求解某些量子 模拟问题,提供一种有效的近似方法。
在金融领域的应用
金融数据分析
小波变换可以用于金融数据分析,如股票价 格、外汇汇率和商品价格等的分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波变换与小波滤波
1.1 小波变换的由来
傅立叶变换
2
基本思想:
将信号分解成一系列不同频率的连续正 弦波的叠加。
缺陷:丢掉了时间信息,无法根据变换结果
判断一个特定的信号是在什么时候发生的。
Joseph Fourier
3
1.1 小波变换的由来
FT变换适于分析平稳信号。实际中大多数信号含 有大量的非平稳信号,例如:突变,奇异,事件 的起始与终止等情况。这些情况反映了信号的重 要特征,是分析的对象。例如下图:典型的地震 信号
系数,其计算量相当大,将产生惊人的数据量,而且
有许多数据是无用的。
如果缩放因子和平移参数都选择为 2j(j>0且为
整数)的倍数, 即只选择部分缩放因子和平移参数
来进行计算, 就会使分析的数据量大大减少。
1.6 离散小波变换(DWT)
23
使用这样的缩放因子和平移参数的小波变换称为 双尺度小波变换( Dyadic Wavelet Transform ),它
26
27
图 (a) 信号分解; (b) 小波分树; (c)小波分解树
1.6 离散小波变换(DWT)
7
1.2 短时傅立叶变换(STFT)
缺陷:
其窗函数的大小和形状均与时间和频率无关,
保持固定不变,对于分析时变信号不利!
8
(高频信号持续时间短,低频长。我们希望对于高频采用
小的时间窗,低频使用大时间窗进行分析。)
STFT无能为力了! 不能构成正交基,给数值计算带来不便。
小波信号隆重登场
9
登场原因:
小波(Wavelet),即小区域的波,是一种特殊 的长度有限、平均值为0的波形。
特点:(1)“小”,即在时域都具有紧支集或 近似紧支集 (2)正负交替的“波动性”,也即直流分
12
量零
1.3 小波变换定义及特点
13
1.3 小波变换定义及特点
傅立叶分析所用的正弦波在时间上没有限制,从负 无穷到正无穷,但小波倾向于不规则与不对称。 FT将信号分解成一系列不同频率正弦波的叠加,小 波分析是将信号分解成一系列小波函数的叠加。而这 些小波函数都是由一个母小波函数经过平移与尺度伸 缩得来的。
4
典型的地震记录
5
实际采集的地震信号
它们的频域特性都随时间而变化。分析它需要提取某 一时间段的频域信息或某一频率段所对应的时间信息
1.1 小波变换的由来
如何完成只分析数据中的一小部分?
6
1.2 短时傅立叶变换(STFT)
基本思想:
给信号加一个小窗,主要集中在对小窗内的信 号进行变换,因此反映了信号的局部特征。
字信号处理中常称为双通道子带编码。
1.6 离散小波变换(DWT)
25
一个滤波器为低通滤波器,通过该滤波器可得到信号 的近似值A(Approximations) 另一个为高通滤波器, 通过该滤波器可得到信号的细 节值D(Detail)。
1.6 离散小波变换(DWT)
实际应用中,信号的低频分量往往是最重要的,而高频分量只 起一个修饰的作用。如同一个人的声音一样, 把高频分量去掉 后,听起来声音会发生改变,但还能听出说的是什么内容,但 如果把低频分量删除后,就会什么内容也听不出来了。
(1)继承和发展了STFT的局部化思想。
(2)克服了窗口大小不随频率变化、缺
乏离散正交基的缺点。
正交基的解释
若一物体可用颜色和大小表示,我们称颜色和 大小为特征基,构成此物体特征描述空间。 大小和颜色是互不相干的2种描述,我们称其 为正交。 同时若这些基能够完全表示所有物体,我们称 其为完备特征基。
是 离 散 小 波 变 换 ( Discrete Wavelet Transform ,
DWT)的一种形式。 通常离散小波变换就是指双尺度小波变换。
1.6 离散小波变换(DWT)
24
执行离散小波变换的有效方法是使用滤波器, 该方法是Mallat于1988年提出的,称为Mallat算法(马
拉 ) 。这种方法实际上是一种信号分解的方法, 在数

f (t ) (scale, position, t)dt
表示小波变换是信号 f(x) 与被缩放和平移的小波函数
ψ()之积在信号存在的整个期间里求和的结果。
CWT 的变换结果是许多小波系数 C ,这些系数是缩放因
子(scale)和平移(position)的函数。
16
基本小波函数ψ()的缩放和平移操作
1.5 小波变换的步骤
三 移动小波,重复步骤一和二,一直遍历整个数据;
19
四 对小波进行缩放,重复步骤一到三;
五 在所有小波尺度下,重复上述步骤.
1.5 小波变换的步骤
20
21
1.5 小波变换的步骤
小波尺度和信号频率的关系
大尺度
小尺度
信号的低频
信号的高频
1.6 离散小波变换(DWT)
22
在每个可能的缩放因子和平移参数下计算小波
(2) 平移。小波的延迟或超前。在数学上,函数f(t)延
17
迟k的表达式为f(t-k),
(a) 小波函数ψ(t); (b) 位移后的小波函数ψ(t-k)
1.5 小波变换的步骤
小波变换的步骤:
18
一 取一个小波与信号的最前面部分比较;
二 计算相关因子C,C代表小波和这段数据的相关性
即:C越大,两者越相似;
14
用不规则的小波函数来逼近尖锐变化的信号显然要 比光滑的正弦曲线要好,同样,信号局部的特性用小 波函数来逼近显然要比光滑的正弦函数来逼近要好。
15
1.4 连续小波变换
连续小波变换(Continuous Wavelet Transform,
CWT)用下式表示:
C(scale, position)
(1) 缩放。就是压缩或伸展基本小波, 缩放系数越
小, 则小波越窄
f (t) O f (t) O f (t) O t f (t)= (2t); sca le= 0 .5 t f (t)= (t); sca le= 1
小波的缩放操作
t
f (t)= (4t); sca le= 0 .2 5
基本小波函数ψ()的缩放和平移操作
10
因为特征基表现了物体特征,因而可以用更简 洁的描述表示物体。
小波变换的提出
11
1984年法国的年轻的地球物理学家Jean
Morlet在进行石油勘探的地震数据处理分析时与
法国理论物理学家A.Grossman一起提出了小波变
换(wavelet transform, WT)的概念
1.3 小波变换定义及特点
相关文档
最新文档