微粒间相互作用力(1-2、3 ) 知识小结

合集下载

微粒间的作用力

微粒间的作用力

微粒间的相互作用要点:1.了解化学键的定义,了解离子键、共价键的形成。

2.了解离子化合物和共价化合物的结构特征并能初步解释其物理性质一、化学键的含义与类型1.化学键:相邻的两个或多个原子间强烈的相互作用。

注意:(1)化学键定义中的原子是广义上的原子,既包括中性原子,也包括带电原子或原子团(即离子);(2)化学键定义中“相邻”“强烈的相互作用”是指原子间紧密的接触且能产生强烈电子与质子、电子与电子、质子与质子间的电性吸引与排斥平衡作用。

物质内不相邻的原子间产生的弱相互作用不是化学键;(3)化学键的形成是原子间强烈的相互作用的结果。

如果物质内部相邻的两个原子间的作用很弱,如稀有气体原子间的相互作用,就不是化学键。

它们之间的弱相互作用叫做范德华力(或分子间作用力)。

化学键的常见类型:离子键、共价键、金属键。

(一)、共价键1.共价键的概念:原子之间通过共用电子形成的化学键称为共价键。

2.成键元素:通常是非金属元素原子形成的化学键为共价键。

结果是使每个原子都达到8或2个电子的稳定结构,使体系的能量降低,达到稳定状态。

3.形成共价键的条件:同种或不同种的原子相遇时,若原子的最外层电子排布未达到稳定状态,则原子间通过共用电子对形成共价键。

(二)、离子键1.离子键的概念:阴阳离子之间通过静电作用形成的化学键。

2.成键元素:一般存在于金属和非金属之间。

3.形成离子键的条件:成键原子的得、失电子能力差别很大(活泼金属与活泼非金属之间)例如:在氯化钠的形成过程中,由于钠是金属元素很容易失电子,氯是非金属元素很容易得电子,当钠原子和氯原子靠近时,钠原子就失去最外层的一个电子形成钠阳离子,氯原子最外层得到钠的一个电子形成氯阴离子(两者最外层均达到稳定结构),阴、阳离子靠静电作用形成化学键——离子键,构成氯化钠。

由于钠和氯原子之间是完全的得失电子,他们已形成了离子,因此NaCl中的微粒不能再叫原子,而应该叫离子。

【例题1】.下列关于化学键的叙述正确的是()A.化学键既存在于相邻的原子之间,又存在于相邻分子之间B.两个原子之间的相互作用叫做化学键C.化学键通常指的是相邻的两个或多个原子之间的强烈的相互作用D.阴阳离子之间有强烈的吸引作用而没有排斥作用,所以离子键的核间距相当小【例题2】.下列过程中,共价键被破坏的是()A.碘升华B.溴蒸气被木炭吸附C.酒精溶于水D.HCl气体溶于水二、离子化合物与共价化合物1.离子化合物:含有离子键的化合物。

2021届高三化学一轮复习——微粒之间的相互作用力(知识梳理及训练)

2021届高三化学一轮复习——微粒之间的相互作用力(知识梳理及训练)

2021届高三化学一轮复习——微粒之间的相互作用力(知识梳理及训练)核心知识梳理(一)化学键及类型化学键是物质中直接相邻的原子或离子间存在的强烈的相互作用。

(二)离子键、共价键的比较(三)判断离子化合物和共价化合物的三种方法(四)化学键的断裂与化学反应1.化学反应过程化学反应过程中反应物中的化学键被破坏。

如H2+F2===2HF,H—H键、F—F键均被破坏。

化学反应中,并不是反应物中所有的化学键都被破坏,如(NH4)2SO4+BaCl2===BaSO4↓+2NH4Cl,只破坏反应物中的离子键,而共价键未被破坏。

2.物理变化过程(1)离子化合物,溶于水便电离成自由移动的阴、阳离子,离子键被破坏;熔化后,也电离成自由移动的阴、阳离子,离子键被破坏。

(2)有些共价化合物溶于水后,能与水反应,其分子内共价键被破坏。

如:CO2、SO3等;有些共价化合物溶于水后,与水分子作用形成水合离子,从而发生电离,形成阴、阳离子,其分子内的共价键被破坏。

如:HCl、H2SO4等强酸。

(五)微粒电子式的书写Na+(六)分子间作用力1.概念分子间存在着将分子聚集在一起的作用力叫分子间作用力,分子间作用力包括范德华力和氢键。

2.特点(1)分子间作用力比化学键弱得多,它主要影响物质的熔沸点和溶解度等物理性质,而化学键主要影响物质的化学性质。

(2)分子间作用力只存在于由共价键形成的多数化合物分子之间和绝大多数非金属单质分子之间。

但像二氧化硅、金刚石等由共价键形成的物质的微粒之间不存在分子间作用力。

3.氢键(1)氢原子与电负性较大的原子以共价键结合,若与另一电负性较大的原子接近时所形成的一种特殊的分子间或分子内作用,是一种比范德华力稍强的相互作用。

(2)除H原子外,形成氢键的原子通常是N、O、F。

4.变化规律(1)组成和结构相似的由分子组成的物质,相对分子质量越大,范德华力越大,物质的熔、沸点越高。

(2)与H原子形成氢键的原子的电负性越大,所形成的氢键越强,物质的熔沸点越高。

《微粒之间的相互作用力》 知识清单

《微粒之间的相互作用力》 知识清单

《微粒之间的相互作用力》知识清单一、化学键化学键是指相邻原子之间强烈的相互作用。

它主要包括离子键、共价键和金属键。

1、离子键离子键是阴阳离子之间通过静电作用形成的化学键。

一般来说,活泼金属(如钠、钾等)与活泼非金属(如氯、氧等)相互化合时,易形成离子键。

离子化合物通常具有较高的熔点和沸点,在熔融状态或水溶液中能够导电。

例如,氯化钠(NaCl)就是由钠离子(Na⁺)和氯离子(Cl⁻)通过离子键结合而成。

钠离子失去一个电子形成带正电荷的离子,氯原子得到一个电子形成带负电荷的离子,阴阳离子之间由于静电引力相互吸引,同时它们的原子核之间以及电子之间又存在着斥力,当引力和斥力达到平衡时,就形成了稳定的离子键。

2、共价键共价键是原子之间通过共用电子对形成的化学键。

当两个或多个原子的电负性相差不大时,它们倾向于通过共用电子对来达到稳定的电子构型,从而形成共价键。

共价键可以分为极性共价键和非极性共价键。

极性共价键中,共用电子对偏向电负性较大的原子,导致键的两端出现正负电荷分布不均,例如氯化氢(HCl)分子中的 HCl 键。

非极性共价键中,共用电子对在成键原子间均匀分布,如氢气(H₂)分子中的 HH 键。

共价键的强度可以通过键能来衡量,键能越大,共价键越稳定。

常见的共价化合物有甲烷(CH₄)、水(H₂O)等。

3、金属键金属键存在于金属单质或合金中,是由金属阳离子和自由电子之间的强烈相互作用形成的。

金属具有良好的导电性、导热性和延展性,这都与金属键的特性有关。

自由电子在金属阳离子之间自由移动,当受到外力作用时,金属原子层之间可以相对滑动而不断裂,从而表现出良好的延展性;自由电子的运动能够传递热量和电流,使得金属具有良好的导热性和导电性。

二、分子间作用力分子间作用力是分子之间存在的较弱的相互作用,主要包括范德华力和氢键。

1、范德华力范德华力通常包括取向力、诱导力和色散力。

取向力存在于极性分子之间,由于极性分子的固有偶极而产生相互吸引。

化学键总结

化学键总结

第二单元微粒之间的相互作用二、化学键1、化学键:物质中直接相邻的两个或多个原子(或离子)之间强烈的相互作用叫做化学键.表2离子键、共价键和金属键的比较(一) 离子键:1、通过电子得失使阴、阳离子结合成化合物的静电作用。

离子键形成:阴、阳离子接近到一定距离时,静电引和斥力达到平衡就形成了离子键。

共价键形成:原子间通过共用电子对的作用使双方最外电子层均达到2电子或8电子稳定结构,形成共价键。

离子化合物:含有离子键的化合物(可以有共价键) 判断依据:熔融态下是否能电离导电共价化合物:只含有共价键的化合物(不能有离子键)2、离子化合物:含有离子键的化合物(可以有共价键)思考思考哪些化合物是离子化合物?1)、活泼的金属元素(IA ,IIA )和活泼的非金属元素(VIA ,VIIA )形成的化合物,如NaCl 、Na 2O 、Na 2O 2等。

2)、活泼的金属元素和酸根离子形成的盐。

如Na 2CO 3、MgSO 43)、铵盐。

如NH 4Cl4)、碱。

如NaOH (弱碱NH 3.H 2O 例外)3、离子化合物与电解质:离子化合物都是强电解质。

在熔融状态下:都可以导电。

在水溶液中:有的可以导电,有的不可以导电(此类物质易与水反应或不溶于水)。

Na +Cl-电子转移氯化钠的形成过程:不稳定较稳定在氯化钠中Na +和Cl - 间存在哪些作用力?思考:1、所有金属和非金属化合都能形成离子键吗?举例说明.2、所有非金属化合都不能形成离子键吗?举例说明.练习:下列物质中属于离子化合物的是( )1、H2O2、CaCl23、NaOH4、H2SO45、Na2SO46、CO27、Na2O28、NH4Cl9、NH3 10、CH4 11、NH3.H2O 12、AlCl3 13、HAlO2离子类型:1、金属离子:Na+ 、Mg2+、Al3+2、带负电荷的非金属离子:F-、Cl —、O2—、S2-3、带电的原子团:SO 4 (硫酸根离子) CO 3 (碳酸根离子) NO 3 (硝酸根离子) OH (氢氧根)4、 离子:1.定义:带电荷的原子(或原子团)叫做离子。

高三化学 微粒结构及相互作用力

高三化学 微粒结构及相互作用力

[备考要点] 1.掌握微粒结构与相互作用力间的关系,能熟练书写微粒的电子式。

2.掌握表示微粒结构及组成的化学用语。

3.掌握元素周期表和元素周期律,会利用其推断“位—构—性”之间的关系。

考点一微粒结构及相互作用力原子结构、离子结构是物质结构的核心内容,同样也是高考的重要考点。

复习时,注意掌握常用规律,提高解题能力;重视知识迁移、规范化学用语。

根据课程标准,应从以下六个方面掌握。

1.明确微粒间“三个”数量关系中性原子:核电荷数=质子数=核外电子数=原子序数。

阴离子:核外电子数=质子数+所带的电荷数。

阳离子:核外电子数=质子数-所带的电荷数。

2.“四同”的判断方法判断的关键是抓住描述的对象。

(1)同位素——原子,如11H、21H、31H。

(2)同素异形体——单质,如O2、O3。

(3)同系物——有机化合物,如CH3CH3、CH3CH2CH3。

(4)同分异构体——有机化合物,如正戊烷、新戊烷。

3.正确理解微粒间的作用力(1)强度:化学键>氢键>范德华力。

(2)范德华力与物质的组成、熔沸点:由分子构成的物质,若组成和结构相似,一般来说,物质的相对分子质量越大,范德华力越强,熔、沸点越高。

如沸点:HI>HBr>HCl。

(3)氢键与物质的熔、沸点:H2O的熔、沸点高于H2S,因水分子间存在氢键,H2S分子间只存在范德华力。

常见的非金属性较强的元素如N、O、F的氢化物分子间可形成氢键。

4.理清化学键类型与物质类型的对应关系5.表示物质组成和结构的化学用语结构示意图球棍模型比例模型电子式CO2:结构式乙醇:结构简式对二甲苯:分子式或化学式明矾:KAl(SO4)2·12H2O 6.常考微粒电子式类型(1)阳离子,如:Na+、Ca2+、(2)阴离子,如:、、(3)官能团,如:羟基、氨基、醛基、羧基、(4)单质分子,如:H··H、··N⋮⋮N··化合物分子,如:、、(5)离子化合物,如:、、(6)既含离子键又含共价键的化合物,如:、、常见电子式错误类型(1)未参与成键的电子对漏写错误。

微粒之间的相互作用力_图文-PPT资料47页

微粒之间的相互作用力_图文-PPT资料47页

10×0200300400500 CCl4 相对分子质量
-150 ×CF4
-200 ×CF4
-250
四卤化碳的熔沸点与 相对分子质量的关系
结论
组成和结构相似的物质,相对分子质量越大,分 子间作用力越大、熔沸点越高。
练习 1、比较下列物质的沸点高低 HCl HBr HI
练习2、下列物质变化时,需克服的作用力不属于化
⑶ 非金属阴离子的电子式要标 [ ] 及“ 电荷数 ” ⑷ 离子化合物的书写就是阴阳离子的结合,但要 注意离子要分开写,不可合并。
[ 练习] 写出下列微粒的电子式:
硫原子,溴离子, 氯化钠, 氧化钠
·S·····
[ B·r·]: ··:
∶∶ ∶
[ ] [ ] Na+ ∶Cl×· - Na+ ×·O ×· 2- Na+
H-H Cl-Cl O=C=O N N
球棍模型
H2O 折线型
NH3 三角锥型
CH4 正四面体
CO2 直线型
training
用电子式表示共价化合物
书写要求:
1.每个原子均应达到稳定的结构 2.不加中括号[ ],不标正负电荷数 3.原子最外层电子数距8电子稳定结构差几个 电子,就提供几个电子,并在此原子周围形成 几对共用电子对(即几个共价键)
讨论:只有非金属间才能形成共价键?
特殊:AlCl3、BeCl2
training
.. ..
training
..
. .. .. 一对共用电子对 H H :C. l:C..l: H C..l
..
两对共用电子对
........ ..
..
O
C
.O..
三对共用电子对

《微粒之间的相互作用力》 讲义

《微粒之间的相互作用力》 讲义

《微粒之间的相互作用力》讲义在我们所处的这个奇妙的物质世界中,微粒(原子、分子、离子等)并非孤立存在,它们之间存在着各种各样的相互作用力。

这些相互作用力决定了物质的性质和状态,从坚硬的固体到流动的液体,再到无处不在的气体,无一不是微粒间相互作用的结果。

首先,让我们来了解一下离子键。

当活泼的金属元素(如钠、钾)与活泼的非金属元素(如氯、氟)相遇时,它们之间容易发生电子的转移。

金属原子失去电子形成阳离子,非金属原子得到电子形成阴离子。

由于正负电荷之间的强烈吸引,阳离子和阴离子紧密结合,形成了离子键。

离子键的强度较大,因此由离子键构成的化合物(如氯化钠)通常具有较高的熔点和沸点,在固态时不导电,而在熔融状态或水溶液中能够导电。

与离子键不同,共价键则是原子之间通过共用电子对形成的相互作用。

例如,氢分子中的两个氢原子,它们各自提供一个电子,形成共用电子对,从而将两个氢原子结合在一起。

共价键又分为极性共价键和非极性共价键。

在极性共价键中,成键原子对共用电子对的吸引力不同,导致电子对有所偏移,使得分子呈现极性;而非极性共价键中,成键原子对共用电子对的吸引力相同,电子对不偏移,分子呈非极性。

金属键是存在于金属单质或合金中的一种特殊的相互作用力。

在金属晶体中,金属原子的部分或全部外层电子会脱离原子,形成“自由电子”,这些自由电子在整个金属晶体中自由运动,将金属原子或离子“胶合”在一起。

金属键没有方向性和饱和性,这使得金属具有良好的延展性、导电性和导热性。

除了上述三种主要的化学键,微粒之间还存在着分子间作用力。

分子间作用力包括范德华力和氢键。

范德华力普遍存在于分子之间,其强度相对较弱。

一般来说,随着分子相对质量的增大,范德华力也会增大,物质的熔沸点也会相应升高。

氢键则是一种特殊的分子间作用力,它比范德华力要强一些。

当氢原子与电负性大、半径小的原子(如氮、氧、氟)结合时,氢原子与另一个电负性大的原子之间会产生一种较强的相互作用,这就是氢键。

微粒之间的相互作用力-推荐下载

微粒之间的相互作用力-推荐下载
K2SO4、NH4Cl、Na2O2 等 ④含有金属元素的化合物可能是共价化合物。AlCl3、BeCl2 ⑤全部是非金属元素组成的化合物可能是离子化合物。NH4Cl
五.共价键有关知识拓展 1、共价键的三个常见参数:键长、键能、键角
键长:我们把成键后,参与成键的两个原子的核间距离定义为键长。 键能:是指 1.01*105Pa 和 25℃ 下(常温常压下),将 1 mol 理想气体分子 AB 拆开为中 性气态原子 A 和 B 所需要的能量(单位 kJ·mol-1)。键能越大,共价键越牢固,含有该
3、离子化合物的电子式书写 电子式:在元素符号周围用·或 x 来表示原子的最外层电子,以简明的表示原子、离子的 最外层电子的排布 书写原子的电子式时,一般将原子的最外层电子写在元素符号的上下左右四个位置上, 分开写。
H C O Cl
书写离子的电子式时,简单阳离子只写元素符号,并在右上角注明所带电荷数,简单阴 离子书写时要在元素符号周围标出电子,用[ ]括起来,并在右上角注明所带的电荷
同种元素原子间形成的共价键——非极性键 如:H2、O2 不同种元素原子间形成的共价键——极性键 如:HCl、CO2、H2O 8、表示方法:电子式、结构式
用电子式表示下列物质:
H2
Cl2
N2
HF
OH-
H2O
NH3CH4CCl4NH4+CO2
HClO
H2O2
C2H2
书写注意点:每个原子要满足最外层为 8 电子或 2 电子,一般说来形成的共价键数和最 外层电子数之和为 8,氢、氯等只需形成一对共用电子对的原子一般在中心原子的上下 左右四个位置,写完后检查原来原子的最外层电子数。 用电子式表示下列物质的形成过程: H2O: CO2: 结构式:将共价化合物或单质中的每一对共用电子对改成一条短线的形式就叫结构式。

第二单元 微粒之间的相互作用力.1doc

第二单元  微粒之间的相互作用力.1doc

第二单元微粒之间的相互作用力离子键【课标要点提示】1.知道构成物质的微粒之间存在不同的作用力,认识化学键的含义。

2.掌握化学键、离子键的概念及离子键的形成。

3.能熟练地用电子式表示离子化合物。

【基础知识梳理】一、化学键1.构成物质的基本微粒及微粒间的作用物质构成微粒微粒间的作用氯化钠离子间存在氯气分子内原子间存在金刚石直接相邻的碳原子间存在2.化学键物质中直接相邻的之间存在的。

常见的化学键有和。

二、离子键1.概念(1)离子键:使带相反电荷的结合的。

(2)离子化合物:由通过形成的。

(3)离子化合物的判断依据:。

离子化合物的类别:、和。

2.电子式在元素符号周围用或来表示原子、离子的最外层电子,写成电子式可以简明地表示出原子、离子、化合物的组成。

【问题分析示例】下列哪组元素的原子之间形成离子键()A.钾和氯B.氢和硫C.钙和氧D.硅和铁〖迁移应用〗下列叙述不正确的是()A.活泼金属与活泼非金属化合时,都能形成离子键B.阴、阳离子通过静电引力所形成的化学键叫做离子键C.离子所带电荷的符号和数目与原子成键时得失电子有关D.阳离子半径比相应的原子半径小,而阴离子半径比相应的原子半径大【巩固练习】1.下列说法中正确的是()A.两个原子或多个原子之间的相互作用叫化学键B.阴、阳离子通过静电引力而形成的化学键叫离子键C.只有金属元素和非金属元素化合时才能形成离子键D.大多数的盐、碱和低价金属氧化物中含有离子键2.下列物质中有氧离子存在的是()A.H2OB.MgOC.KClO3D.O23.根据选项所提供的原子序数,下列各组原子间能以离子键结合的是()A.18、12B.6、8C.11、16D.12、94.X元素的一个原子失去两个电子被两个Y原子获得,从而使X和Y形成稳定的化合物Z,有关Z的下列推断不正确的是()A.Z是离子化合物B.Z的化学式是XY2C.Z的化学式是X2YD.Z的熔点比较高5.用电子式表示下列离子化合物NaCl MgCl2 CaONH4Cl Na2S共价键【课标要点提示】1.掌握共价键的概念及共价键的形成。

微粒之间的相互作用力

微粒之间的相互作用力

7、特殊的分子间作用力——氢键 、特殊的分子间作用力 氢键
沸点/℃
100 75 50 25 0 -25 -50 -75 -100 -125 -150 CH4 PH3 SiH4 NH3 H2Se AsH3 HCl HBr HF H2Te SbH3 H2S HI H2O
× ×
SnH4
GeH4
×
×
2
3 4 一些氢化物的沸点
1、定义 、 带相反电荷的阴、 带相反电荷的阴、阳离子通过静电作用 形成的化学键称为离子键 离子键。 形成的化学键称为离子键。 2、成键微粒:阴离子、阳离子 、成键微粒:阴离子、 3、成键实质:静电作用(静电引力和斥力 、成键实质:静电作用 静电引力和斥力 静电引力和斥力) 4、成键结果:体系能量降低,放出能量, 、成键结果 体系能量降低,放出能量, 形成稳定的离子化合物 阴、阳离子通过静电作用形成的化合物 含有离子键) 叫做离子化合物 (含有离子键)。
. .
. .
第二课时
(二)共价键
思考:为什么稀有气体是单原子分子? 思考:为什么稀有气体是单原子分子?而 氢分子、氯分子是双原子分子? 氢分子、氯分子是双原子分子?
H2
.. He Ne .. × × × + ×H H H H .. .. ..
共 子
Cl2
.. .. Cl + Cl .. .. . .
非金属元素之间 形成的化合物
部分离子化合物( 部分离子化合物(碱、 含氧酸盐、 含氧酸盐、金属过氧 化物、铵盐) 化物、铵盐)
共价键存在于 非金属单质 稀有气体例外) (稀有气体例外)
少量盐
共价化合物
5、共价键的表示方法 、 (1)电子式: . . . )电子式:
H H

第二章 化学键与分子间作用力总结[选修3]鲁科版

第二章 化学键与分子间作用力总结[选修3]鲁科版

第二章化学键与分子间作用力知识建构:专题归纳:一、微粒间相互作用力的比较1、化学键的比较键比较离子键共价键金属键非极性键极性键配位键本质阴、阳离子间的静电作用相邻原子间通过共用电子对(电子云重叠)与原子核间的静电作用形成电性作用成键条件电负性相差较大的活泼金属元素的阳离子和活泼非金属元素的阴离子(成键电子的得、失电子能力相差较大)成键原子得失电子能力相同成键原子得失电子能力差别较小(不同种非金属)成键原子一方有孤对电子,一方有空规道同种金属或不同种金属(合金)特征无方向性、饱合性有方向性、饱合性无方向性成键微粒阴、阳离子原子金属阳离子和自由电子存在离子化合物非金属双原子单质、共价化合物(H2O2),离子化合物(Na2O2)共价化合物(HCl)离子化合物(NaOH)离子化合物(NH4Cl)金属或合金2、范德华力和氢键的比较范德华力氢键概念范德华力是分子之间普遍存在的一种相互作用,它使得许多由分子构成的物质能以一定的聚集态存在正电性较强的氢原子与电负性很大且半径小的原子间存在的一种静电相互作用存在范围分子间某些强极性键氢化物的分子间(HF、H2O、NH3)强度比较比化学键弱得多比化学键弱得多,比范德华力强影响因素①随着分子极性和相对分子量的增大而增大②组成和结构相似的物质,相对分子质量越大,范德华力越大形成氢键的非金属原子吸引电子的能力越强,半径越小,则氢键越强特征无方向性和饱合性有方向性和饱合性对物质性质的影响影响物质的物理性质,如熔点、沸点等。

组成和结构相似的物质,相对分子质量越大,熔沸点越高,如熔沸点:O2>N2,HI>HBr>HCl分子间氢键的存在,使得物质的熔沸点升高,在水中的溶解度增大,如熔沸点:H2O > H2S二、分子的极性和键的极性、分子构型的关系分子类型分子形状键角键的极性分子极性代表物A 球形非极性He、NeA2直线形非极性非极性H2、O2AB 直线形极性极性HCl、NOABA 直线形180°极性非极性CO2、CS2ABA 角形≠180°极性极性H2O、SO2A4正四面体形60°非极性非极性P4AB3平面三角形120°极性非极性BF3、SO3AB3三角锥形≠120°极性极性NH3、NCl3AB4正四面体形109°28′极性非极性CH4、CCl4AB3C 四面体形≠109°28′极性极性CH3Cl、CHCl3AB2C2四面体形≠109°28′极性极性CH2Cl2由上表可知:分子的极性取决于键的极性,分子中每一个键两端的原子的电负性的差异,差异越大的,键的极性越强;很明显,若分子中没有极性键,则相应的分子不可能是极性分子,但含有极性键的分子也不一定都是极性分子,若成键的原子在空间呈对称分布的话,则键的极性彼此抵消,分子仍为非极性分子,否则的话为极性分子。

微粒之间的相互作用力ppt课件

微粒之间的相互作用力ppt课件
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥原子或离子 之间存在的强烈的相互作用。
注:1、直接相邻 2、强烈的相互作用 3、化学键的分类:
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练习
⑴ 用电子式表示氧化镁的形成过程
⑵ 用电子式表示硫化钾的形成过程
注:在箭头左面是原子的电子式,右面是离子化合物 的电子式,相同原子的电子式可合并,但不建议,但 离子化合物中相同离子不能合并。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
12、你们要学习思考,然后再来写作。——布瓦罗 13、在寻求真理的长河中,唯有学习,不断地学习,勤奋地学习,有创造性地学习,才能越重山跨峻岭。——华罗庚
14、许多年轻人在学习音乐时学会了爱。——莱杰 15、学习是劳动,是充满思想的劳动。——乌申斯基 16、我们一定要给自己提出这样的任务:第一,学习,第二是学习,第三还是学习。——列宁 17、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。——毛泽东
c、离子化合物的电子式: AB型
A2B型
AB2型 注:阴、阳离子的电子式相间写,相同 离子不能合并。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
d、用电子式表示离子化合物的形成过程
用电子式表示氯化钠的形成过程

微粒间相互作用力(1-2、3 ) 知识小结

微粒间相互作用力(1-2、3 ) 知识小结

二、微粒之间的相互作用力
1、化学键的定义:物质中直接相邻的原子或离子之间存在的强烈的相互作用力叫做化学键。

2、分子间作用力:是存在着将分子聚集在一起的作用力,分子间作用力比化学键弱得多。

由分子构成的物质,分子间作用力影响物质的和。

3、电子式:在元素符号周围用“”或“”来表示原子的最外层电子数,以简明地表示原子、离子的最外
4、结构式:用短线表示分子中共用电子对形成情况的式子就是结构式。

用结构式表示共价分子时,原子间有几条短线就有共用电子对。

N2结构式、CO2结构式、H2O结构式。

与电子式相比结构式更能清晰、简洁地表征共价分子的结构特点。

5、共价分子中各原子间有一定的连接方式,分子有一定的。

可以用模型、模型表示共价分子的空间结构。

一般从字面含义就能分辨何种模型。

6、碳元素位于第周期族,原子的最外层有个电子。

在化学反应中,碳原子既不易电子,也不易电子,通常与其他原子以结合。

碳原子之间以及碳原子与其他原子之间可以形成共价单键、共价双键和;碳原子之间可以通过共价键彼此结合形成碳链,也可以连接形成碳环。

如:甲烷结构式、乙烯结构式、乙炔结构式
注意:化学式、电子式、结构式、结构简式、球棍模型、比例模型等等是化学学科独有的化学语言,故总称他们为化学用语。

7、含有共价键的分子晶体如发生物理变化克服的作用力是分子间作用力(又称为范德华力)
注:分子间作用力不是化学键
三、三大晶体结构与其性质比较
四、同系物、同分异构体、同位素、同素异形体比较
四、同系物、同分异构体、同位素、同素异形体比较。

专题二 微粒之间的相互作用力

专题二  微粒之间的相互作用力

概括范德华力的特征
1.广泛存在于分子之间
2.分子间作用力比化学键弱得多 3.组成和结构相似的物质分子间作用力一般随着相对分子 质量的增大而增大
4.主要影响物质(由分子组成)的物理性质(熔、沸点等)
观察下图,能得出什么样的结论?
沸点/℃
一 些 氢 化 物 的 沸 点
100 75 50 25 0 -25 -50 -75 -100 -125 -150
A.NH4+、OHC.H+、S2B.H2、Cl2 D.Ba2+、SO42-
思考二 • 多个离子形成化合物,用原子结构 示意图表示方便吗?如何用简便的 方法表示?
三.电子式
1.定义 在元素符号周围用“ · ”或“×”来表示原 子最外层电子的式子,叫电子式。
(1)原子的电子式:
· · Mg · · H · Na · · Ca · · O· · · 小叉“×”来表示。 · · Cl · · · · ·H2O NhomakorabeaHF
NH3
H2S HCl PH3 SiH4 ×
H2Se AsH3 HBr × GeH 4
H2Te SbH3 HI × SnH4
CH4 × 2
3
4
5
周期
结论:H2O 、NH3 、HF比同主族氢化物的沸点高。 猜想:为什么H2O、NH3、HF的沸点比同主族元素的氢化物高? 是不是它们之间除了范德华力之外,还存在另一种作用力?
对于组成和结构相似的分子,其范德华力一般随着相对分 子质量的增大而增大
4.范德华力影响的性质
单质
F2 Cl2 Br2 I2
相对分子质量
38 71 160 254
熔点/℃
-219.6 -101.0 -7.2 113.5

微粒间的作用力的大小

微粒间的作用力的大小

微粒间的作用力的大小微观世界中的作用力微观世界是一个充满着相互作用的粒子王国,其中作用力扮演着至关重要的角色。

这些作用力支配着粒子的运动,塑造着物质的性质。

静电作用力:掌控电荷之间的吸引与排斥静电作用力是最基本的作用力之一,它描述了带电粒子之间的相互作用。

同种电荷相互排斥,异种电荷相互吸引。

静电作用力在塑造原子结构、分子形成和化学反应中发挥着关键作用。

磁力:运动电荷的磁性舞会磁力是一种源于电荷运动的作用力。

当带电粒子运动时,它们会产生磁场,这些磁场会对其他带电粒子施加力。

磁力在电机、磁悬浮列车和磁共振成像等技术中得到广泛应用。

引力:宇宙中贯穿一切的力量引力是万物相互吸引的一种普遍作用力。

它的强度远小于静电作用力和磁力,但其作用范围却无限大。

引力支配着行星绕恒星的运行、恒星在星系中的分布,甚至宇宙的膨胀和收缩。

弱相互作用:核反应的幕后推手弱相互作用是一种短程力,它在放射性衰变和基本粒子相互作用等过程中发挥着重要作用。

弱相互作用负责β衰变,这是一种涉及核内中子或质子转变的过程。

强相互作用:原子核内的胶水强相互作用是一种强大的短程力,它将原子核内的夸克束缚在一起。

它克服了夸克之间的电磁排斥,确保原子核的稳定性。

强相互作用是已知的最强作用力,但它的作用范围仅限于原子核内。

作用力与物质性质作用力决定了物质的许多性质。

例如,静电作用力赋予物质电导性和极化性。

磁力使物质具有磁性。

引力决定了行星的轨道和星系的结构。

弱相互作用和强相互作用影响着放射性衰变率和原子核的稳定性。

作用力与技术创新对作用力的理解和应用推动了科学和技术的发展。

静电复印机利用静电作用力复印文档。

磁共振成像仪利用磁力生成人体内部的详细图像。

引力助推火箭将航天器送入太空。

弱相互作用和强相互作用在粒子物理学和核能领域发挥着至关重要的作用。

微观世界的相互作用微观世界是一个充满相互作用的粒子王国,其中作用力扮演着至关重要的角色。

这些作用力支配着粒子的运动,塑造着物质的性质,并为科学和技术创新铺平了道路。

微粒之间的相互作用力PPT课件

微粒之间的相互作用力PPT课件

共用电子对
F + F
→ F
共用电子对
H ×+ O + × H → H × O × H
注意事项:①不用箭头表示电子的偏移; ②相同原子不能合并在一起; ③没有形成离子.
共价键的形成
定 义: 原子之间通过共用电子 对所形成的相互作用
形成条件:非金属原子间
有电子的偏移共用,没有电子得失 形成特征:
联系生活实际?你能发现出什么矛盾吗?
拓展视野:氢键


1.氢键是一种特殊的分子间作用 力,不是化学键
2.氢键的表示方法:X—H…Y
பைடு நூலகம்
3.氢键的形成条件: ⑴有X-H共价键,X原子非金属性强,原 子半径小,如F、O、N ⑵ X—H…Y中的Y必须具有未共享电子 对,原子半径小。X、Y可以相同,也可 以不同。
三、分子间作用力
1、概念:分子间存在着将分子聚集在一起 的作用力称为分子间作用力。
(1)存在:分子间 (2)大小:比化学键弱得多。 2、意义:影响物质的熔沸点和溶解性等 物理性质
分子间作用力的特点
1.广泛存在(由分子构成的物质)
2.作用范围小
3.作用力弱 4.主要影响物质的物理性质(熔沸点) 由分子构成的
成键粒子:原子
成键结果: 形成共价化合物或单质
第二单元 微粒之间的相互作用力
分子间作用力
我们知道,分子内相邻原子之间存在着 强烈的相互作用。那么,分子之间是否也 有相互作用呢? 干冰升华、硫晶体熔化、液氯汽化都要吸 收能量。物质从固态转变为液态或气态, 从液态转变为气态,为什么要吸收能量?在 降低温度、增加压强时,Cl2、CO2等气体 能够从气态凝结成液态或固态。这些现象 给我们什么启示?

微粒之间的相互作用力PPT下载

微粒之间的相互作用力PPT下载
间的相互排斥作用。 当阴、阳离子接近到一定距离时,吸引和排 斥作用达到平衡,阴阳离子间形成稳定的化学键 ————离子键
2、离子化合物:
阴阳离子通过静电作用形成的化合物
含有离子键的化合物就是离子化合物。
3、形成离子键的条件(成键条件)
阳离子 活泼的金属
IA,IIA 铵根离子
阴离子
活泼的非金属
VIA, 酸V根IIA离子、OH-
5.所有进入现场使用的成品、半成品 、设备 、材料 、器具 ,均主 动向监 理工程 师提交 产品合 格证或 质保书 ,应按 规定使 用前需 进行物 理化学 试验检 测的材 料,主 动递交 检测结 果报告 ,使所 使用的 材料、 设备不 给工程 造成浪 费。
谢谢观看
1.我公司将积极配合监理工程师及现 场监理 工程师 代表履 行他们 的职责 和权力 。
5、离子键的强弱
根据离子键的成因,离子键的强弱取决于 成键离子的半径以及所带电荷数,由于两 者一般不矛盾,所以通常可以直接通过阴 阳离子的半径大小来判断离子键的强弱。
如比较NaCl和MgCl2 NaCl和NaBr
小结
离子键:使阴阳离子结合成化合物的静电 作用,叫做离子键。 含有离子键的化合物一定是离子化合物
作业:启东作业本作业7
1.我公司将积极配合监理工程师及现 场监理 工程师 代表履 行他们 的职责 和权力 。
2.我公司在开工前,将根据合同中明 确规定 的永久 性工程 图纸, 施工进 度计划 ,施工 组织设 计等文 件及时 提交给 监理工 程师批 准。以 使监理 工程师 对该项 设计的 适用性 和完备 性进行 审查并 满意所 必需的 图纸、 规范、 计算书 及其他 资料; 也使招 标人能 操作、 维修、 拆除、 组装及 调整所 设计的 永久性 工程。

微粒之间相互作用力共34页

微粒之间相互作用力共34页


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
34
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、微粒之间的相互作用力
1、化学键的定义:物质中直接相邻的原子或离子之间存在的强烈的相互作用力叫做化学键。

2、分子间作用力:是存在着将分子聚集在一起的作用力,分子间作用力比化学键弱得多。

由分子构成的物质,分子间作用力影响物质的和。

3、电子式:在元素符号周围用“”或“”来表示原子的最外层电子数,以简明地表示原子、离子的最外
4、结构式:用短线表示分子中共用电子对形成情况的式子就是结构式。

用结构式表示共价分子时,原子间有几条短线就有共用电子对。

N2结构式、CO2结构式、H2O结构式。

与电子式相比结构式更能清晰、简洁地表征共价分子的结构特点。

5、共价分子中各原子间有一定的连接方式,分子有一定的。

可以用模型、模型表示共价分子的空间结构。

一般从字面含义就能分辨何种模型。

6、碳元素位于第周期族,原子的最外层有个电子。

在化学反应中,碳原子既不易电子,也不易电子,通常与其他原子以结合。

碳原子之间以及碳原子与其他原子之间可以形成共价单键、共价双键和;碳原子之间可以通过共价键彼此结合形成碳链,也可以连接形成碳环。

如:甲烷结构式、乙烯结构式、乙炔结构式
注意:化学式、电子式、结构式、结构简式、球棍模型、比例模型等等是化学学科独有的化学语言,故总称他们为化学用语。

7、含有共价键的分子晶体如发生物理变化克服的作用力是分子间作用力(又称为范德华力)
注:分子间作用力不是化学键
三、三大晶体结构与其性质比较
四、同系物、同分异构体、同位素、同素异形体比较
四、同系物、同分异构体、同位素、同素异形体比较。

相关文档
最新文档