函数的概念和图像
最全三角函数概念公式、图像大全完整版.doc
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a)2其他非重点三角函数csc(a) =a sin 1 sec(a) =acos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a公式一设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosαcos (2π+α)= -sinαtan (2π+α)= -cotαcot (2π+α)= -tanαsin (2π-α)= cosαcos (2π-α)= sinαtan (2π-α)= cotαcot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h-------------------------------------------------------------------------------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ赠送以下资料《二次函数的应用》中考题集锦10题已知抛物线222(0)y x mx m m =+-≠.(1)求证:该抛物线与x 轴有两个不同的交点;(2)过点(0)P n ,作y 轴的垂线交该抛物线于点A 和点B (点A 在点P 的左边),是否存在实数m n ,,使得2AP PB =?若存在,则求出m n ,满足的条件;若不存在,请说明理由.答案:解:(1)证法1:22229224m y x mx m x m ⎛⎫=+-=+- ⎪⎝⎭,当0m ≠时,抛物线顶点的纵坐标为2904m -<, ∴顶点总在x 轴的下方.而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.(或者,当0m ≠时,抛物线与y 轴的交点2(02)m -,在x 轴下方,而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.)证法2 :22241(2)9m m m ∆=-⨯⨯-=,当0m ≠时,290m >,∴该抛物线与x 轴有两个不同的交点. (2)存在实数m n ,,使得2AP PB =.设点B 的坐标为()t n ,,由2AP PB =知,①当点B 在点P 的右边时,0t >,点A 的坐标为(2)t n -,且2t t -,是关于x 的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即294n m >-.且(2)t t m +-=-(I ),2(2)t t m n -=--(II )由(I )得,t m =,即0m >.将t m =代入(II )得,0n =.∴当0m >且0n =时,有2AP PB =.②当点B 在点P 的左边时,0t <,点A 的坐标为(2)t n ,,且2t t ,是关于x 的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即 294n m >-.且2t t m +=-(I ),222t t m n =--(II )由(I )得,3mt =-,即0m >. 将3m t =-代入(II )得,2209n m =-且满足294n m >-.∴当0m >且2209n m =-时,有2AP PB =第11题一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( )A.24米 B.12米C.米 D.6米答案:B第12题我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.关系式;(2)求出图(2)中表示的种植成本单价z (元)与上市时间t (天)(0t >)的函数关系式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500克.))图(1)图(2)天)答案:解:(1)依题意,可建立的函数关系式为:2160(0120)380(120150)220(150180)5t t y t t t ⎧-+<<⎪⎪=<⎨⎪⎪+⎩,,. ≤ ≤≤ (2)由题目已知条件可设2(110)20z a t =-+. 图象过点85(60)3,,2851(60110)203300a a ∴=-+∴=.. 21(110)20300z t ∴=-+ (0)t >. (3)设纯收益单价为W 元,则W =销售单价-成本单价. 故22221160(110)20(0120)3300180(110)20(120150)3002120(110)20(150180)5300t t t W t t t t t ⎧-+---<<⎪⎪⎪=---<⎨⎪⎪+---⎪⎩,,. ≤ ≤≤ 化简得2221(10)100(0120)3001(110)60(120150)3001(170)56(150180)300t t W t t t t ⎧--+<<⎪⎪⎪=-+<⎨⎪⎪--+⎪⎩,,. ≤ ≤≤①当21(10)100(0120)300W t t =--+<<时,有10t =时,W 最大,最大值为100; ②当21(110)60(120150)300W t t =--+<≤时,由图象知,有120t =时,W 最大,最大值为2593;③当21(170)56(150180)300W t t =--+≤≤时,有170t =时,W 最大,最大值为56. 综上所述,在10t =时,纯收益单价有最大值,最大值为100元.第13题如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)答案:解:(1)(3分)如图,设第一次落地时, 抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =. 即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)(3分)令210(6)4012y x =--+=,.212(6)4861360x x x ∴-===-<.≈,(舍去). ∴足球第一次落地距守门员约13米.(3)(4分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+1210CD x x ∴=-=. 1361017BD ∴=-+=(米). 解法二:令21(6)4012x --+=.解得16x =-,2613x =+.∴点C 坐标为(13,0).设抛物线CND 为21()212y x k =--+.将C 点坐标代入得:21(13)2012k --+=.解得:11313k =-(舍去),2667518k =+++=.21(18)212y x =--+ 令210(18)212y x ==--+,0.118x =-,21823x =+. 23617BD ∴=-=(米). 解法三:由解法二知,18k =, 所以2(1813)10CD =-=, 所以(136)1017BD =-+=. 答:他应再向前跑17米.第14题荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元. (1)基地的菜农共修建大棚x (公顷),当年收益(扣除修建和种植成本后)为y (万元),写出y 关于x 的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.答案:(1)()227.5 2.70.90.30.9 4.5y x x x x x x =-++=-+. (2)当20.9 4.55x x -+=时,即2945500x x -+=,153x =,2103x =从投入、占地与当年收益三方面权衡,应建议修建53公顷大棚. (3)设3年内每年的平均收益为Z (万元)()()2227.50.90.30.30.3 6.30.310.533.075Z x x x x x x x =-++=-+=--+(10分)不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益. ②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当20.3 6.30x x -+=时,10x =,221x =.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)第15题一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y (万件)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(2)求出月销售利润z (万元)(利润=售价-成本价)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(3)请你通过(2)中的函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于480万元.答案:略.第16题一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系(1)求抛物线的解析式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?答案:(1)由题意可知抛物线经过点()()()024682A P B ,,,,,设抛物线的方程为2y ax bx c =++ 将A P D ,,三点的坐标代入抛物线方程. 解得抛物线方程为21224y x x =-++ (2)令4y =,则有212244x x -++=解得1244x x =+=-212x x -=>∴货车可以通过.(3)由(2)可知21122x x -=>∴货车可以通过.第17题如图,在矩形ABCD 中,2AB AD =,线段10EF =.在EF 上取一点M ,分别以EM MF ,为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN x =,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?答案:解:矩形MFGN ∽矩形ABCD ,MN MFAD AB∴=. 2AB AD MN x ==,,2MF x ∴=.102EM EF MF x ∴=-=-. (102)S x x ∴=-2210x x =-+ 2525222x ⎛⎫=--+ ⎪⎝⎭.∴当52x =时,S 有最大值为252.第18题某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元.信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对AB ,两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?B A D MF答案:解:(1)当5x =时,12250.4y k k ===,,, 0.4A y x ∴=,当2x =时, 2.4B y =;当4x =时, 3.2B y =.2.4423.2164a ba b =+⎧∴⎨=+⎩解得0.21.6a b =-⎧⎨=⎩∴20.2 1.6B y x x =-+.(2)设投资B 种商品x 万元,则投资A 种商品(10)x -万元,获得利润W 万元,根据题意可得220.2 1.60.4(10)0.2 1.24W x x x x x =-++-=-++ 20.2(3) 5.8W x ∴=--+当投资B 种商品3万元时,可以获得最大利润5.8万元,所以投资A 种商品7万元,B 种商品3万元,这样投资可以获得最大利润5.8万元.第19题如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱3350m A B =,5根支柱1122334455A B A B A B A B A B ,,,,之间的距离均为15m ,1515B B A A ∥,将抛物线放在图(2)所示的直角坐标系中. (1)直接写出图(2)中点135B B B ,,的坐标; (2)求图(2)中抛物线的函数表达式; (3)求图(1)中支柱2244A B A B ,的长度.答案:(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=.B 图(1)图(2)l130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==。
函数的概念及图像
函数的概念及图象一、知识要点概述(一)函数有关概念1、常量:在某一变化过程中保持不变的量.2、变量:在某一变化过程中可取不同数值的量.3、函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4、函数的表示方法5、画函数图象的步骤:①列表;②描点;③连线,通常称为描点法.6、函数自变量的取值范围(二)平面直角坐标中点的坐标特征3、平行于坐标轴的直线上的点(1)平行于x轴的直线上任意两点的纵坐标相同;(2)平行于y轴的直线上任意两点的横坐标相同.4、对称点的坐标:(1)点P(a,b)关于x轴的对称点坐标是P(a,-b)即横坐标相同,纵坐标互为相反1数.(-a,b)即横坐标互为相反数,纵坐标相(2)点P(a,b)关于y轴的对称点坐标是P2同.(-a,-b)即横、纵坐标都互为相反数.(3)点P(a,b)关于原点的对称点坐标是P35、各象限角平分线上的点(1)第一、三象限角平分线上的点的横、纵坐标相等.(2)第二、四象限角平分线上的点的横、纵坐标互为相反数.6、点与原点、坐标轴的距离(1)点P(a,b)与原点的距离是.(2)点P(a,b)与x轴的距离是|b|(即其纵坐标的绝对值).(3)点P(a,b)与y轴的距离是|a|(即其横坐标的绝对值)二、典型例题剖析例1、现有点M(1+a,2b-1)在第二象限,则点N(a-1,1-2b)在第________象限.分析:本题主要考查各象限内点的坐标符号特征.由于点M在第二象限,,所以N点在第三象限.解:三例2、若m为整数,点P(3m-9,3-3m)是第三象限的点,则P点的坐标是()A.(-3,-3)B.(-3,-2)C.(-2,-2)D.(-2,-3)分析:根据第三象限点的符号特征,建立不等式组求出字母m的取值范围,再确定m的值,从而可得P点坐标.解:选A.例3、点A(1,m)在函数y=2x图象上,则点A关于y轴的对称点的坐标是(________,________)分析:把A(1,m)代入函数式y=2x中,求m=2,则A(1,2),再根据对称点的符号规律求A点的对称点坐标.解:(-1,2)例4、已知P点关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A.(-3,-2)B.(2,-3)C.(-2,-3)D.(-2,3)分析:(2,3)关于x轴对称,故求P(2,-3),∴点P(2,-3)关于原点对称由点P与P1的点坐标易求.解:选D.例5、已知两圆的圆心都在x轴上,A、B为两圆的交点,若点A的坐标为(1,-1),则点B的坐标为()A.(1,1)B.(-1,-1)C.(-1,1)D.无法求出分析:由于圆是轴对称图形,故两圆的两个交点A,B关于x轴对称.解:选A.例6、下列各组的两个函数是同一函数吗?为什么?(1)y=x和(2)y=πx2和S=πr2(其中x≥0,r≥0)(3)y=x+2和分析:判断两个函数是否为同一函数:①要判断两个函数的自变量取值范围是否相同;②要判断自变量与函数的对应规律是否完全相同.解:(1)不是同一函数,因为它们的自变量取值范围不同,前者是全体实数,后者是x≠0的实数;(2)是同一函数,因为它们的自变量的取值范围相同,而且自变量与函数的对应规律完全相同;(3)不是同一函数,因为它们的自变量取值范围不同,前者是全体实数,后者是x≥-2.例7、在函数中自变量x的取值范围是________.分析:求函数式中自变量的取值范围的一般思路是:①函数解析式中的分母不能为0;②偶次根式的被开方数应为非负数;③零指幂和负整指数幂的底数不能为0.此题中,自变量x应满足解:x≥-1且x≠2.例8、等腰△ABC周长为10cm,底边BC长为y cm,腰长AB为x cm.(1)求出y与x的函数关系式;(2)求x的取值范围;(3)求y的取值范围;(4)画出此函数的图象.分析:要求y与x的函数关系,关键是找出y与x之间的等量关系,确定x的取值范围应从边长为正数和三角形三边关系方面入手.画函数的图象应按列表、描点、连线的步骤进行,同时应注意自变量的取值范围对图象的影响.解:(1)∵△ABC的周长为10,∴2x+y=10,∴y=10-2x..(3)由解之得0<y<5.(4)函数的图象如图所示.点评:求实际问题中的函数关系式应标明自变量的取值范围,画有自变量取值范围的函数图象时应注意端点处是实心点还是空心圆圈.。
函数的概念和图像
第二章函数概念与基本初等函数I2.1 函数的概念和图像2.1.1函数的概念和图像一、基本知识1、函数的定义(1)如何理解函数符合“y=f(x)”中的“f”?符号“y= f(x)”中的“f”表示对应法则,在不同的具体函数中,“f”的含义不一样,可以把函数的对应法则“f”形象地看做一个“暗箱”。
(2)符号y= f(x)的含义是什么?f(x)与f(a)有何区别?y= f(x)中式关于x的解析式,y=f(a)是x=a时所得的函数值。
(3)对应是否为函数?①这个对应所涉及到的两个集合是否都是非空数集;②对应法则f:x→y是否满足对于任何一个x可取的值都有唯一的值y与之对应。
如果同时满足这两条,那么这个对应就是函数,否则就不是函数。
(4)判定两个函数是否相同,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同。
(5)求函数的定义域:由于函数的定义域就是函数中所有的输入值x组成的集合,所以求函数的定义域一般要考虑使函数有意义的所有条件,不可有遗漏。
(6)求函数值域的方法:求函数的值域的方法往往因题而异,如果函数的自变量是有限个值,那么就可将函数值求出得到值域;如果函数的自变量是无数个值时,显然不能再采取上述方法求其值域,而可根据函数表达式的特点采取相应的方法来求其值域,常用的方法有观察法,配方法,判别式法等。
2、函数的图像(1)函数的图像都是连续的曲线吗?不一定,一般来说,如果自变量的取值是连续的,那么它的图像四连续的,如一次函数,二次函数。
但如果自变量的取值不是连续的,那么它的图像就是一些孤立点。
(2)凡是图像都是函数的图像吗?检查一个图形是否为某个函数的图像,只要用以条垂直x轴的直线沿x轴方向左右平移,观察图形与该直线交点的个数,当交点个数为两个或两个以上时,该图形一定不是函数的图像。
因为一个x值对应了多个y值。
(3)函数的图像对于今后的解题的用途是非常大的,如某些函数图像较易画出来,就可以利用函数图像直接求出其值域。
函数及其图象函数的图像函数的图象
2023函数及其图象•函数的基本概念•函数的图像•不同类型函数的图像目录•函数图像的应用•函数图像的艺术01函数的基本概念设x和y是两个变量,D是一个给定的集合,在D上有唯一确定的y值与x对应,则称y是x的函数,记作y=f(x)。
集合D称为函数的定义域,x称为自变量,y称为因变量。
函数的定义函数的表示方法图象法用图象表示函数,如f(x)=x^2的图象为开口向上的抛物线。
表象法用表格表示函数,如t=sin(x)。
解析法用等式表示函数,如y=2x+1。
函数的分类•常数函数:f(x)=c(c为常数)•一次函数:f(x)=kx+b(k,b为常数,k≠0)•二次函数:f(x)=ax^2+bx+c(a,b,c为常数,a≠0)•反比例函数:f(x)=k/x(k为常数,k≠0)•幂函数:f(x)=x^a(a为常数)•指数函数:f(x)=a^x(a为常数,a>0且a≠1)•对数函数:f(x)=log_a x(a为常数,a>0且a≠1)•复合函数:f(x)=u(x)+g(x),其中u和g都是简单函数。
02函数的图像1函数图像的概念23将函数表达式中自变量与因变量之间的关系用图形表示出来。
函数图像在平面直角坐标系中,以横轴表示自变量,纵轴表示因变量。
坐标系根据函数表达式的性质,图像呈现不同形状,如直线、曲线、折线等。
函数图像的形状描点法根据函数表达式,求出一些自变量对应的因变量值,然后在坐标系上描出对应的点,最后用平滑的曲线或直线将这些点连接起来。
图示法利用计算器或编程语言,直接在计算机上绘制出函数图像。
绘制函数图像的方法函数图像的变换伸缩将函数图像按比例进行缩放,可以是横向或纵向。
平移将函数图像沿横轴或纵轴方向移动一定距离。
翻折将函数图像以某一条直线或点为对称中心进行翻折。
复合变换以上变换可以同时进行,也可以多次进行。
旋转将函数图像按一定角度顺时针或逆时针旋转一定角度。
03不同类型函数的图像线性函数一次函数的图像是直线,表达式为$y=kx+b$,其中$k$是斜率,$b$是截距。
函数图像的画法
04 利用计算器或软件绘制函 数图像
使用计算器绘制函数图像
确定函数表达式
首先需要确定要绘制的函数表达式, 例如 y = x^2。
选择计算器功能
在计算器上找到绘制函数图像的功能, 通常在科学计算器上会有专门的图形 功能键。
输入函数表达式
将函数表达式输入到计算器的相应位 置。
开始绘图
按下绘图功能键,计算器会自动绘制 出该函数的图像。
函数图像的画法
contents
目录
• 函数图像的基本概念 • 常见函数的图像画法 • 函数图像的变换 • 利用计算器或软件绘制函数图像 • 函数图像的应用
01 函数图像的基本概念
函数图像的定义
函数图像
函数图像是将函数的每一个自变 量x值与对应的因变量y值,用点 表示出来,并将这些点用线连接 起来形成的图形。
二次函数的图像
总结词
抛物线形状
详细描述
二次函数图像是抛物线。根据抛物线的开口方向和顶点位置,二次函数可以分为开口向上、向下、向左和向右四 种类型。在直角坐标系中,二次函数的标准形式为 y = ax^2 + bx + c,其中 a、b、c 是常数,a 不等于 0。
三角函数的图像
总结词
周期性波形
详细描述
THANKS FOR WATCHING
感谢您的观看
缺点
需要一定的编程基础,对于初学者来说可能需要一定的学习 成本。另外,软件绘图可能需要较长时间才能掌握其各种功 能和操作技巧。
05 函数图像的应用
在数学中的应用
解析几何
函数图像可以用来表示解析几何中的曲线、曲面等,帮助理解几 何概念和性质。
微积分
函数图像在微积分中用于描述函数的单调性、极值、拐点等,有助 于理解函数的性质和变化规律。
函数的概念和图像
函数 - 函数的概念和图像一、函数的概念和图像● 定义总结1. 函数的定义设,A B 是非空的数集,如果按某种对应法则f ,对于集合A 中的每一个...元素x ,在集合B 中都有唯一..的元素y ,和它对应,这样的对应叫做A 到B 的一个函数,通常记为(),y A f x x =∈.其中,所有的输入值x 所组成的集合A 叫做函数()y f x =的定义域,与输入值x 对应的所有的输出值y 所组成的集合B 称为函数的值域. 1. 函数的图像将自变量的一个值0x 作为横坐标,相应的函数值()0f x 作为纵坐标,就得到坐标平面上的一个点()()00,x f x ,当自变量取遍..函数定义域A 中的每一个值时,就得到一系列这样的点,所有这些点组成的集合为()(){},x f x x A ∈,所有这些点组成的图形就是函数()y f x =的图象.● 知识归纳1. 相同函数的判断关键点:定义域、不等式.【例1】判断下列各组函数中的两个函数是否为同一函数: (1)()()2221,21x x x g t t f t =+-=+-;(2)()(),f x x g x ==(3)()(),f x x g x ==;(4)()()24,22x f x g x x x -==+-;(5)()()2f x g x x ==+.2. 函数的图像及应用关键点:作图、识图、用图.【例2】下图中可以作为函数图像的是 .A B C D【例3】画出()223f x x x =-++的图象,并根据图像回答问题:(Ⅰ)比较()()()0,1,3f f f 的大小;(Ⅱ)若121x x <<,比较()1f x 与()2f x 的大小.3. 函数的定义域关键点:熟知各种基本函数的定义域,列不等式组求解; 【例4】求下列函数的定义域:(1)03x y +=(2)y =注意点:注意y =2y =. 4. 定义域的逆向问题关键点:已知函数定义域,求参数的值. 【例5】已知函数y =的定义域为[]3,6-,求,a b 的值.424232121132132142【例6】已知函数y =的定义域是R ,求实数k 的取值范围.5. 函数的值域常用方法:直接法、配方法、判别式法、反表示法、换元法、部分分式法、图象法. 【例7】求下列函数的值域:(1)3y =;(2)y =二、函数的表示方法● 定义总结1. 解析法、列表法、图象法;2. 分段函数对于自变量x 的不同的取值范围有不同的解析式.● 知识归纳1. 函数的解析式常用方法:待定系数法、换元法、整体代换法(换元注意范围......). 【例1】已知()f x 是二次函数,其图象的顶点是()1,3,且过原点,求()f x .【例2】(1)已知()3221f x x -=+,求()f x 的解析式; (2)已知21111f x x ⎛⎫+=- ⎪⎝⎭,求()f x 的解析式.2. 简单函数图像的作法关键点:化简,注意定义域;列表,描点,作图。
第六章 函数的概念和图象
第六章函数的概念和图象一、内容综述:1.函数的有关概念:一般地,设在某变化过程中有两个变量x,y。
如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就说y是x的函数,x叫做自变量,y叫因变量。
对于函数的意义,应从以下几个方面去理解:(1)我们是在某一变化过程中研究两个变量的函数关系,在不同研究过程中,变量与常量是可以相互转换的,即常量和变量是对某一过程来说的,是相对的。
(2)对于变量x允许取的每一个值,合在一起组成了x的取值范围。
(3)变量x与y有确定的对应关系,即对于x允许取的每一个值,y都有唯一确定的值与它对应。
2.函数值与函数值有关的问题可以转化为求代数式的值。
二、例题分析:例1.判断y=x与y=是否是同一函数。
解:∵ y==|x|当x≥0时,y=x,当x<0时, y=-x.∴ y=x与y=不是同一函数。
说明:虽然这两个函数的自变量取值范围都是全体实数,但当x<0时,两个函数的对应关系不同(如当x=-2时,y=x=-2, 而y==2), 所以它们不是同一个函数。
例2.不画图象,求函数y=-x+的图象上一点P,使点P到x轴,y轴的距离相等。
解:当点P在第一,三象限内,依题意,设P(a,a)∴ a=-a+解得:a=1.当点P在第二,四象限内,设P(b,-b)∴ -b=-b+解得:b=-3,∴点P坐标为(1,1)或(-3,3)。
说明:由点P到x轴、y轴的距离相等知点P在各象限角平分线上,由于第一,三象限角平分线上的点M(x,y)满足x=y的关系,而第二,四象限角平分线上的点N(x,y)满足x=-y的关系,所以可根据点P的位置特点来设点P的坐标,通过此例训练分类讨论思想。
例3.某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每辆一次0.3元. 若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;分析:由一般车辆停放次数x表示变速停放的辆次数,由保管费列出函数关系再化简,但要在函数式后注明自变量x的取值范围。
函数类型及图像
函数类型及图像函数是数学中的一个重要概念,它具有许多不同的类型,比如线性函数、指数函数、根函数、分段函数和三角函数等。
每个函数类型都有其自身的特点和性质,并且可以通过图形的方式表示出来。
线性函数是指y=kx+b的结构,其中,k是斜率,b是截距,x和y是变量。
它的图像是一条直线,斜率表示这条线的倾斜程度,截距以原点(0,0)为准,表示这条线相对于原点的偏移量。
此外,线性函数的特点是当改变自变量时,其变化量是一致的。
经典线性函数举例:y=2x+1。
它的图像是一条斜率为2,且与原点偏移一个单位的直线。
指数函数是指y=b^x的结构,其中,b是指数,x为自变量,其中b的取值范围为0-1。
它的图像是一条开口向上的曲线,曲率表示该函数与x轴之间的关系。
指数函数的特点是当改变自变量时,其变化量会呈指数级增长的趋势。
经典指数函数举例:y=2^x,它的图像是一条斜率为2的开口向上的曲线,曲率为正,表示它们之间关系十分紧密。
根函数是指y=b√x的结构,其中,b为根数,x为自变量,其中b的取值范围为1-∞。
它的图像是一条开口向上的曲线,它的曲率可以表示该函数与x的关系。
根函数的特点是当改变自变量时,其变化量会呈指数级增加的趋势。
经典根函数举例:y=2√x,它的图像是一条开口向上的曲线,曲率为正,表示两者之间关系十分紧密。
分段函数是指将函数分为若干个段,每一段函数都有自己的公式,并以离散点表示其图象。
分段函数的结构比较复杂,但是它们的性质比较稳定,而且可以容易地将其表现为图象。
经典分段函数举例:y={0, x<0; 1/2x+1, 0≤x<2; 3x-2, x≥2},它的图象是由两条直线和一段函数曲线拼接而成。
三角函数是指sin、cos、tan等函数,它们的结构比较复杂,但是它们的性质比较稳定,而且可以容易地表示为图象。
三角函数的图象是一条X轴为周期轴,Y轴为幅值轴的周期曲线。
它们的特点是,当改变自变量时,其变化趋势是周期性变化的。
函数的概念及表示法PPT课件
4
5
6
y(元)
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (2)以上表中的x值为横坐标,对应的y值为纵坐标,在直角 坐标系中依次作出点(1 , 0.12)、(2 , 0.24)、(3 , 0.36)、 (4,0.48)、(5,0.6)、(6,0.72),则函数的图像法表示如图所示.
巩固知识 典型例题
例2 设 f x 2x 1 ,求 f 0 , f 2 , f 5 , f b .
3
分析 本题是求自变量x=x0时对应的函数值,方法是将x0代入 到函数表达式中求值.
解 f 0 20 1
3
f 5 2 5 1
3
, f 2 2 2 1
3
, f b 2b 1
3
, .
巩固知识 典型例题
动 脑思考 探索新 知
作函数图像的一般方法——描点法
.
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (3)关系式y=0.12 x就是函数的解析式, 故函数的解析法表示为 y=0. .12 x, x ∈{1,2,3,4,5,6}
总结演示
判断下列对应能否表示y是x的函数
(1)能(2)不能(3) 能 (4)不能
应用知识 强化练习
教材练习3.1.1
1.求下列函数的定义域:
(1) f x 2 ;(2) f x x2 6x 5 .
x4
2.已知 f x 3x 2 ,求 f 0 , f 1 , f a .
函数的图像及解析式
正比例函数
01
图像
正比例函数图像是一条过原点的 直线。
02
03
解析式
性质
$y = kx$,其中$k$是常数且$k neq 0$。
当$k > 0$时,图像位于第一、 三象限;当$k < 0$时,图像位 于第二、四象限。
一次函数
图像
一次函数图像是一条直线。
解析式
$y = ax +
分式
通过分式表示函数关系,如y=1/x。
对数式
通过对数运算表示函数关系,如y=log_a x。
函数解析式的应用示例
线性函数
y=kx+b,用于描述匀速直线运动、 弹簧的伸长量等。
幂函数
y=x^n,用于描述物体随时间加速 或减速运动。
三角函数
y=sin x、y=cos x,用于描述简谐振 动、交流电等周期性现象。
函数的图像及解析式
contents
目录
• 函数图像的绘制 • 函数的解析式 • 函数的性质与图像关系 • 常见函数的图像与解析式 • 函数图像与解析式的应用
01 函数图像的绘制
函数图像的基本概念
01
02
03
函数图像
表示函数中自变量与因变 量之间关系的曲线或曲面。
坐标系
确定函数图像在平面或空 间中的位置和方向。
解析式
以10为底的对数函数为$y = log_{10} x$,以自 然数e为底的对数函数为$y = ln x$。
3
性质
定义域为$(0, +infty)$,值域为$(-infty, +infty)$。
05 函数图像与解析式的应用
解决实际问题
预测模型
函数概念ppt课件
复合函数的性质
复合函数具有一些重要的性质,如单 调性、奇偶性等,这些性质可以通过 对组成复合函数的各个函数的性质进 行分析得出。
复合函数的运算规则是先计算内层函 数,再计算外层函数,依次类推,直 到所有的函数都计算完毕。
反函数的概念与运算
01
02
03
反函数的概念
反函数是指将一个函数的 输入和输出互换,得到一 个新的函数。
一次函数
形如f(x)=kx+b的函数, 其中k和b为常数且k≠0。
分式函数
形如f(x)=k/x的函数,其 中k为常数且k≠0。
对数函数
形如f(x)=log_a x的函数, 其中a为常数且a>0且a≠1
。
02 函数的性质
有界性
总结词
函数的值域在一定范围内变动,不会 无限增大或减小。
详细描述
函数的输出结果总是在一定的范围内 ,不会超出这个范围。例如,正弦函 数和余弦函数的值域都在-1到1之间。
函数的定义域和值域是函数的重要属性,它们决定了函数的作用范围和 结果范围。
函数的表示方法
解析法
用数学表达式来表示函数,是最 常用的一种表示方法。例如, f(x)=x^2表示一个函数,当x取 任意实数时,都有唯一的y值与 之对应。
表格法
通过表格的形式来表示函数,对 于一些离散的函数可以用此方法 。例如,一个离散函数的值可以
函数概念ppt课件
• 函数的基本概念 • 函数的性质 • 函数的运算 • 函数的应用 • 函数的图像
01 函数的基本概念
函数的定义
函数是数学上的一个概念,它是一种特殊的对应关系,这种对应关系使 得对于数集A中的每一个元素,通过某种法则,都可以唯一地对应到数集 B中的一个元素。
一次函数的概念_图像和性质复习
一次函数的概念,图像和性质一次函数的概念 一般地,解析式形如y=kx+b(k,b 是常数,且0≠k )的函数叫做一次函数。
一次函数的定义域是一切实数。
当b=0时,y=kx (0≠k )是正比例函数。
一般地,我们把函数y=c (c 为常数)叫做常值函数。
Y=-1,π=y ,2)(=x f 都是常值函数。
二、一次函数的图像1.正比例函数y=kx (k ≠0,k 是常数)的图像是经过O (0,0)和M (1,k )两点的一条直线(如图13-17).(1)当k >0时,图像经过原点和第一、三像限;(2)k <0时,图像经过原点和第二、四像限.2.一次函数y=kx+b (k 是常数,k ≠0)的图像是经过A (0,b )和B (-kb,0)两点的一条直线,当kb ≠0时,图像(即直线)的位置分4种不同情况:(1)k >0,b >0时,直线经过第一、二、三像限,如图13-18A (2)k >0,b <0时,直线经过第一、三、四像限,如图13-18B (3)k <0,b >0时,直线经过第一、二、四像限,如图13-18C (4)k <0,b <0时,直线经过第二、三、四像限,如图13-18D3.一次函数的图像的两个特征(1)对于直线y=kx+b(k ≠0),当x=0时,y=b 即直线与y 轴的交点为A (0,b ),因此b 叫直线在y 轴上的截距.(截距有正负)(2)直线y=kx+b(k ≠0)与两直角标系中两坐标轴的交点分别为A (0,b )和B (-kb ,0).4.一次函数的图像与直线方程(1)一次函数y=kx+b(k≠0)的图像是一条直线,因此y=kx+b(k≠0)也叫直线方程.但直线方程不一定都是一次函数.(2)与坐标轴平行的直线的方程.①与x轴平行的直线方程形如:y=a(a是常数).a>0时,直线在x轴上方;a=0时,直线与x轴重合;a<0时,直线在x轴下方.(如图13-19)②与y轴平行的直线方程形如x=b(b是常数),b>0时,直线在y轴右方,b=0时,直线与y轴重合;b<0时,直线在y轴左方,(如图13-20).三、两条直线的关系1.与坐标轴不平行的两条直线 l1:y1=k1x+b1,l2:y2=k2x+b, 若l1与l2相交,则k 1≠k2,其交点是联立这两条直线的方程,求得的公共解; 若l1与l2平行,则k1= k2.四、一次函数的增减性1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性.2.一次函数的增减性一次函数y=kx+b在x取全体实数时都具有如下性质:(1)k>0时,y随x的增加而增加;(2)k<0时,y随x的增加而减小.3.用待定系数法求一次函数的解析式若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是:(1)设一次函数的解析式:y=kx+b(k≠0)(2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=kx1+b①y2=kx2+b②(3)联立①②解方程组,从而求出k、b值.这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.一次函数的图像和性质练习题题组一:1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0), 点,(0) ,点. 2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
小学数学二次函数的基本概念与图像课件
二次函数的图像
二次函数图像的形状:抛物线 二次函数图像的顶点:最低点或最高点 二次函数图像的对称性:关于x轴对称 二次函数图像与x轴的交点:求根公式或因式分解法
二次函数的性质
二次函数的一般
形
式
为
y=ax^2+bx+c,
其中a、b、c为
常数且a≠0
二次函数的开口 方向由系数a决 定,a>0时开口 向上,a<0时开 口向下
二次函数的极值问题
二次函数的极值条件 极值点的计算方法 极值与函数图像的关系 极值在实际问题中的应用
二次函数的实际应用价 值
在数学竞赛中的应用
二次函数在数学竞赛中常作为压轴题出现,考察学生的综合解题能力。 通过解决二次函数问题,学生可以锻炼数学思维能力,提高数学素养。 二次函数在数学竞赛中具有较高的区分度,能够选拔出优秀的学生。 掌握二次函数的基本概念和图像是解决数学竞赛中相关问题的关键。
二次函数的图像是一个抛物线,其顶点坐标为(-b/2a, c-b^2/4a)
二次函数的开口方向由系数a决定,当a>0时,抛物线开口向上;当a<0时,抛物线 开口向下
二次函数的对称轴为x=-b/2a
二次函数的表达式
二次函数的一般形式为y=ax^2+bx+c a、b、c为常数,且a≠0 a的符号决定了抛物线的开口方向,a>0时开口向上,a<0时开口向下 b和c决定了抛物线的位置
图像的对称性
二次函数图像的对称轴是直线x=-b/2a 二次函数图像的顶点坐标为(-b/2a, f(-b/2a)) 二次函数图像的对称性可以根据对称轴和顶点进行判断 二次函数图像的对称性对于理解函数的性质和解决实际问题具有重要意义
函数的概念ppt课件
。
THANKS
感谢观看
插值法
利用已知的离散数据点,通过数学计算得到更多的数据点,从而绘制出 更精确的函数图像。
03
பைடு நூலகம்计算几何法
利用几何知识,将函数表达式转换为几何图形,从而得到函数的图像。
函数图像的性质
01
02
03
04
连续性
函数图像在定义域内连续不断 ,没有间断点。
单调性
函数在某个区间内单调增加或 单调减少。
奇偶性
函数图像关于原点对称或关于 y轴对称。
周期性
函数图像呈现周期性变化。
函数图像的应用
数学分析
通过函数图像分析函数的性质 和变化规律,解决数学问题。
自然科学
在物理学、化学、生物学等自 然科学领域中,函数图像被广 泛应用于实验数据的分析和解 释。
工程学
在工程学中,函数图像可以用 来描述各种实际问题的变化规 律,如机械运动、电路电流等 。
经济和社会科学
函数的乘法
总结词
函数乘法是指将两个函数的输出值相乘,得到一个新的函数。
详细描述
函数乘法是一种数学运算,其操作是将两个函数的输出值逐一对应相乘。假设有 两个函数f(x)和g(x),函数乘法就是将f(x)和g(x)的输出值相乘,得到一个新的函 数h(x)=f(x)*g(x)。
函数的除法
总结词
函数除法是指将一个函数的输出值除以另一个函数的输出值,得到一个新的函数。
函数的实际应用
生活中的函数
总结词:无处不在
详细描述:函数的概念在日常生活中随处可见,如物品价格与数量的关系、时间 与路程的关系等。这些关系都可以通过函数来描述和预测。
2.1.1函数的概念和图像 课件
建构数学
(1)
1
1
2
3
2
4
5
3
6
(2)
1
1
-1
2
4
-2
3 -3
9
A 乘2 B
A 平方 B
f(x)=2x
建构数学
观察下列两个非空数集A、B的元素之间 的对应关系,它们有什么共同点?
1
1
2
3
2
4
5
3
6
A 乘2 B
(1)
1
1
-1
2
4
-2
3 -3
9
A 平方 B
(2)
1
1
2
1/2
3
4
1/3
1/4
A 求倒数 B
(3)
建构数学
函数的定义: 设A、B是非空 的数集 ,如果按照某种对应
法则f,对于集合A中的每一个 数x,在集合B中 都有惟一 的元素y和它对应,这样的对应叫做 从A到B的一个函数 ,通常记为
f(x)=x2
x∈{1,2,3} x∈{-3,-2,-1,1,1/2
3
4
1/3
1/4
A 求倒数 B
g(x)=1/x x∈{1,2,3,4}
回顾反思 理解函数的定义我们要注意些什么呢?
1.函数是非空数集到非空数集上的一种对应;
2.集合A中每一个元素在集合B中有唯一输出值, 集合B中每一个元素在集合A中未必有输入值;
高中函数图像知识点总结
一、函数图像的基本概念1. 函数的概念函数是一种特殊的关系,它把所有属于定义域的元素映射到值域中唯一确定的元素上。
函数的符号表示为 y = f(x),其中 x 是自变量,y 是因变量,f 表示函数名。
2. 函数的图像函数的图像是函数在坐标平面上的几何表示,通常用曲线、直线或点的方式表示。
3. 自变量与因变量在函数中,自变量是独立的变量,通常表示为 x;因变量是依赖于自变量的变量,通常表示为 y。
4. 坐标系坐标系是用来表示函数图像的平面,它通常由横轴和纵轴组成。
横轴表示自变量,纵轴表示因变量。
坐标系被分成四个象限,分别用来表示不同的正负值。
二、函数图像的特性1. 函数的奇偶性若对任意x∊D,都有 f(-x)=f(x),则称函数 f(x) 是偶函数;若对任意x∊D,都有 f(-x)=-f(x),则称函数 f(x) 是奇函数。
2. 函数的周期性若存在常数 T>0,使得对任意x∊D,都有 f(x+T)=f(x),则称函数 f(x) 是周期函数,T 称为函数的周期,最小的正周期称为函数的基本周期。
3. 函数的增减性若对任意x1,x2∊D,若 x1<x2,有f(x1)≤f(x2),则称函数在区间 D 上是增函数;若对任意x1,x2∊D,若 x1<x2,有f(x1)≥f(x2),则称函数在区间 D 上是减函数。
4. 函数的最值和极值函数在定义域 D 上的最大值和最小值称为函数的最值;函数在定义域 D 上的极大值和极小值称为函数的极值。
1. 一次函数 y = kx + b一次函数的图像是一条直线,其斜率 k 表示直线的倾斜程度,截距 b 表示直线与 y 轴的交点。
2. 二次函数 y = ax^2 + bx + c二次函数的图像是一条抛物线,其开口方向由 a 的正负确定,开口向上时为正,开口向下时为负,顶点坐标为 (-b/2a, c-b^2/4a)。
3. 指数函数 y = a^x指数函数的图像是以底数 a (a>1) 为底,自变量 x 为指数的幂函数。
函数及图像的知识点总结
函数及图像的知识点总结函数是数学中的一个重要概念,也是数学分析和高等代数的基础内容。
在数学中,函数是一种对应关系,可以简单的理解为一种特殊的映射关系,将一个变量的取值映射到另一个变量的取值。
在数学中,通常用f(x)来表示一个函数,其中x是自变量,f(x)是函数的因变量。
函数的定义:在数学中,函数是一个对应关系,它将一个或多个输入值映射到一个输出值。
函数通常用一个算式或图形来表示。
函数可以用以下的方式表示:f:A→B其中,A是函数的定义域,B是函数的值域。
定义域表示函数的输入值的集合,值域表示函数的输出值的集合。
函数的定义域和值域决定了函数的有效输入和输出的范围。
函数的图像:函数的图像是函数在平面直角坐标系中的图形,通常用函数的定义域和值域的点来表示。
函数的图像可以用直线、曲线或点来表示。
通过函数的图像可以直观地看出函数的性质和特点。
常见的函数类型:1. 线性函数:线性函数是指函数的图像是一条直线。
线性函数的一般形式为f(x) = ax + b,其中a和b为常数,a称为斜率,b称为截距。
线性函数的图像是一条斜率为a,截距为b的直线。
2. 二次函数:二次函数是指函数的图像是一条抛物线。
二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数。
二次函数的图像是一条开口的抛物线,开口的方向由二次项的系数a的正负决定。
3. 指数函数:指数函数是指函数的自变量为指数的函数。
指数函数的一般形式为f(x) =a^x,其中a为常数且a>0,a不等于1。
指数函数的图像是一条递增或递减的曲线,曲线的斜率由底数a的大小和正负决定。
4. 对数函数:对数函数是指函数的自变量为对数的函数。
对数函数的一般形式为f(x) =log_a(x),其中a为常数且a>0,a不等于1。
对数函数的图像是一条递增或递减的曲线,曲线的斜率由底数a的大小和正负决定。
函数的性质:1. 定义域和值域:函数的定义域和值域决定了函数的有效输入和输出的范围。
高一数学函数图像专题(含详解)
高一数学函数图像专题(含详解)一、函数的概念函数是一种数学关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
在数学中,我们用函数来描述数量之间的关系。
二、函数图像的绘制为了更好地理解函数的性质和规律,我们可以通过绘制函数图像来进行观察和分析。
绘制函数图像时,我们需要确定函数的定义域和值域,并选取一些代表性的输入值,计算出对应的输出值,然后将这些点连接起来,即可得到函数图像。
三、常见函数图像1.直线函数图像:直线函数的图像通常是一条直线,可以通过确定直线的斜率和截距来确定。
2.平方函数图像:平方函数的图像是一条抛物线,开口的方向由平方项的系数决定,开口向上为正,开口向下为负。
3.正弦函数图像:正弦函数的图像是一条波浪形曲线,表现周期性的特点。
4.指数函数图像:指数函数的图像呈现出递增或递减的趋势,斜率随着自变量的增大而增大或减小。
5.对数函数图像:对数函数的图像通常是一条曲线,呈现出随着自变量的增大,函数值增长趋缓的特点。
四、函数图像的性质1.奇偶性:函数图像关于原点对称的称为奇函数,图像关于y轴对称的称为偶函数。
2.单调性:函数图像上的点随着自变量的增大或减小而具有递增或递减的趋势。
3.零点与极值点:函数图像与x轴相交的点称为零点,图像上的极值点包括最大值和最小值。
五、总结函数图像是研究函数性质和规律的重要工具。
通过绘制函数图像,我们可以直观地了解函数的特点,并进行更深入的分析和推理。
在研究函数图像时,需要注意函数的定义域、值域以及一些常见函数的特点和性质。
这对于理解和应用函数概念都非常重要。
以上是关于高一数学函数图像专题的详细解释和内容总结,希望对你有所帮助。
初中函数的概念ppt课件
二次函数的定义
形如y=ax^2+bx+c(a, b,c是常数,a≠0)的函 数称为二次函数。
二次函数的图像
二次函数y=ax^2+bx+c 的图像是一个抛物线。
二次函数的性质
当a>0时,抛物线开口向 上,有最小值;当a<0时 ,抛物线开口向下,有最 大值。
03 函数的应用
函数在生活中的实际应用
人口增长模型
提供工具。
04 函数的扩展知识
复合函数的概念
定义
如果y是u的函数,而u是x的函数,那么y关于x的函数叫做由基本函 数f(u)和g(x)构成的复合函数。
表示方法
y = f(u),u = g(x)
分解
把一个复合函数分解成若干个基本初等函数,并分别指出各基本初等 函数在复合函数中的作用。
函数的奇偶性
THANKS 感谢观看
微积分
函数是微积分的基础,可以用来研 究物体的运动、变化和趋势等。
统计学
函数可以用来描述数据的分布特征 ,为统计分析提供工具。
函数在物理问题中的应用
力学
函数可以用来描述物体的运动状 态,如速度、加速度等。
热力学
函数可以用来描述温度、压力等 物理量的变化情况,为热力学研
究提供工具。
电学
函数可以用来描述电流、电压等 物理量的变化情况,为电学研究
函数的定义通常包括定义域和值域,定义域是指自变量的取值范围,值域是指因变 量的取值范围。
函数的表示方法
函数的表示方法有三种:表格法、图 象法和解析式法。
图象法是用图形来表示函数关系,它 直观形象,可以反映函数的单调性、 增减性等性质。
表格法是最简单的一种表示方法,它 将自变量和因变量的对应关系列成表 格,适用于简单的函数关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的概念和图像
一、 填空题:(每小题5分,共70分)
1、函数
2y x =+________________.
2、设()x f 为定义在()+∞∞-,上的偶函数,且()x f 在[)+∞,0上为增函数,则()2-f ,()π-f ,()3f 的大小顺序是____________
3、已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是___ _
4、设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤
5、求函数3
2y x =-在区间[3,6]上的最大值_________和最小值
___________.
6、.设f(x)=ax 7+bx +5,已知f(-2)=-10,求f(2)的值____________
7、已知函数f(x),当x<0时,f(x)=x 2+2x-1,若f(x)为R 上的奇函数,则函数在R 上的的解析式为_______________________
8、如果函数5)1()(2+--=x a x x f 在区间)1,21(上是增函数,那么)2(f 的取值范围是__________________.
9、若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 。
10、已知)(x f 是定义在]1,1[-上的增函数,且)1()2(x f x f -<-,则x
的取值范围为 。
11、定义在)1,1(-上的奇函数1
)(2+++=nx x m x x f ,则常数=m ____,=n _____。
12、已知函数)(x f y =在R 是奇函数,且当0≥x 时,x x x f 2)(2-=,则0<x 时,)(x f 的解析式为____ ___________。
13、已知函数[]2()22,5,5f x x ax x =++∈-,若()y f x =在区间[]5,5-上是单调函数. 则实数a 的取值范围
14、若()x f 是奇函数,且在区间()0,∞-上是单调增函数,又0)2(=f ,则0)(<x xf 的解集为 .
二、解答题(共6题,90分)
15、已知函数()
f x x =,求证:()f x 在7,4⎛⎫-∞ ⎪⎝
⎭上是增函数。
16
、定义在]11[,-上的函数)(x f y =是减函数,
且是奇函数,若0)54()1(2>-+--a f a a f ,求实数a 的范围.
17、求二次函数f(x)=x2-2ax+2在[2,4]上的最大值与最小值
18、作出函数
()
21
y x x
=-+的图象,并根据函数的图象找出函数的
单调区间.。