等腰三角形中的分类讨论问题归类

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学等腰三角形的分类讨论

等腰三角形是一种特殊而又十分重要的三角形,就是因为这种特殊性,在具体处理问题时往往又会出现错误,因此,同学们在求解有关等腰三角形的问题时一定要注意分类讨论。那么在什么情况下应该分类讨论呢?本文分以下几种情形讲述。

一、遇角需讨论

例1. 已知等腰三角形的一个内角为75°则其顶角为( )

A. 30°

B. 75°

C. 105°

D. 30°或75°

简析:75°角可能是顶角,也可能是底角。当75°是底角时,则顶角的度数为

180°-75°×2=30°;当75°角是顶角时,则顶角的度数就等于75°。所以这个等腰三角形的顶角为30°或75°。故应选D 。

说明:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解。

二、遇边需讨论

例2. 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。 简析:已知条件中并没有指明5和6谁是腰长谁是底边的长,因此应由三角形的三边关系进行分类讨论。当5是等腰三角形的腰长时,这个等腰三角形的底边长就是6,则此时等腰三角形的周长等于16;当6是腰长时,这个三角形的底边长就是5,则此时周长等于17。故这个等腰三角形的周长等于16或17。

说明:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应在符合三角形三边关系的前提下分类讨论。

三、遇中线需讨论

例3. 若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。

简析:已知条件并没有指明哪一部分是9cm ,哪一部分是12cm ,因此,应有两种情形。

若设这个等腰三角形的腰长是x cm ,底边长为y cm ,可得⎪⎪⎩⎪⎪⎨⎧=+=+,1221,921y x x x 或⎪⎪⎩⎪⎪⎨⎧=+=+.92

1,1221y x x x

解得⎩⎨⎧==,9,6y x 或⎩

⎨⎧==.5,8y x 即当腰长是6cm 时,底边长是9cm ;当腰长是8cm 时,底边长是5cm 。 说明:这里求出来的解应满足三角形三边关系定理。

四、遇高需讨论

例4. 等腰三角形一腰上的高与另一腰所成的夹角为45°,求这个等腰三角形的顶角的度数。

简析:依题意可画出图1和图2两种情形。图1中顶角为45°,图2中顶角为135°。

例5. 为美化环境,计划在某小区内用230m 的草皮铺设一块一边长为10m 的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长。

简析:在等腰ΔABC 中,设AB=10m ,作CD⊥AB 于D ,由3021=⋅⨯=∆CD AB S ABC ,可得CD=6m 。如下图,当AB 为底边时,AD=DB=5m ,所以)(6122m AD CD BC AC =+==。

如下图,当AB 为腰且ΔABC 为锐角三角形时,

m AC AB 10==,所以)(822m CD AC AD =-=,

)(102,222m BD CD BC m BD =+==。

如下图,当AB 为腰且ΔABC 为钝角三角形时,

m BC AB 10==,)(822m CD BC BD =-=,

所以)(106,1822m AD CD AC m AD =+==。

说明:三角形的高是由三角形的形状决定的,对于等腰三角形,当顶角是锐角时,腰上的高在三角形内;当顶角是钝角时,腰上的高在三角形外。

五、遇中垂线需讨论

例6.在ΔABC 中,AB=AC ,AB 的中垂线与AC 所在直线相交所得的锐角为50°,则底角∠B=____________。

简析:按照题意可画出如图1和如图2两种情况的示意图。

如图1,当交点在腰AC 上时,ΔABC 是锐角三角形,此时可求得∠A=40°,所以 ∠B=∠C=2

1(180°-40°)=70°。 如图2,当交点在腰CA 的延长线上时,ΔABC 为钝角三有形,此时可求得 ∠BAC=140°,所以∠B=∠C=2

1(180°-140°)=20°

故这个等腰三角形的底角为70°或20°。

说明:这里的图2最容易漏掉,求解时一定要认真分析题意,画出所有可能的图形,这样才能正确解题。

六、和方程问题的综合讨论

例7. 已知ΔABC 的两边AB ,AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 长为5。

(1)k 为何值时,ΔABC 是以BC 为斜边的直角三角形?

(2)k 为何值时,ΔABC 是等腰三角形,并求ΔABC 的周长。

简析:(1)略。

(2)若ΔABC 是等腰三角形,则有AB=AC ,AB=BC ,AC=BC 这三种情形。方程023)32(22=++++-k k x k x 可化为0)1)(2(=----k x k x ,即21+=k x ,12+=k x ,显然21x x ≠,即AC AB ≠。当AB=BC 或AC=BC 时,5是方程023)32(22=++++-k k x k x 的根。当5=x 时,代入原方程可得01272=+-k k ,解得31=k ,42=k 。

当3=k 时,原方程的解为4,521==x x ,等腰ΔABC 的三边长分别为5,5,4,周长为14。当4=k 时,原方程的解为5,621==x x ,等腰ΔABC 的三边长分别为5,5,6,周长为16。

所以当3=k 或4=k 时,ΔABC 是等腰三角形,周长分别为14或16。

相关文档
最新文档