等腰三角形中的分类讨论问题归类
等腰三角形分类讨论初三压轴题
中考热点3——等腰三角形分类讨论等腰三角形的分类讨论题多见于初三各级各类模拟考试甚至中考的压轴题中,由于这类题目都与图形运动有关,需要学生具有一定的想象能力、分析能力和运算能力,而这正是学生最缺乏的,理清这类题目的解题思路和解题策略将会等到在中考中获得高分的重要砝码。
等腰三角形分类讨论的解题思路粗分有两种,第一种:用含有字母的代数式分别表示等腰三角形的三条边,后用三条线段依次相等建立方程后求解,第二种:分别作出三种等腰三角形条件下图形,利用等腰三角形的有关性质和题目中的条件进行合理的转化后建立方程求解。
下面就常见的题型进行分析、归纳 典型例题【例1】如图,在Rt △ABC 中,∠C =90°,54sin =B ,AC =4;D 是BC 的延长线上的一个动点,∠EDA =∠B ,AE ∥BC . (1)找出图中的相似三角形,并加以证明;(2)设CD =x ,AE =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当△ADE 为等腰三角形时,求AE 的长. 【思路分析】思路一:用含有x 或者y 的代数式来表示等腰三角形的三条边长AD 、DE 、AE 三条线段依次相等建立方程后求解,显然AE 和DE 边都不方便用含含有x 或者y 的代数式表示。
思路二:分别作出三种等腰三角形条件下图形,利用第(1)题中证明的△ABD ∽△EDA 将等腰的条件转化到△ABD 中进行求解,最后带入定义域检验。
解:(1)∵AE ∥BC ∴∠EAD =∠ADB ,∠EDA =∠B ∴△ABD ∽△EDA (2)∵△ABD ∽△EDA ∴AEADAD BD = ∴y x x x 1616322+=++即3162++=x x y 0>x (3)情况一:当AE =AD 时AD =BD 即3162+=+x x67=x 情况二:DE =AE 时AB =AD ,AC ⊥BD BC =CD 即3=x情况三:AD =DE 时AB =BD 即53=+x2=x点评:将等腰三角形的条件进行适当转化,计算过程大大简化,既节约时间又提高正确率【例2】已知直线1l 的解析式63+=x y ,直线1l 与x 轴、y 轴分别交于点A 、B ,直线2l 经过B 、C 两点,E点C 的坐标为)0,8(.又知点P 在x 轴上从点A 向点C 移动,点Q 在直线2l 上从点C 向点B 移动.点P 、Q 同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒(100<<t ) (1)求直线2l 的解析式(2)当t 为何值时,△PCQ 是等腰三角形【思路分析】在直角坐标系中对等腰三角形进行讨论,依然遵循两大基本思路此题中PC 、QC 两条边长都方便用含有t 的代数式表示,而PQ 不易表示,将等腰三角形PQ =QC 和PC =PQ 两种情况,通过添加底边上的高转化为直角三角形,再用锐角三角比和相似三角形的方法进行求解则较易求得结果。
“分类讨论”在等腰三角形中的应用
“分类讨论”在等腰三角形中的应用在最近几年的全国各地中考试卷中,出现了以等腰三角形为背景,考查学生分类讨论能力的试题,为帮助同学们提高对此类问题的解题能力,现列举几例:一、要讨论谁是底边或腰长例1、已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长()A. 12 B 17 C 19 D 17或19分析:题中并未说明5或7是底边,还是腰,应分情况讨论.解:当等腰三角形的一腰长为5时,此时7为底边,满足任意两边之和大于第三边,所以满足题意的三角形的周长为5+5+7=17;当等腰三角形的一腰长为7时,此时5为底边,也满足任意两边之和大于第三边,故满足题意的三角形的周长为7+7+5=19.综上知选D.例2、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长.分析:已知等腰三角形三边长,说明有两边相等,但不知谁是腰,必须分三种情况分析.解:(1)当3x-2=4x-3时,即x=1,则三边为1,1,4,由于1+1<4,所以不成立;(2)当3x-2=6-2x时,即85x=,则三边长为141714555、、,由于141417555+>,所以成立;(3)当4x-3=6-2x时,即x=1.5,则三边为2.5,3,3,由于2.5+3>3,所以成立.由上可知等腰三角形周长为9或8.5.说明:如果等腰三角形的腰长为A,底边长为B,则有222b b aa+<<.二、要讨论腰与底谁较大例3、一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长.分析:题目中的条件是一部分比另一部分长2cm,这里可能是腰比底长,也可能是底比腰长,应分两种情况讨论,因为是中线,周长分成的两部分之差就是腰长与底边长之差.解:不妨设腰长为x cm,底边长为y cm ,根据题意有(1)当腰长大于底边时,有2220x yx y-=⎧⎨+=⎩,解得221633x y==、;(2)当腰长小于底边时,有2220y xx y-=⎧⎨+=⎩,解得68x y==、;因为两种情形都符合三角形的三边关系定理,故腰长为223cm或6cm.说明:分类讨论后,要用三角形三边关系定理来判断所给三边能否构成三角形,从而避免造成错解.三、要讨论谁是底角或顶角例4、(1)等腰三角形的一个角是30°,求底角.(2)等腰三角形的一个角是100°,求底角.分析:等腰三角形的一个角可能指底角,也可能指顶角,须分情况讨论,但顶角可以是锐有、直角、钝角,而底角只能是锐角.解:(1)当30°是底角时,底角即为30°;当30°是顶角时,底角为180302︒-︒,即为75°;(2)因100°只能是顶角,所以底角是1801002︒-︒,即为40°.说明:等腰三角形的底角只能为锐角,不能为直角、钝角,但顶角可以为锐角、直角、钝角.四、要讨论高在三角形内部或外部例5、已知等腰三角形ABC中,BC边上的高12AD BC=,求∠BAC的度数.分析:题中未交代哪条边是底边,哪条边是腰,所以必须分三种情况讨论.解:(1)当BC为底边时,则D是BC中点,△ABC为等腰直角三角形∠BAC=90°;(2)当BC为腰,且高AD在△ABC内部时,1122AD BC AB==,∠B=30°,所以∠BAC=75°;(3)当BC为腰,且高AD在△ABC的外部时,1122AD BC AB==,∠DBA=30°;所以∠BAC=15°.综上所述∠BAC的度数可以为15°、75°、90°.说明:由于题目的图形未画出,因此考虑情况时要周全,不要出现漏解.试一试:1、在活动课上,小红已有两根长为4cm、8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒长是_____Cm.2、在平面直角坐标系中,已知点为A(-2,0),B(2,0)画出等腰三角形ABC(画出一个即可),并写出你画出的ABC的顶点C的坐标.3、下面是数学课堂的一个学习片段,,阅读后, 请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手说:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°” ,还有一些同学也提出了不同的看法……(1)假如你也在课堂中,你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)“分类讨论”在等腰三角形中的应用当面临的问题不宜用一种方法处理或同一种形式叙述时,我们就要想到“分类讨论”——“分而治之,各个击破”.下面就让“分类讨论”思想在等腰三角形中“大放光彩”吧!例1 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°C、60°或150°D、60°或120°分析:分两种情况,①当顶角是锐角时,如图1,∵∠ABD=30°,∠ADB=90°,∴∠A=60°;②当顶角是钝角时,如图2,∵∠ABD=30°,∠ADB=90°,∴∠BAD=60°,∴∠BAC =120°.所以顶角度数为60°或120°,所以选D .例2 等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为( ) A 、7 B 、3 C 、5或3 D 、5分析:长为3的边可能是底边,也可能是腰,因此有两种情况,①若长为3的边为底边,则该等腰三角形的底边长为3; ②若长为3的边为腰,则该等腰三角形的底边长为(13-3)÷2=5.故选C .说明:边长为3的边、可能是底边,不要只认为它是腰.例3 已知点A 和点B ,以点A 和点B 为其中两个点作位置不同的等腰直角三角形,一共可以作出( )A 、2个B 、4个C 、6个D 、8个分析:如图3,以线段AB 为底边可作出两个等腰直角三角形,以AB 为腰可作出4个等腰直角三角形,因此,共可作出6个等腰直角三角形,故选C . 说明:解题时容易忽视为腰长的情况,因此,分析问题一定要用心,充分考虑各种情形. 例4 如图4,在等边△ABC 所在的平面内求一点P ,使△P AB 、△PBC 、△P AC 都是的等腰三角形,你能找到几个这样的点?画图描述它们的位置.分析:如图4,△ABC 三条边的垂直平分线的交点1p 满足条件,分别以点A 、点B 为圆心,AB 为半径画圆弧,交AC 的垂直平分线于2p 、3p 两点,则△、、、AC P BC P AB P 222∆∆、、、AC P BC P AB P 333∆∆也是等腰三角形,同样可以在AB 、BC 的垂直平分线上再找到4个点P ,使△P AB 、△PBC 、△P AC 是等腰三角形.所以共有7个点.画出的图形如图4.说明:此题乍一看只能确定在△ABC 内一点,关键要注意三个等腰三角形的腰是哪两条边.分类讨论探究题既是中考热点又是考生易错点,克服方法是解题时常提醒自己:“还有其它情况吗?”切记!…图1B 图2 图3B。
人教版数学八年级下册小专题(十) 运用分类讨论求解等腰三角形相关的多解问题
小专题(十)运用分类讨论求解等腰三角形相关的多解问题类型1针对腰长和底边长进行分类方法归纳:在解答已知等腰三角形边长的问题时,当题目中的条件没有指明已知的这条边是腰长还是底边长时,就要分类讨论,按腰和底边两种情况分类.若涉及边的长度,应运用三角形的三边关系进行辨别取舍.1.(武汉中考)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(A)A.5 B.6 C.7 D.82.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有(B)A.7个B.6个C.5个D.4个3.若实数x,y满足|x-5|+y-10=0,则以x,y的值为边长的等腰三角形的周长为25.类型2针对顶角和底角进行分类方法归纳:对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.4.等腰三角形有一个角为52°,它的一条腰上的高与底边的夹角为多少度?解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°;②若已知的这个角为底角,则一腰上的高与底边的夹角为38°.故所求的一腰上的高与底边的夹角为26°或38°.5.如果等腰三角形中的一个角是另一个角度数的一半,求该等腰三角形各内角的度数.解:设∠A ,∠B ,∠C 是该等腰三角形的三个内角,且∠A =12∠B. 设∠A =x °,则∠B =2x °.①若∠B 是顶角,则∠A ,∠C 是底角,于是有∠C =∠A =x °.∵∠A +∠B +∠C =180°,∴x +2x +x =180.解得x =45,故∠A =∠C =45°,∠B =90°;②若∠B 是底角,∵∠A ≠∠B ,∴∠A 是顶角,∠C =∠B =2x °.∵∠A +∠B +∠C =180°,∴x +2x +2x =180.解得x =36,故∠A =36°,∠B =∠C =72°.综上所述,等腰三角形的各内角分别为45°、45°、90°或36°、72°、72°.类型3 针对锐角、直角和钝角三角形进行分类方法归纳:根据等腰三角形顶角的大小可以将其分为锐角、直角或钝角三角形.不同的三角形其高、中线、垂直平分线的交点位置均不同,比如锐角三角形腰上的高的交点在这个三角形的内部;直角三角形腰上的高的交点为两直角边的交点;钝角三角形腰上的高的交点在这个三角形的外部,因此在解答时需要分类讨论.6.已知△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交成50°的角,求底角的度数.解:由题意可判断该三角形不可能是直角三角形,可能是锐角三角形或钝角三角形,故分两种情况讨论: ①如图1,垂直平分线DE 与腰AC 相交,且∠AED =50°,则∠A =40°,所以∠B =∠C =70°;②如图2,垂直平分线DE 与腰AC 的反向延长线相交,且∠AED =50°,则∠EAD =40°,∠BAC =140°,所以∠B =∠C =20°.综上可知,等腰三角形的底角为70°或20°.7.一个等腰三角形一边上的高等于另一边的一半,则等腰三角形底角的度数是多少?解:设∠A 为顶角,则∠ABC 、∠ACB 为底角.(1)若∠A 为锐角,如图1,作BD ⊥AC 于点D ,。
等腰三角形的分类讨论
等腰三角形的分类讨论模块一等腰三角形的分类讨论例1(1)等腰三角形的一边长为3,一边长为7,那么它的周长是。
(2)等腰三角形的一边长为4,周长为9,那么它的腰长是。
(3)已知等腰三角形一腰上的中线将它的周长分为6和12两部分,求此等腰三角形的腰长。
练习(1)已知一个等腰三角形两内角的度数之比为1:2,求这个等腰三角形顶角的度数。
(2)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为。
例2(1)若等腰三角形一腰上的高和另一腰的夹角为25°,求该三角形的底角的度数。
(2)(2016—2017武昌区八上期中第16题)已知△ABC是等腰三角形,由点A作BC边上的高恰好等于BC的一半,则∠BAC的度数为。
练习例3如图,在△ABC 中,∠ABC=90°,∠A=30°.将△ABC 绕B 点逆时针旋转α(0<α≤60°)角度后得到△A ’BC ’,A ’C ’与AC 交于点F ,与AB 交于点E ,连BF 。
当△BEF 为等腰三角时,α= 。
A模块二 两圆一中垂知识导航已知线段AB ,在平面上找一点C ,使△ABC 为等腰三角形。
图1 图2 图3AABB① 如图1,以A 为圆心,AB 为半径作圆,此圆上的所有点C 均满足AC=AB 。
② 如图2,以B 为圆心,BA 为半径作圆,此圆上的所有点C 均满足BC=BA 。
③ 如图3,作AB 的垂直平分线,此垂直平分线上的所有点C 均满足CA=CB 。
“两圆一中垂”上的所有点C 均满足△ABC 为等腰三角形,即满足“等腰”条件的C 点有无数个。
因此,题目会对C 点再加上另外一个限定条件----例如还限定C 点在坐标轴上或格点,这样,C 点的个数就只有几个了。
例4(2014—2016江岸区八上期末)如图:在4×4的网格中存在线段AB ,每格表示一个单位长度,并构建了平面直角坐标系。
在现有的网格中(包括网格的边界)存在一点P,点P 的横纵坐标都为整数,连接PA 、PB 后得到△PAB 为等腰三角形,则满足条件的点P 有 个。
八年级等腰三角形的分类讨论专题
专题一:等腰三角形中的分类讨论(一)角分类:顶角和底角+ 三角形内角和;外角1.已知一个等腰三角形两内角的度数之比为1:4,求顶角的度数。
2.一个等腰三角形的一个内角比另一个内角的2倍少30o,求这个三角形的三个内角的度数。
3.如果一个等腰三角形的一个外角等于100°,则该等腰三角形的底角的度数是.(二)边分类:底边和腰+ 三角形三边关系4.等腰三角形的两边分别是8,6,这个等腰三角形的周长为5.等腰三角形的两边分别是8,3,这个等腰三角形的周长为6.在等腰三角形ABC中,AB的长是AC的2倍,三角形的周长是40,则AB的长等于_______________.(三)中线分类7.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,求腰长和底长。
8.等腰三角形的底边长为6cm,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm,求这个等腰三角形的腰长(四)高、垂直平分线分类9.已知等腰三角形一腰上的高与另一腰的夹角为25°,求底角的度数10.在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________11.(2018·哈尔滨中考)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数12.(2019·白银中考)定义:等腰三角形的顶角与其一个底角的度数的比值b 称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=13.(2018·绍兴中考)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题。
等腰三角形中的分类讨论问题归类
初中数学等腰三角形的分类讨论等腰三角形是一种特殊而又十分重要的三角形,就是因为这种特殊性,在具体处理问题时往往又会出现错误,因此,同学们在求解有关等腰三角形的问题时一定要注意分类讨论。
那么在什么情况下应该分类讨论呢?本文分以下几种情形讲述。
一、遇角需讨论例1. 已知等腰三角形的一个内角为75°则其顶角为( )A. 30°B. 75°C. 105°D. 30°或75°简析:75°角可能是顶角,也可能是底角。
当75°是底角时,则顶角的度数为180°-75°×2=30°;当75°角是顶角时,则顶角的度数就等于75°。
所以这个等腰三角形的顶角为30°或75°。
故应选D 。
说明:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解。
二、遇边需讨论例2. 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。
简析:已知条件中并没有指明5和6谁是腰长谁是底边的长,因此应由三角形的三边关系进行分类讨论。
当5是等腰三角形的腰长时,这个等腰三角形的底边长就是6,则此时等腰三角形的周长等于16;当6是腰长时,这个三角形的底边长就是5,则此时周长等于17。
故这个等腰三角形的周长等于16或17。
说明:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应在符合三角形三边关系的前提下分类讨论。
三、遇中线需讨论例3. 若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。
简析:已知条件并没有指明哪一部分是9cm ,哪一部分是12cm ,因此,应有两种情形。
若设这个等腰三角形的腰长是x cm ,底边长为y cm ,可得⎪⎪⎩⎪⎪⎨⎧=+=+,1221,921y x x x 或⎪⎪⎩⎪⎪⎨⎧=+=+.921,1221y x x x 解得⎩⎨⎧==,9,6y x 或⎩⎨⎧==.5,8y x 即当腰长是6cm 时,底边长是9cm ;当腰长是8cm 时,底边长是5cm 。
专题08 等腰三角形中的分类讨论模型(解析版)
专题08等腰三角形中的分类讨论模型模型1、等腰三角形中的分类讨论:【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。
1)无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论;③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。
2)“两定一动”等腰三角形存在性问题:即:如图:已知A ,B 两点是定点,找一点C 构成等腰ABC △方法:两圆一线具体图解:①当AC AB =时,以点A 为圆心,AB 长为半径作⊙A ,点C 在⊙A 上(B ,C 除外)②当BC AB =时,以点B 为圆心,AB 长为半径作⊙B ,点C 在⊙B 上(A ,E 除外)③当BC AC =时,作AB 的中垂线,点C 在该中垂线上(D 除外)例1.(2023秋·河北张家口·八年级统考期末)ABC 是等腰三角形,5,7AB AC ==,则ABC 的周长为()A .12B .12或17C .14或19D .17或19【答案】D【分析】根据等腰三角形的定义分两种情况:当腰为5与腰为7时,即可得到答案.【详解】解:当ABC 的腰为5时,ABC 的周长55717++=;当ABC 的腰为7时,ABC 的周长57719++=.故选:D .【点睛】本题主要考查等腰三角形的定义,掌握等腰三角形的定义是解题的关键.例2.(2023春·四川巴中·七年级统考期末)等腰三角形的周长为32cm ,一边长为8cm ,则其它两边长是()∴150∠=︒,即顶角为150︒;故答案为:30︒或150︒.BAC【点睛】本题考查等腰三角形的性质,注意掌握分类讨论思想和数形结合思想的应用是解题的关键.例5.(2023秋·江苏·八年级专题练习)在如图所示的网格中,在格点上找一点P,使ABP为等腰三角形,则点P有()A.6个B.7个C.8个D.9个【答案】C【分析】分三种情况讨论:以AB为腰,点A为顶角顶点;以AB为腰,点B为顶角顶点;以AB为底.【详解】解:如图:如图,以AB为腰,点A为顶角顶点的等腰三角形有5个;以AB为腰,点B为顶角顶点的等腰三角形有3个;不存在以AB为底的等腰ABP,所以合计8个.故选:C.【点睛】本题考查等腰三角形的定义,网格图中确定线段长度;在等腰三角形腰、底边待定的情况下,分类讨论是解题的关键.例6.(2023·重庆市八年级期中)如图1,一副直角三角板△ABC和△DEF,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B、D、C、F在同一直线上,点A在DE上.如图2,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°)得△E′DF',当直线E′F′与直线AC、BC所围成的三角形为等腰三角形时,α的大小为___.【答案】7.5°或75°或97.5°或120°【分析】设直线E′F′与直线AC、BC分别交于点P、Q,根据△CPQ为等腰三角形,分三种情况:①当∠PCQ 为顶角时,∠CPQ=∠CQP,如图1,可求得α=7.5°;如图2,△CPQ为等腰三角形中,∠PCQ为顶角,可求得α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,可得∠CPQ=90°,如图3,进而求得α=90°-15°=75°;③如图4,当∠CQP为顶角时,∠CPQ=∠PCQ=45°,可得∠CQP=90°,进而求得α=∠EDE′=∠EDQ+∠QDE′=90°+30°=120°.【详解】解:设直线E′F′与直线AC、BC分别交于点P、Q,∵△CPQ为等腰三角形,∴∠PCQ为顶角或∠CPQ为顶角或∠CQP为顶角,①当∠PCQ为顶角时,∠CPQ=∠CQP,如图1,∵∠BAC=∠EDF=90°,∠B=45°,∠F=30°,∴∠E′DF′=90°,∠ACB=45°,∠E′F′D=30°,∵∠CPQ+∠CQP=∠ACB=45°,∴∠CQP=22.5°,∵∠E′F′D=∠CQP+∠F′DQ,∴∠F′DQ=∠E′F′D-∠CQP=30°-22.5°=7.5°,∴α=7.5°;如图2,∵△CPQ为等腰三角形中,∠PCQ为顶角,∴∠CPQ=∠CQP=67.5°,∵∠E′DF′=90°,∠F′=30°,∴∠E′=60°,∴∠E′DQ=∠CQP-∠E′=67.5°-60°=7.5°,∴α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,∴∠CPQ=90°,如图3,∵∠DE ′F ′=∠CQP +∠QDE ′,∴∠QDE ′=∠DE ′F ′-∠CQP =60°-45°=15°,∴α=90°-15°=75°;③如图4,当∠CQP 为顶角时,∠CPQ =∠PCQ =45°,∴∠CQP =90°,∴∠QDF ′=90°-∠DF ′E ′=60°,∴∠QDE ′=∠E ′DF ′-∠QDF ′=30°,∴α=∠EDE ′=∠EDQ +∠QDE ′=90°+30°=120°;综上所述,α的大小为7.5°或75°或97.5°或120°.故答案为:7.5°或75°或97.5°或120°.【点睛】本题考查了等腰三角形性质,直角三角形性质,旋转的性质,三角形内角和定理等,解题关键是运用数形结合思想和分类讨论思想思考解决问题.例7.(2022秋·江苏徐州·八年级校考期中)如图,70AOB ∠=︒,点C 是边OB 上的一个定点,点P 在角的另一边OA 上运动,当COP 是等腰三角形,OCP ∠=°.【答案】40或70或55【分析】分三种情况讨论:①当OC PC =,②当PO PC =,③当OP OC =,根据等腰三角形的性质以及三角形内角和定理即可得到结论.【详解】解:如图,(1)若点P在BC上,且满足PA PB=,求此时(3)在运动过程中,当t为何值时,ACP△【答案】(1)6516(2)316或52(3)54或32或90ACB∠=︒,5cmAB=在Rt ACP中,由勾股定理得()22234x x∴+-=,解得BP 平分ABC ∠,C ∠在BCP 与BDP △中,∵A B ∠∠=︒+90,90ACP BCP ∠+∠=︒,B BCP ∴∠=∠,CP BP AP ∴==,P ∴是AB 的中点,即15cm 22AP AB ==,524AP t ∴=.②如图,当P 在AB 上且3cm AP CA ==时,∴322AP t ==.③如图,当P 在AB 上且(1)求直线AB 的表达式和点D 的坐标;(2)横坐标为m 的点P 在线段AB 上(不与点A x 轴的平行线交AD 于点E ,设PE 的长为()0y y ≠,求y 与m 之间的函数关系式并直接写出相应的范围;(3)在(2)的条件下,在x 轴上是否存在点F ,使PEF !为等腰直角三角形?若存在求出点若不存在,请说明理由.【答案】(1)()450y x D =-+-,,(2)()33242y m m =+-<<,的运用,解答本题时求出函数的解析式是关键.课后专项训练A.120︒B.75︒【答案】C【答案】D【分析】分为AB AC =、BC BA =,CB CA =三种情况画图判断即可.【详解】解:如图所示:当AB AC =时,符合条件的点有2个;当BC BA =时,符合条件的点有1个;当CB CA =,即当点C 在AB 的垂直平分线上时,符合条件的点有一个.故符合条件的点C 共有4个.故选:D .【点睛】本题考查了等腰三角形的定义,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.4.(2023·江苏八年级期中)如图,在正方形网格中,每个小正方形的边长都为1,点A 、B 都是格点(小正方形的顶点叫做格点),若△ABC 为等腰三角形,且△ABC 的面积为1,则满足条件的格点C 有()A .0个B .2个C .4个D .8个【答案】C 【分析】根据等腰三角形的性质和三角形的面积解答即可.【详解】解:如图所示:∵△ABC 为等腰三角形,且△ABC 的面积为1,∴满足条件的格点C 有4个,故选C .【点睛】本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键A.3【答案】D故选:满足条件的点M 的个数为2.故选A .【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7.(2022·安徽淮北·九年级阶段练习)如图,在ABC 中,90C ∠=︒,8BC =,6AC =.若点P 为直线BC 上一点,且ABP △为等腰三角形,则符合条件的点P 有().A .1个B .2个C .3个D .4个【点睛】本题考查了等腰三角形的判定和勾股定理的应用,关键要用分类讨论的思想.8.(2022·黑龙江·哈尔滨八年级阶段练习)如图,在平面直角坐标系中,点A 的坐标为()1,1,在x 轴上确定点P ,使AOP 为等腰三角形,则符合条件的点P 有()A.2个B.3个C.4个D.5个【答案】C【分析】先计算OA的长,再以OA为腰或底分别讨论,进而得出答案.【详解】解:如图,22112OA=+=,当AO=OP1,AO=OP3时,P1(﹣2,0),P3(2,0),当AP2=OP2时,P2(1,0),当AO=AP4时,P4(2,0),故符合条件的点有4个.故选:C.【点睛】本题以平面直角坐标系为载体,主要考查了勾股定理和等腰三角形的定义,属于常考题型,全面分类、掌握解答的方法是关键.9.(2022·四川广元·八年级期末)如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,C所在直线为y轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB为等腰三角形,符合条件的M点有()A.6个B.7个C.8个D.9个∵BD AC ⊥,∴90ADB ∠=︒,∵∵BD AC ⊥,∴90ADB ∠=︒,∵ABD ∠11【分析】根据等腰三角形一腰上的中线将其周长分别为12和9两部分得到底和要的差是1293-=,再根据周长列式求解即可得到答案;【详解】解:∵等腰三角形一腰上的中线将其周长分别为12和9两部分,∴腰与底的差为:1293-=,①当底边比腰长时,设腰为x ,则底为3x +,由题意可得,32129x x ++=+,解得:6x =,3639x +=+=,②当腰比底边长时,设腰为x ,则底为3x -,由题意可得,32129x x -+=+,解得:8x =,3835x -=-=,故答案为:6,9或8,5.【点睛】本题主要考查三角形中线有关计算,解题的关键是得到腰长与底边之差再分类讨论.14.(2022·黑龙江哈尔滨·八年级期末)在平面直角坐标系xOy 中,已知A (1,2),在y 轴确定点P ,使△AOP 为等腰三角形,则符合条件的点P 有____个.【答案】4.【分析】根据等腰三角形的判定得出可能OA 为底,可能OA 为腰两种情况,依此即可得出答案.【详解】①以A 为圆心,以OA 为半径作圆,此时交y 轴于1个点(O 除外);②以O 为圆心,以OA 为半径作圆,此时交y 轴于2个点;③作线段AO 的垂直平分线,此时交y 轴于1个点;共1+2+1=4.故答案为:4.【点睛】本题考查了等腰三角形的判定的应用,有两边相等的三角形是等腰三角形,注意要进行分类讨论.15.(2022秋·江苏盐城·八年级校考阶段练习)如图,ABC 中,90ACB ∠=︒,10cm AB =,8cm AC =,若点P 从点A 出发,以每秒1cm 的速度沿折线A C B A ---运动,设运动时间为t 秒()0t >,当点P 在边AB 上,【答案】19或20或21.2【分析】利用等腰三角形的性质,依次画图,分类讨论即可.【详解】∵90ACB ∠=当P 在BA 上时,①②当6cm BC CP ==时,过CD PB ⊥于点D ,如图,∴12BD DP BP ==,∵12ABC S AC BC CD ==V g g ,∴ 4.8AC BC CD AB == ,在Rt CBD △中,由勾股定理得:()2226 4.8 3.6cm BD BC CD =--=,∴)22 3.6cm BP BD ==⨯=,∴(()867.221.2s t =++,【答案】5或8【分析】ABP 是以AB 为腰的等腰三角形时,分两种情况:出BP 的长度,继而可求得t 值.【详解】解:在Rt ABC △中,∠②当AB AP =时,28cm 8BP BC t ===,故答案为:5或8.【点睛】本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握等腰三角形的性质,以及分情况讨论,注意不要漏解.15.(2022·河南平顶山·八年级期末)如图,ABC 中,90C ∠=︒,6BC =,ABC ∠的平分线与线段AC 交于点D ,且有AD BD =,点E 是线段AB 上的动点(与A 、B 不重合),连接DE ,当BDE 是等腰三角形时,则BE 的长为___________.【答案】4或4【分析】现根据已知条件得出30CBD ABD BAD ∠=∠=∠=︒,再根据BC =6,分别求出AB 、AC 、BD 、AD 、(2)当BE =DE ,如图:∵BE =DE ∠EDB =∠ABD =30°,∴∠AED =∠EDB ∴∠ADE =180°-∠AED -∠A =180°-60°-30°=90°,∴ ADE 为直角三角形,又∵30A ∠=︒且AD =43,∴DE ,∴BE =4;(3)当BD =DE ,时,点E 与A 重合,不符合题意;综上所述,BE 为4或43.故答案为:4或43.【点睛】本题考查了等腰三角形的性质,直角三角形的性质和判定,勾股定理的应用,16.(2023·上虞市初二月考)在如图所示的三角形中,∠A =30°,点P 和点Q 分别是边AC 和BC 上的两个动点,分别连接BP 和PQ ,把△ABC 分割成三个三角形△ABP ,△BPQ ,△PQC ,若分割成的这三个三角形都是等腰三角形,则∠C 有可能的值有________个.【答案】7【分析】①当AB=AP ,BQ=PQ ,CP=CQ 时;②当AB=AP ,BP=BQ ,PQ=QC 时;③当APB ,PB=BQ ,PQ=CQ 时;④AP=PB,PB=PQ,PQ=QC时;根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】解:如图所示,共有9种情况,∠C的度数有7个,分别为80°,40°,35°,20°,25°,100°,50°.①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时,③当AP=AB,PQ=CQ,PB=PQ时.④当AP=AB,PQ=PC,BQ=PQ时,⑤当AP=BP,CP=CQ,QB=PQ时,⑥当AP=PB,PB=BQ,PQ=CQ时;⑦AP=PB,PB=PQ,PQ=QC时.⑧AP=PB,QB=PQ,PQ=CC时.⑨BP=AB,PQ=BQ,PQ=PC时.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.17.(2022·浙江·八年级专题练习)已知:如图,线段AC和射线AB有公共端点A.求作:点P,使点P在射线AB上,且ACP为等腰三角形.(利用无刻度的直尺和圆规作出所有符合条件的点P,不写作法,保留作图痕迹)【答案】见解析.【分析】分别作出①AP=CP;②AP=AC;③AC=CP即可.【详解】如图所示,点1P、2P、3P即为所求.△是等腰三角形的三种情况,避免漏答案.【点睛】本题考查尺规作图-作等腰三角形.特别注意ACP18.(2022·山东·周村二中八年级期中)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图,在△ABC中,∠A=80°,AB=AC,若点P是△ABC的巧妙点,则符合条件的点P一共有几个?请直接写出每种情况下∠BPC的度数.(3)等边三角形的巧妙点的个数有()A.2个B.6个C.10个D.12个【答案】(1)见解析;(2)6个;∠BPC的度数为40°或160°或140°或80°;(3)C.综上所述:∠BPC的度数40°或80°或140°或160°.(3)如图所示,分别以等边三角形的三条边作其对应边的垂直平分线,再分别以等边三角形的三个顶点为圆心,等边三角形的边长为半径画圆,分别与三条边的垂直平分线的交点和三条垂直平分线的交点即为等边三角形的巧妙点,共有10个,故选:C.【点睛】本题主要考查垂直平分线的性质、等腰三角形的性质,构建等腰三角形的作法:定顶点,定圆心;定腰,定半径;以及等边三角形的性质等.熟练掌握相关性质是解题关键.19.(2022·黑龙江密山·八年级期末)如图,直线MN与x轴、y轴分别相交于B、A两点,()2-+-=.(1)求A,B两点的坐标;(2)若点O到AB的距离为24OA OB6805,求线段AB的长;(3)在(2)的条件下,x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.【答案】(1)A (0,6),B (8,0);(2)AB =10;(3)存在,(-8,0)、(-2,0)、(18,0).【分析】(1)由非负数的性质知OA =6,OB =8,据此可得点A 和点B 的坐标;(2)根据1122OAB S AB d OA OB == △求解可得;(3)先设点P (a ,0),根据A (0,6),B (8,0)得()22222226810100PA a PB a AB =+=-==,,,再分PA =AB 和AB =PB 两种情况分别求解可得.(1)()2680OA OB -+-= ∴O −6=0O −8=068OA OB ∴==则A 点的坐标为A (0,6),B 点的坐标为(8,0)(2)1122OAB S AB d OA OB == △,245d =6810245OA OB AB d ⨯∴=== (3)存在点P ,使△ABP 是以AB 为腰的等腰三角形设点P (a ,0),根据A (0,6),B (8,0)得()22222226810100PA a PB a AB =+=-==,,①若PA =AB ,则22PA AB =,即226100a +=,解得a =8(舍)或a =−8,此时点P (−8,0);②若AB =PB ,即22AB PB =,即()21008a =-解得a =18或a =−2,此时点P (18,0)或(−2,0);综上,存在点P ,使△ABP 使以AB 为腰的等腰三角形,其坐标为(−8,0)或(18,0)或(−2,0).【点睛】本题考察了非负数的性质、直角三角形的面积求法、勾股定理及等腰三角形的性质,分类讨论思想的运用是解决第3问的关键20.(2022秋·四川成都·八年级校考期中)如图,四边形OABC 是一张长方形纸片,将其放在平面直角坐标系中,使得点O 与坐标原点重合,点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为()3,4,D 的坐标为()2,4,现将纸片沿过D 点的直线折叠,使顶点C 落在线段AB 上的点F 处,折痕与y 轴的交点记为E .。
等腰三角形分类讨论专题
类型二
1.等腰三角形一个内角是80°, 则另两个内角是 500,500或800,200
2.等腰三角形两内角比是 1:4,则各个内角分别是 (1200,300,)300或
800,200,200
类型三
1.等腰三角形一腰上的高与另一 腰的夹角是450,求等腰三角形 的底角
当堂检测
❖课本65页练习题
2.等腰三角形一腰上的垂直平分 线与另一腰所在直线相交所得锐 角角是500,求等腰三角形的底 角
类型四
如图,在三角形ABC中,AB=AC, AC边上的中线把三角形的周长分为24cm 和30cm的两部分,求三角形各边的长
A
D
C B
腰和底不确定时需分情况讨论
顶角和底角不确定时需分情况讨论 遇到高和垂直平分线时需分情况讨论 遇到中线分周长时需分情况讨论
等腰三角形 分类讨论专题
学习目标
❖1.构建等腰三角形分类 讨论的 思想
❖2.熟练做出关于分类讨论的类 型题
类型一
1.等腰三角形两边长是6和8, 则周长是 20或22
2.等腰三角形周长是25cm,
一边长是m
D
类型一
3.在平面直角坐标系中, P(2,3),o是坐标原点,已知A是 X轴上一点,若以O,A,P三点 组成的三角形是等腰三角形,
【期末复习】浙教版八年级上册提分专题:等腰三角形中的分类讨论(解析版)
【期末复习】浙教版八年级上册提分专题:等腰三角形中的分类讨论【知识点睛】❖ 在等腰三角形中,没有明确指明边是腰还是底时,要进行分类讨论,且求出未知边的长后,一定要看这三边能否组成三角形;❖ 没有明确指明角是顶角或底角时,也要进行分类讨论设等腰三角形中有一个角为α时对应结论 当α为顶角时底角=α2190-︒当α为直角或钝角时 不需要分类讨论,该角必为顶角 当α为锐角时α可以为顶角;也可以为底角当等腰三角形的一个外角为α时对应结论 若α为锐角、直角 α必为顶角的外角若α为钝角α可以是顶角的外角,也可以是底角的外角❖ 动态环境下的等腰三角形存在性问题【类题训练】1.△ABC 中,AB =AC ,一腰上的中线BD 把三角形的周长分为9cm 和12cm 两部分,则此三角形的腰长是 8cm 或6cm .【分析】等腰三角形一腰上的中线将它的周长分为12厘米和18厘米两部分,但已知没有明确等腰三角形被中线分成的两部分的长,哪个是9cm ,哪个是12cm ,因此,有两种情况,需要分类讨论. 【解答】解:根据题意画出图形,如图, 设等腰三角形的腰长AB =AC =2x ,BC =y , ∵BD 是腰上的中线, ∴AD =DC =x ,若AB +AD 的长为12,则2x +x =12,解得x =4cm , 则x +y =9,即4+y =9,解得y =5cm ;若AB +AD 的长为9,则2x +x =9,解得x =3cm ,则x+y=12,即3+y=12,解得y=9cm;所以等腰三角形的腰长为8cm或6cm.故答案为:8cm或6cm.2.(1)等腰三角形中有一个角是70°,则它的顶角是70°或40°.(2)等腰三角形中有一个角是100°,则它的另两个角是40°,40°.(3)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【分析】(1)等腰三角形一内角为70°,没说明是顶角还是底角,所以有两种情况.(2)由于等腰三角形的两底角相等,所以100°的角只能是顶角,再利用三角形的内角和定理可求得另两底角.(3)题中没有指明已知角是底角还是顶角,故应该分情况进行分析从而求解.【解答】解:(1)①当70°角为顶角,顶角度数即为70°;②当70°为底角时,顶角=180°﹣2×70°=40°.(2)∵等腰三角形的两底角相等∴两底角的和为180°﹣100°=80°∴两个底角分别为40°,40°.(3)①当∠A=70°时,则∠ABC=∠C=55°,因为BD⊥AC,所以∠DBC=90°﹣55°=35°;②当∠C=70°时,因为BD⊥AC,所以∠DBC=90°﹣70°=20°故答案为:70°或40°;40°,40°;35°或20°.3.如果等腰三角形的周长是35cm,一腰上中线把三角形分成两个三角形,其周长之差是4cm,则这个等腰三角形的底边长是9cm或cm.【分析】根据题意画出图形,设等腰三角形的腰长为xcm,则底边长为(19﹣2x)cm,再根据两个三角形的周长差是4cm求出x的值即可.【解答】解:如图所示,等腰△ABC中,AB=AC,点D为AC的中点,设AB=AC=xcm,∵点D为AC的中点,∴AD=CD=,BC=25﹣(AB+AC)=35﹣2x,当△ABD的周长大于△BCD的周长时,AB+AD+BD﹣(BC+CD+BD)=4,即x+﹣(35﹣2x)﹣=4,解得x=13,底边长为35﹣13×2=9(cm);当△BCD的周长大于△ABD的周长时,则BC+CD+BD﹣(AB+AD+BD)=4,即35﹣2x+﹣(x+)=4,解得x=,底边长为35﹣×2=(cm).综上所述,这个等腰三角形的底边长为9cm或cm.故答案为:9cm或cm.4.已知△ABC中,CA=CB,AD⊥BC于D,∠CAD=50°,则∠B=70°或20°.【分析】利用直角三角形两锐角互余可求得∠C,再利用三角形内角和定理和等腰三角形的性质可求得∠B.【解答】解:若△ACB是锐角三角形,如图1.∵AD⊥BC,∠CAD=50°,∴∠C=90°﹣∠CAD=90°﹣50°=40°,∵CA=CB,∴∠B=∠CAB,且2∠B+∠C=180°,∴∠B=70°,若△ACB是钝角三角形,如图2.∵AD⊥BC,∠CAD=50°,∴∠DCA=90°﹣∠CAD=90°﹣50°=40°,∵CA=CB,∴∠B=∠CAB,且∠DCA=∠B+∠CAB∴∠B=20°故答案为:70°或20°.5.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△P AB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【解答】解:如图,第1个点在CA延长线上,取一点P,使BA=AP;第2个点在CB延长线上,取一点P,使AB=PB;第3个点在AC延长线上,取一点P,使AB=PB;第4个点在BC延长线上,取一点P,使AB=P A;第5个点在AC延长线上,取一点P,使AB=AP;第6个点在AC上,取一点P,使∠PBA=∠P AB;∴符合条件的点P有6个点.故选:B.6.用一根长为21厘米的铁丝围成一个三条边长均为整数厘米的等腰三角形,则方案的种数为()A.5B.6C.7D.8【分析】设等腰三角形的腰为x,底边为y,根据三角形的周长求出y=21﹣2x,根据三角形三边关系定理得出x+x>y,求出x+y>21﹣2x,再求出不等式组的解集即可.【解答】解:设等腰三角形的腰为x,底边为y,则x>0,y>0,x+x>y,则x+x+y=21,即①y=21﹣2x>0,所以②x+x>21﹣2x,解①②得:5<x<10.5,所以整数x可以为6,7,8,9,10,共5种,故选:A.7.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为120°或75°或30°.【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.8.如图,∠AOB=60°,C是BO延长线上一点,OC=12cm,动点P从点C出发沿CB以2cm/s的速度移动,动点Q从点O出发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=4或12s时,△POQ是等腰三角形.【分析】根据等腰三角形的判定,分两种情况:(1)当点P在线段OC上时;(2)当点P在CO的延长线上时.分别列式计算即可求.【解答】解:分两种情况:(1)当点P在线段OC上时,设t时后△POQ是等腰三角形,有OP=OC﹣CP=OQ,即12﹣2t=t,解得,t=4s;(2)当点P在CO的延长线上时,此时经过CO时的时间已用6s,当△POQ是等腰三角形时,∵∠POQ=60°,∴△POQ是等边三角形,∴OP=OQ,即2(t﹣6)=t,解得,t=12s故答案为4s或12s.9.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.【分析】如果一个三角形有两个角相等,那么这两个角所对的边也相等,据此进行判断即可.【解答】解:A、如图所示,△ACD和△BCD都是等腰三角形;B、如图所示,△ABC不能够分成两个等腰三角形;C、如图所示,△ACD和△BCD都是等腰三角形;D、如图所示,△ACD和△BCD都是等腰三角形;故选:B.10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.【解答】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时都能得到符合题意的等腰三角形.故选:C.11.如图,△ABC中,∠B=60°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为75°或120°或15°.【分析】分三种情形分别求解即可.【解答】解:∵△ABC中,∠B=60°,∠C=90°,∴∠BAC=180°﹣60°﹣90°=30°,如图,有三种情形:①当AC=AD时,∠ADC==75°.②当CD′=AD′时,∠AD′C=180°﹣30°﹣30°=120°.③当AC=AD″时,∠AD″C==15°,故答案为:75°或120°或15°.12.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q运动路线的长为3或9.【分析】如图,连接CP,BQ,由“SAS”可证△ACP≌△ABQ,可得BQ=CP,可得点Q运动轨迹是A→H→B,分两种情况讨论,即可求解.【解答】解:如图,连接CP,BQ,∵△ABC,△APQ是等边三角形,∴AP=AQ=PQ,AC=AB,∠CAP=∠BAQ=60°,∴△ACP≌△ABQ(SAS)∴BQ=CP,∴当点P运动到点B时,点Q运动到点H,且BH=BC=6,∴当点P在AB上运动时,点Q在AH上运动,∵△BPQ是等腰三角形,∴PQ=PB,∴AP=PB=3=AQ,∴点Q运动路线的长为3,当点P在BC上运动时,点Q在BH上运动,∵△BPQ是等腰三角形,∴BQ=PB,∴BP=BQ=3,∴点Q运动路线的长为3+6=9,故答案为:3或9.13.如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为45°或36°或或.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵过点C的直线能将△ABC分成两个等腰三角形,①如图1,∵∠ACB=2∠A,∴AD=DC=BD,∴∠ACB=90°,∴∠A=45°;②如图2,AD=DC=BC,∴∠A=∠ACD,∠BDC=∠B,∴∠BDC=2∠A,∴∠A=36°,③AD=DC,BD=BC,∴∠BDC=∠BCD,∠A=∠ACD,∴∠BCD=∠BDC=2∠A,∴∠BCD=2∠A,∵∠ACB=2∠A,故这种情况不存在.④如图3,AD=AC,BD=CD,∴∠ADC=∠ACD,∠B=∠BCD,设∠B=∠BCD=α,∴∠ADC=∠ACD=2α,∴∠ACB=3α,∴∠A=α,∵∠A+∠B+∠ACB=180°,∴α+α+3α=180°,∴α=,∴∠A=,⑤如图4,AC=CD=DB,∴∠A=∠CDA,∠B=∠DCB,∵∠CDB=180°﹣∠CDA=180°﹣∠A,∴∠B=∠DCB==,∴∠ACB=∠A=180°﹣,∵∠ACB=2∠A,∴180°﹣=2∠A,∴综上所述,∠A的度数为45°或36°或或.故答案为:45°或36°或或.14.已知等边△ABC的边长为3,点E在直线AB上,点D在直线CB上,且ED=EC,若AE=6,则CD的长为3或9.【分析】①E在线段AB的延长线上时,过E点作EF⊥CD于F,②当E在线段AB的延长线时,过E点作EF ⊥CD于F,根据等边三角形的性质求出BE长和∠ABC=60°,解直角三角形求出BF,求出CF,即可求出答案.【解答】解:点E在直线AB上,AE=6,点E位置有两种情况:①E在线段AB的延长线上时,过E点作EF⊥CD于F,∵△ABC是等边三角形,△ABC的边长为3,AE=6,∴BE=6﹣3=3,∠ABC=60°,∴∠EBF=60°,∴∠BEF=30°,∴BF=BE=,∴CF=+3=,∵ED=EC,∴CF=DF,∴CD=×2=9;②如图2,当E在线段AB的延长线时,过E点作EF⊥CD于F,∵△ABC是等边三角形,△ABC的边长为3,AE=6,∴BE=6+3=9,∠ABC=60°,∴∠EBF=60°,∴∠BEF=30°,∴BF=AE=,∴CF=﹣3=,∵ED=EC,∴CF=DF,∴CD=×2=3;即C=9或3,故答案为:3或9.15.△ABC的高AD、BE所在的直线交于点M,若BM=AC,求∠ABC的度数.【分析】分两种情况考虑:当∠ABC为锐角时,如图1所示,由AD垂直于BC,BE垂直于AC,利用垂直的定义得到一对直角相等,再由一对对顶角相等,得到∠CAD=∠MBD,根据一对直角相等,再由BM=AC,利用AAS得出三角形BMD与三角形ACD全等,由全等三角形对应边相等得到AD=BD,得到三角形ABD为等腰直角三角形,可得出∠ABC=45°;当∠ABC为钝角时,如图2所示,同理利用AAS得出三角形ADC与三角形DBM全等,由全等三角形对应边相等得到AD=BD,得出三角形ABD为等腰直角三角形,求出∠ABD=45°,利用邻补角定义即可求出∠ABC=135°.【解答】解:分两种情况考虑:当∠ABC为锐角时,如图1所示,∵AD⊥DB,BE⊥AC,∴∠MDB=∠AEM=90°,∵∠AME=∠BMD,∴∠CAD=∠MBD,在△BMD和△ACD中,,∴△BMD≌△ACD(AAS),∴AD=BD,即△ABD为等腰直角三角形,∴∠ABC=45°;当∠ABC为钝角时,如图2所示,∵BD⊥AM,BE⊥AC,∴∠BDM=∠BEC=90°,∵∠DBM=∠EBC,∴∠M=∠C,在△BMD和△ACD中,,∴△BMD≌△ACD(AAS),∴AD=BD,即△ABD为等腰直角三角形,∴∠ABD=45゜,则∠ABC=135゜.16.已知点P为线段CB上方一点,CA⊥CB,P A⊥PB,且P A=PB,PM⊥BC于M,若CA=1,PM=4.求CB的长.【分析】根据全等三角形的判定得出△PMB≌△PNA,进而分类讨论得出答案即可.【解答】解:此题分以下两种情况:①如图1,过P作PN⊥CA于N,∵P A⊥PB,∴∠APB=90°,∵∠NPM=90°,∴∠NP A=∠BPM,在△PMB和△PNA中,,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=3,∴BC=7;②如图2,过P作PN⊥CA于N,∵P A⊥PB,∴∠APB=90°,∵∠NPM=90°,∴∠NP A=∠BPM,在△PMB和△PNA中,,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=5,可得BC=9.综合上述CB=7或9.17.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°﹣18°=57°,于是得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,②如图2,当点D在线段BC上时,∠ADC=x°+α,③如图3,当点D在点C右侧时,∠ADC=x°﹣α,根据题意列方程组即可得到结论.【解答】解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∴∠ADE=∠AED=75°,∴∠CDE=180°﹣35°﹣30°﹣75°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°﹣18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,∴,(1)﹣(2)得2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α,∴,(2)﹣(1)得α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α,∴,(2)﹣(1)得2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)图①是顶角为36°的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)图③是顶角为45°的等腰三角形,请你在图③中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,则x所有可能的值为.【分析】(1)在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线即可;(2)在图③中画出顶角为45°的等腰三角形的三分线即可;(3)分两种情况:AD为等腰三角形的腰或底作图即可得结论.【解答】解:(1)在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线;(2)在图③中画出顶角为45°的等腰三角形的三分线.每个等腰三角形顶角的度数为:90°、135°、45°.故答案为:90°、135°、45°.(3)如下图作△ABC,①如图1:当AD=AE时,∵2x+x=30+30,∴x=20.②如图2:当AD=DE时,∵2x+x+30+30=180.∴x=40.所以x的所有可能的值为20°或40°.故答案为20°或40°.19.如图,在四边形ABCD中,AB∥CD,AE交BC于点P,交DC的延长线于点E,点P为AE的中点.(1)求证:点P也是BC的中点;(2)若CB⊥AB,且DP=,CD=,AB=4,求AP的长;(3)在(2)的条件下,若线段AE上有一点Q,使得△ABQ是等腰三角形,求AQ的长.【分析】(1)由平行线的性质得出∠CEP=∠BAP,∠ECP=∠ABP,由点P为AE的中点,得出PE=P A,由AAS证得△CEP≌△BAP,即可得出结论;(2)由CB⊥AB,AB∥CD,得出∠DCP=∠ABP=90°,在Rt△DCP中,CP==3,由(1)得CP=PB=3,在Rt△ABP中,AP==5;(3)①当AQ=AB时,AQ=AB=4;②当BA=BQ时,过点B作BN⊥AQ于N,则AN=NQ,由S△ABP=AB•BP=AP•BN,求出BN=,在Rt△ABN中,AN==,则AQ=2AN=;③当AQ=QB时,证明QB=AQ=QP,则AQ=AP=.【解答】(1)证明:∵AB∥CD,∴∠CEP=∠BAP,∠ECP=∠ABP,∵点P为AE的中点,∴PE=P A,在△CEP和△BAP中,,∴△CEP≌△BAP(AAS),∴PC=PB,∴点P也是BC的中点;(2)解:∵CB⊥AB,AB∥CD,∴∠DCP=∠ABP=90°,在Rt△DCP中,CP===3,由(1)得:CP=PB=3,在Rt△ABP中,AP===5;(3)解:①当AQ=AB时,AQ=AB=4;②当BA=BQ时,过点B作BN⊥AQ于N,如图1所示:则AN=NQ,S△ABP=AB•BP=AP•BN,即4×3=5BN,∴BN=,在Rt△ABN中,AN===,∴AQ=2AN=;③当AQ=QB时,如图2所示:∵AQ=QB,∴∠QAB=∠QBA,∵∠QAB+∠QPB=90°,∠QBA+∠QBP=90°,∴∠QPB=∠QBP,∴QB=QP,∴QB=AQ=QP,∴AQ=AP=;综上所述,△ABQ是等腰三角形,AQ的长为4或或.。
复习专题:等腰三角形中的分类讨论
40°
40°
六、 遇动点动角需讨论
1、已知C、D两点为线段AB的中垂线上的两 动点,且∠ACB=500,∠ADB=800,求 ∠CAD的度数。
C
C
D
A
E
B
A
E
B
D
几何图形之间的位置关系不明确导致需分类讨论
六、 遇动点动角需讨论
3、如图,在等腰△ABC中,AB=AC,点E为BC边 上一动点(不与点B、C重合),过点E作射线EF 交AC于点F, 使∠AEF=∠B=β.
• (1)判断∠BAE与∠CEF的大小关系,并说明理 由;
• (2)当△AEF为
的大小. A
时,求∠BEA
A
B
E
F
B
C
C
备用图
探究变式:
若将(2)中的△AEF为“等腰三角ห้องสมุดไป่ตู้”改为“
系。
”时,∠BAE=α,求α与β之间的数量关
A
A
F
B
E
CB
C
备用图
解:
(3)如图1,当∠AFE=90°时, ∵∠B+∠BAE=∠AEF+∠CEF, ∠B=∠AEF=∠C, ∴∠BAE=∠CEF, ∵∠C+∠CEF=90°,
故∠DCE的度数为200或1100或700。
E
A
D’
C
B
2.在网格中,网格线的交点称为格点。已知A, B是两个格点,如果点C也是图中的格点, 且使得△ABC为等腰三角形,则点C的个 数( )C
A.6 B.7
C.8 D.9
B A
∵BE=BC,∴∠BEC=(1800-∠ABC)÷2, ∴
DCE 1800 DEC EDC 1800 BEC ADC
用分类讨论求解等腰三角形多解问题
用分类讨论求解等腰三角形多解问题类型1 对对顶角和底角的分类讨论方法归纳:对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.例1. 已知等腰三角形的一个内角为75°则其顶角为()A. 30°B. 75°C. 105°D. 30°或75°简析:75°角可能是顶角,也可能是底角。
当75°是底角时,则顶角的度数为180°-75°×2=30°;当75°角是顶角时,则顶角的度数就等于75°。
所以这个等腰三角形的顶角为30°或75°。
故应选D。
说明:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解。
变式1:已知等腰三角形的一个外角为100°,则其顶角为______。
变式2:如果等腰三角形中一个角是另一个角的两倍,那么它的底角是__________度类型2 对腰长和底长的分类讨论方法归纳:在解答已知等腰三角形边长的问题时,当题目条件中没有明确说明哪条边是“腰”,哪条边是“底”时,往往要进行分类讨论.还要依据:三角形的任意两边之和大于第三边;两边之差小于第三边.来判定取舍。
例2、等腰三角形两边长为3 cm和5 cm,则它的周长是解析:当3cm为腰长时,此时三边为3cm、3cm、5cm,周长为11cm;如果5cm为腰长时,此时三边为5cm、5cm、3cm,周长为13cm。
变式1、若一个等腰三角形的三边长均满足(x-2)(x-4)=0,求此等腰三角形的周长.变式2、等腰三角形的一边长为6,周长为14,那么它的腰长为多少?变式3、若等腰三角形一腰上的中线分周长为9 cm和12 cm两部分,求这个等腰三角形的底和腰的长.类型3 对锐角、直角和钝角三角形的分类讨论方法归纳:根据等腰三角形顶角的大小可以将其分为锐角、直角和钝角三角形.不同的三角形其高、中线、垂直平分线的交点位置均不同,比如锐角三角形腰上的高在这个三角形的内部;直角三角形腰上的高在顶角的顶点上;钝角三角形腰上的高在这个三角形的外部,因此在解答时需要分类讨论.例3、等腰三角形一腰上的高与另一腰所成的夹角为45°,求这个等腰三角形的顶角的度数。
图形运动中等腰三角形分类讨论(2)有答案
图形中的等腰三角形分类讨论1.理解等腰三角形的性质和判定定理;2.能用等腰三角形的判定定理进行相关计算和证明;3.初步体会等腰三角形中的分类讨论思想;4.体会在函数动点中寻找某些特殊的点形成的等腰三角形;5.培养学生进行独立思考,提高独立解决问题的能力。
知识结构【备注】:1.此部分知识点梳理,根据第1个图先提问引导学生回顾学过的等腰三角形的性质,可以在黑板上举例让学生画图;2再根据第2个图引导学生总结出题目中经常出现的一些等腰三角形的题型;3.和学生一起分析二次函数背景下等腰三角形的基本考点,为后面的例题讲解做好铺垫。
建议时间5分钟左右。
一.等腰三角形的性质:二.等腰三角形常见题型分类:三.函数背景下的等腰三角形的考点分析:1.求解相应函数的解析式;2.根据函数解析式求解某些特殊点的坐标;3.根据点的位置进行等腰三角形的讨论:分“指定腰长”和“不指定腰长”两大类;4.根据点的位置和形成的等腰三角形立等式求解。
例1.如图,等腰梯形ABCD 中,AD BC ∥,5,AB DC ==AD =2,BC =8,MEN B ∠=∠. MEN ∠的顶点E 在边BC 上移动,一条边始终经过点A ,另一边与CD 交于点F ,联接AF 。
(★★★★)(1)设y DF x BE ==,,试建立y 关于x 的函数关系式,并写出函数定义域; (2)若AEF △为等腰三角形,求出BE 的长.C【参考教法】:一.题目分析,和学生一起寻找题目中的已知两或是特殊条件:(以提问式引导学生分析) 1.题目中的梯形有哪些已知? 提示:各边已知,且为等腰三角形;2.题中有什么特殊的图形没?提示:相似基本型(一线三角)B AEF C ∠=∠=∠。
3.题目中有相似三角形吗?提示:ABE FEC ∆∆∽。
二.求解函数关系式,由相似可以直接得出,你自己求解吧!(如学生不会,提醒学生找x 与y 有关的相似三角形,用比例式求解,本题ABE FEC ∆∆∽); 三.当AEF △为等腰三角形时: 1.需要讨论吗?提示:需要,分三类;2.怎么讨论?提示:分AE EF AE AF EF AF ===、、三类讨论;3.怎么计算?你能求解看看吗?提示:当等腰三角形不能直接利用边相等求解时,通过“画底边上的高线”辅助线,再利用三角比求解。
压轴题当中等腰三角形的分类讨论.doc
压轴题当中等腰三角形的分类讨论在近几年的全国各地中考数学试卷当中,与等腰三角形有关的试题越来越灵活,特别是在一些综合性较强的压轴题中,等腰三角形都起到关键性的作用,甚至一些压轴题都是围绕等腰三角形来设计。
关于等腰三角形的的求解问题,常常以不同的方式呈现,不少学生由于忽略了分类讨论,造成无法准确解决问题,导致丢分。
下面我们就对此类问题进行分析讲解,希望能帮助到大家的学习。
为什么等腰三角形能跟分类讨论扯上关系呢?先一起来看看等腰三角形的概念:有两条边相等的三角形角等腰三角形,相等的两个边称为这个三角形的腰。
在一个等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等腰三角形的两个底角度数相等(简写成“等边对等角”)。
一个三角形有三条边,只要其中两边相等,那么这个三角形就是等腰三角形,这就相当于给分类讨论开了一个入口,围绕边的问题可以展开多种讨论。
同时根据等腰三角形的判定定理:等角对等边,即如果两个角相等,那么这两个角所对的边也相等,这也可以根据“角”来进行分类讨论。
典型例题分析1:如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线) 于G,H点,如图(2)(1)问:始终与△AGC相似的三角形有及;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)(3)问:当x为何值时,△AGH是等腰三角形.考点分析:相似三角形的判定与性质;等腰三角形的性质;等腰直角三角形;旋转的性质题干分析:(1)根据△ABC与△EFD为等腰直角三角形,AC与DE 重合,利用相似三角形的判定定理即可得出结论.(2))由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可.(3)此题要采用分类讨论的思想,①当∠GAH=45°是等腰三角形.的底角时,如图(1):可知解得CG和②当∠GAH=45°是等腰三角形.的顶角时,如图(2):由△HGA∽△HAB,利用其对应边成比例即可求得答案.解题反思:此题主要考查学生对相似三角形的判定与性质,等腰三角形的性质,等腰直角三角形的性质,旋转的性质等知识点的理解和掌握,综合性较强,难易程度适中,是一道很典型的题目.我们知道等腰三角形是一种特殊而又十分重要的三角形,具有“等边对等角”和“等角对等边”的性质。
等腰三角形中的分类讨论问题归类
等腰三角形中的分类讨论问题归类等腰三角形是高中几何学中的重要概念之一,它具有一些特殊的性质和分类方法。
本文将对等腰三角形进行分类讨论,并归类相关问题。
通过对等腰三角形的深入了解,我们能够更全面地掌握它的性质和应用。
一、定义与性质等腰三角形是指具有两边长度相等的三角形。
根据这个定义,我们可以推导出等腰三角形的一些性质。
首先,等腰三角形的底角(底边所对的角)是两条边所对应的顶角的一半。
其次,等腰三角形的高线(从顶点到底边之间的线段)也是它的中线和中线所在的高线相等。
此外,等腰三角形的角平分线也是高线和中线。
这些性质在解决等腰三角形相关问题时非常有用。
二、基于边长的分类根据等腰三角形底边和两边的长度关系,我们可以将等腰三角形分为以下几种情况。
1. 等腰锐角三角形:当两边的长度小于底边时,所形成的等腰三角形是一个锐角三角形。
在这种情况下,底边所对应的顶角是一个锐角。
2. 等腰直角三角形:当两边的长度等于底边时,所形成的等腰三角形是一个直角三角形。
在这种情况下,底边所对应的顶角是一个直角。
3. 等腰钝角三角形:当两边的长度大于底边时,所形成的等腰三角形是一个钝角三角形。
在这种情况下,底边所对应的顶角是一个钝角。
三、基于角度的分类根据等腰三角形底边所对应的顶角的大小,我们可以将等腰三角形分为以下几种情况。
1. 等腰锐角三角形:当底角小于90度时,所形成的等腰三角形是一个锐角三角形。
在这种情况下,底边所对应的顶角是一个锐角。
2. 等腰直角三角形:当底角等于90度时,所形成的等腰三角形是一个直角三角形。
在这种情况下,底边所对应的顶角是一个直角。
3. 等腰钝角三角形:当底角大于90度时,所形成的等腰三角形是一个钝角三角形。
在这种情况下,底边所对应的顶角是一个钝角。
四、应用与推广了解等腰三角形的分类讨论有助于我们在解决相关几何问题时快速准确地判断和运用。
例如,当我们需要证明一个三角形是等腰三角形时,可以根据其边长关系或角度关系进行分类讨论。
2024八年级数学上册提练第11招分类讨论思想在等腰三角形中的六种常见应用习题课件新版冀教版
返回
1
2
3
4
5
6
7
2. 已知等腰三角形中,有一个角比另一个角的2倍少20°,
求顶角的度数.
【解】设另一个角的度数是 x ,则原来那个角是2 x -20°.
分三种情况讨论:
(1)当顶角是 x ,底角是2 x -20°时, x +2(2 x -20°)=
180°,解得 x =44°,所以顶角是44°;
当 C△ CBD - C△ ABD =3 cm时,即 y - x =3,
= ,
+ = ,
∴ቊ
解得ቊ
= ,
− = ,
即 AB = AC =8 cm, BC =11 cm.
综上,△ ABC 各边的长为10 cm,10 cm,7 cm或8 cm,8 cm,11 cm.
返回
∵ AB + AC + BC =27 cm,∴2 x + y =27.
∵ BD 是 AC 边上的中线,∴ AD = CD .
当 C△ ABD - C△ CBD =3 cm时,即 x - y =3,
= ,
+ = ,
∴ቊ
解得ቊ
= ,
− = ,
即 AB = AC =10 cm, BC =7 cm.
且 AD = BC ,则等腰三角形 ABC 的底角的度数为(
A. 45°
B. 75°
C. 45°或75°
D. 60°
1
2
3
4
5
6
7
)
【点拨】
根据题意画出图形,注意分别从∠ BAC 是顶角与∠ BAC
是底角进行分类讨论.
如图①,当∠ BAC 是顶角时,易求出∠ B =45°;
特殊三角形中的分类讨论模型—2024年中考数学常见几何模型全归纳之模型解读(全国通用)(解析版)
三角形中的重要模型-特殊三角形中的分类讨论模型 模型1、等腰三角形中的分类讨论模型【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。
1)无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论; ③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。
2)“两定一动”等腰三角形存在性问题:即:如图:已知A ,B 两点是定点,找一点C 构成等腰ABC △方法:两圆一线具体图解:①当AC AB =时,以点A 为圆心,AB 长为半径作⊙A ,点C 在⊙A 上(B ,C 除外)②当BC AB =时,以点B 为圆心,AB 长为半径作⊙B ,点C 在⊙B 上(A ,E 除外)③当BC AC =时,作AB 的中垂线,点C 在该中垂线上(D 除外)【答案】C【分析】由已知等式,结合非负数的性质求m 、n 的值,再根据m 、n 分别作为等腰三角形的腰,分类求解.【详解】解:()2350m n −+−=,30m −≥,()250n −≥,30m ∴−=,50n −=,解得:3m =,5n =,当3m =作腰时,三边为3,3,5,符合三边关系定理,周长为:33511++=,当5n =作腰时,三边为3,5,5,符合三边关系定理,周长为:35513++=,故选:C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,非负数的性质,关键是根据非负数的性质求m 、n 的值,再根据m 或n 作为腰,分类求解. 例2.(2023春·黑龙江佳木斯·八年级校考期中)一个等腰三角形的周长为18cm ,且一边长是4cm ,则它的腰长为( )A .4cmB .7cmC .4cm 或7cmD .全不对【答案】B【分析】根据等腰三角形的定义,两腰相等,结合三角形的三边关系,进行求解即可.【详解】解:当4cm 为腰长时,则底边长为182410−⨯=cm ,∵4410+<,不符合题意;∴4cm 为底边长,∴等腰三角形的腰长为:()11847cm 2⨯−=;故选B . 【点睛】本题考查等腰三角形的定义,三角形的三边关系.解题的关键是掌握等腰三角形的两腰相等,注意讨论时要根据三角形的三边关系,判断能否构成三角形.例3.(2023春·四川达州·八年级校考阶段练习)等腰三角形的一个角是80︒,则它顶角的度数是( )A .80︒B .80︒或20︒C .80︒或30︒D .20︒【答案】B【分析】根据三角形的内角和为180︒,进行分类讨论即可【详解】解:①当底角为80︒时,顶角18080220=︒−︒⨯=︒,②当顶角为80︒时,顶角度数80=︒,综上:顶角度数为80︒或20︒;故选:B .【点睛】本题考查了三角形的内角和为180︒,等腰三角形两底角相等,解题的关键是书熟练掌握相关内容. 例3.(2023·四川广安·八年级校考期中)等腰三角形的一个外角为100︒,则它的底角为( )A .55︒B .80︒C .55︒或80︒D .以上都不是 【答案】D【分析】等腰三角形的一个外角等于100︒,则等腰三角形的一个内角为80︒,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【详解】∵等腰三角形的一个外角等于100︒,∴等腰三角形的一个内角为80︒,①当80︒为顶角时,其他两角都为50︒、50︒,②当80︒为底角时,其他两角为80︒、20︒,所以等腰三角形的底角可以是50︒,也可以是80︒.故选:D .【点睛】本题考查了等腰三角形的性质和三角形的内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错. 例4.(2023·四川绵阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为70︒,则等腰三角形的顶角度数为 .【答案】20︒或160︒【分析】要注意分类讨论,等腰三角形可能是锐角三角形也可能是钝角三角形,然后根据三角形的内角和以及三角形的外角的性质即可求解.【详解】解:若三角形为锐角三角形时,如图,AB AC =,70ACD ∠=︒,CD 为高,即90ADC ∠=︒,此时180A ACD ADC ∠+∠+∠=︒,∴180907020A =︒−︒−︒=︒,若三角形为钝角三角形时,如图,AB AC =,70ACD ∠=︒,CD 为高,即90ADC ∠=︒,此时9070160BAC D ACD ∠=∠+∠=︒+︒=︒,综上,等腰三角形的顶角的度数为20︒或160︒.故答案为:20︒或160︒. 【点睛】本题主要考查了等腰三角形的性质,三角形外角的性质,三角形内角和定理,解题的关键是根据题意画出图形,并注意分类讨论. 例5.(2023·山东滨州·八年级校考期末)我们称网格线的交点为格点.如图,在6行5⨯列的长方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角三角形,则满足条件的格点C 的个数是( )A .3B .4C .5D .6【答案】C 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰直角ABC 底边;②AB 为等腰直角ABC 其中的一条腰.【详解】如图:分情况讨论:①AB 为等腰直角ABC 底边时,符合条件的格点C 点有2个;②AB 为等腰直角ABC 其中的一条腰时,符合条件的格点C 点有3个.故共有5个点,故选:C .【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.例6.(2023·北京·八年级期中)Rt △ABC 中,∠BAC =90°,AB =AC =2,以AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段BD 的长为____.【答案】4或【分析】根据题意分类讨论,①90CAD ∠=︒,②90ACD ∠=︒,③90ADC ∠=︒,分别作出图形,再结合已知条件勾股定理求解即可.【详解】解:①如图,当90CAD ∠=︒时,902BAC AB AC ∠=︒==,,ACD △是等腰直角三角形,2AC AD AB ∴===,180BAD BAC CAD ∠=∠+∠=︒,224BD AB AD ∴=+=+=;②如图,当90ACD ∠=︒时,过点D 作DE BC ⊥,交BC 的延长线于点E ,902BAC AB AC ∠=︒==,,ACD △,ABC 是等腰直角三角形,2CD AC AB ∴===,18045DCE ACD ACB ∠=︒−∠−∠=︒, 又DE BC ⊥,∴DEC 是等腰直角三角形,DE CE ∴=,在Rt DEC △中,22222DC CE DE DE =+=,∴2DE DC ==在Rt ABC 中,BC 在Rt BDE 中,BD =③如图,当90ADC ∠=︒时,902BAC AB AC ∠=︒==,ACD △,ABC 是等腰直角三角形, 2CD AD AC ∴===在Rt ABC 中,BC ==Rt BDC 中,BD =综上所述,BD 的长为:4或4或.【点睛】本题考查了勾股定理,等腰三角形的性质,分类讨论是解题的关键. 例7.(2023·福建南平·八年级校考期中)已知△ABC 中,如果过顶点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC 的关于点B 的二分割线.如图1,Rt △ABC 中,显然直线BD 是△ABC 的关于点B 的二分割线.在图2的△ABC 中,∠ABC =110°,若直线BD 是△ABC 的关于点B 的二分割线,则∠CDB 的度数是 .【答案】40°或90°或140°【分析】分三种情况讨论,由等腰三角形的性质和直角三角形的性质可求解.【详解】解:①如图,当∠DBC=90°,AD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,∵∠ABC=110°,∠DBC=90°,∴∠ABD=20°,∵AD=BD ,∴∠A=∠ABD=20°,∴∠CDB=∠A+∠ABD=40°;②如图,当∠BDC=90°,AD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,或当∠BDC=90°,CD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,;③如图,当∠ABD=90°,CD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,∵∠ABC=110°,∠ABD=90°,∴∠DBC=20°,∵CD=BD ,∴∠C=∠DBC=20°,∴∠BDC=140°.综上所述:当∠BDC 的度数是40°或90°或140°时,直线BD 是△ABC 的关于点B 的二分割线.【点睛】本题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,理解二分割线是本题关键. 且ABP 为等腰三角形,则点【答案】(2,0)或(2,0)−或(64+或(6−【分析】根据等腰三角形的判定,分①AB=BP ;②AB=AP ;③AP=BP 三种情况求解即可.【详解】∵ABP 为等腰三角形,①当AB BP =时,如图①,∵AB ==∴BP =∵(6,0)B ,∴(6P +或(6P −;②当AB AP =时,如图② 作AC BP ⊥于C 点,则(2,0)C ,∵AB AP =,∴BC CP =,∵624BC =−=,∴4CP =,∴(2,0)P −.③当AP BP =时,如图③,作AP BP ⊥,∴4AP BP ==,∴(2,0)P .综上所述:点P 的坐标为(2,0)或(2,0)−或(6+或(6−,故答案为:(2,0)或(2,0)−或(6+或(6−.【点睛】本题考查了等腰三角形的判定与性质、勾股定理、坐标与图形,熟练掌握等腰三角形的判定与性质,灵活运用分类讨论的思想解决问题是解答的关键. 八年级校考期中)如图,ABC 中,A 【答案】(1)16(2)6或2(3)4或2或95或3【分析】(1)设cm PB PA x ==,则()4cm PC x =−,利用勾股定理求出3cm AC =,在Rt ACP 中,依据222AC PC AP +=,列方程求解即可得到t 的值.(2)如图所示,当点P 在AC 上时,过P 作PD AB ⊥于D ,设cm PD PC y ==,则()3cm AP y =−,在Rt ADP 中,依据222AD PD AP +=,列方程求解即可得到t 的值.当点P 与点B 重合时,点P 也在ABC ∠的角平分线上,此时,522AB t ==.(3)分四种情况:当P 在AB 上且AP CP =时,当P 在AB 上且3cm AP CA ==时,当P 在AB 上且AC PC =时,当P 在BC 上且3cm AC PC ==时,分别依据等腰三角形的性质即可得到t 的值.【详解】(1)解:如图,设cm PB PA x ==,则()4cm PC x =−,90ACB ∠=︒,5cm AB =,4cm BC =,3cm AC ∴,在Rt ACP 中,由勾股定理得222AC PC AP +=,()22234x x ∴+−=,解得258x =,258BP ∴=,2556582216AB BP t ++∴===;(2)解:如图所示,当点P 在AC 上时,过P 作PD AB ⊥于D ,BP 平分ABC ∠,90C ∠=︒,PD AB ⊥PD PC ∴=,DBP CBP ∠=∠,在BCP 与BDP △中,BDP BCP DBP CBP BP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS BDP BCP ∴≌4cm BC BD ∴==,541cm AD ∴=−=,设cm PD PC y ==,则()3cm AP y =−,在Rt ADP 中,由勾股定理得222AD PD AP +=,()22213y y ∴+=−,解得43y =,43CP \=,454313226AB BC CP t ++++∴===,当点P 与点B 重合时,点P 也在ABC ∠的角平分线上,此时,522AB t ==. 综上所述,点P 恰好在ABC ∠的角平分线上,t 的值为316或52.(3)解:分四种情况:①如图,当P 在AB 上且AP CP =时,∴A ACP ∠=∠,∵A B ∠∠=︒+90,90ACP BCP ∠+∠=︒,B BCP ∴∠=∠,CP BP AP ∴==,P ∴是AB 的中点,即15cm 22AP AB ==,524AP t ∴==. ②如图,当P 在AB 上且3cm AP CA ==时,∴322AP t ==. ③如图,当P 在AB 上且AC PC =时,过C 作CD AB ⊥于D , ∵1122ABC S AC BC AB CD =⋅=⋅,∴12cm 5AC BC CD AB ⋅==,在Rt ACD △中,由勾股定理得9cm 5AD =,182cm 5AP AD ∴==,925AP t ∴==. ④如图,当P 在BC 上且3cm AC PC ==时,则431cm BP =−=,6322AB BP t +∴===. 综上所述,当t 的值为54或32或95或3时,ACP △为等腰三角形.【点睛】本题属于三角形综合题,考查了角平分线的性质,等腰三角形的性质以及勾股定理的综合运用.画出图形,利用分类讨论的思想是解第(3)题的关键. 例10.(2022春·四川成都·八年级校考期中)如图,在平面直角坐标系内,点O 为坐标原点,经过()26A−,的直线交x 轴正半轴于点B ,交y 轴于点C OB OC =,,直线AD 交x 轴负半轴于点D ,若ABD △的面积为27(1)求直线AB 的表达式和点D 的坐标;(2)横坐标为m 的点P 在线段AB 上(不与点A B 、重合),过点P 作x 轴的平行线交AD 于点E ,设PE 的长为()0y y ≠,求y 与m 之间的函数关系式并直接写出相应的m 取值范围;(3)在(2)的条件下,在x 轴上是否存在点F ,使PEF !为等腰直角三角形?若存在求出点F 的坐标;若不存在,请说明理由.【答案】(1)()450y x D =−+−,,(2)()33242y m m =+−<<,(3)存在,点F 的坐标为2,05⎛⎫ ⎪⎝⎭或16,05⎛⎫− ⎪⎝⎭或8,07⎛⎫− ⎪⎝⎭ 【分析】(1)据直线AB 交x 轴正半轴于点B ,交y 轴于点C ,OB OC =,设直线AB 解析式为y x n =−+,把A 的坐标代入求得n 的值,从而求得B 的坐标,再根据三角形的面积建立方程求出BD 的值,求出OD 的值,从而求出D 点的坐标; (2)直接根据待定系数法求出AD 的解析式,先根据B A 、的坐标求出直线AB 的解析式,将P 点的横坐标代入直线AB 的解析式,求出P 的纵坐标,将P 的纵坐标代入直线AD 的解析式就可以求出E 的横坐标,根据线段的和差关系就可以求出结论;(3)要使PEF !为等腰直角三角形,分三种情况分别以点P E F 、、为直角顶点,据等腰直角三角形的性质求出(2)中m 的值,就可以求出F 点的坐标.【详解】(1)解:OB OC =,∴设直线AB 的解析式为y x n =−+,∵直线AB 经过()26A −,,26n ∴+=,4n ∴=,∴直线AB 的解析式为4y x =−+,()40B ∴,,4OB ∴=,ABD 的面积为()2726A −,,,16272ABD S BD =⨯⨯=,9BD ∴=,5OD ∴=,()50D ∴−,,∴直线AB 的解析式为()450y x D =−+−,,(2)解:设直线AD 的解析式为y ax b =+,()26A −,,()50D −,∴2650a b a b −+=⎧⎨−+=⎩,解得210a b =⎧⎨=⎩.∴直线AD 的解析式为210y x =+;∵点P 在AB 上,且横坐标为m ,()4P m m ∴−+,,PE x ∥轴,∴E 的纵坐标为4m −+,代入210y x =+得,4=210m x −++,解得62m x −−=,6,42m E m −−⎛⎫∴−+ ⎪⎝⎭, PE ∴的长63322m m y m −−=−=+;即332y m =+,()24m −<<;(3)解:在x 轴上存在点F ,使PEF !为等腰直角三角形,①当90FPE ∠=︒时,如图①,有PF PE =,4PF m =−+,332PE m =+,3432m m ∴−+=+,解得25m =,此时2,05F ⎛⎫ ⎪⎝⎭; ②当90PEF ∠=︒时,如图②,有EP EF =,EF 的长等于点E 的纵坐标,4EF m ∴=−+,3432m m ∴−+=+,解得:25m =, ∴点E 的横坐标为61625m x −−==−,∴16,05F ⎛⎫− ⎪⎝⎭;③当90PFE ∠=︒时,如图③,有FP FE =,FPE FEP ∴∠=∠.180FPE EFP FEP ∠+∠+∠=︒,45FPE FEP ∴∠=∠=︒.作FR PE ⊥,点R 为垂足,18045PFR FPE PRF ∴∠=︒−∠−∠=︒,=PFR RPF ∴∠∠,=FR PR ∴.同理=FR ER ,12FR PE ∴=.∵点R 与点E 的纵坐标相同,4FR m ∴=−+,∴134322m m ⎛⎫−+=+ ⎪⎝⎭,解得:107m =, 10184477PR FR m ∴==−+=−+=,∴点F 的横坐标为10188777−=−,8,07F ⎛⎫∴− ⎪⎝⎭. 综上,在x 轴上存在点F 使PEF !为等腰直角三角形,点F 的坐标为2,05⎛⎫ ⎪⎝⎭或16,05⎛⎫− ⎪⎝⎭或8,07⎛⎫− ⎪⎝⎭.【点睛】本题考查了等腰直角三角形的性质,三角形的面积公式的运用,待定系数法求一次函数的解析式 模型2、直角三角形中的分类讨论模型【知识储备】凡是涉及直角三角形问题,优先考虑直角顶点(或斜边)分类讨论,再利用直角三角形的性质或勾股定理解题即可。
期末复习专题:等腰三角形中的分类讨论
备用图
探究变式:
直角 若将(2)中的△AEF为“等腰三角形 ”改为“
三角形”时, ∠BAE=α ,求 α与β之间的数量关
系。
A
A
F
B
E
CB
C
备用图
解:
(3)如图1,当∠AFE=90°时, ∵∠B+∠BAE= ∠AEF+∠CEF, ∠B=∠AEF=∠C, ∴∠BAE= ∠CEF, ∵∠C+∠CEF=90°, ∴∠BAE+ ∠AEF=90°, 即α+β= 90°;
五、 遇中垂线需讨论
1.在△ABC 中,AB=AC ,AB 边的垂直平分 线与AC所在的直线相交所成的锐角为40°, 则底角∠B的度数为__6_5_°__或__2_5°
40°
40°
六、 遇动点动角需讨论
1、已知C、D两点为线段AB的中垂线上的两 动点,且∠ACB=500,∠ADB=800,求 ∠CAD的度数。
E'
∴∠ADC=(1800-∠DAC)÷2=∠BAC÷2,
又∵∠DCE'=1800-(∠ BE'C+ ∠ADC) , ∴ ∠DCE'=1800-(∠ ABC+ ∠BAC) ÷2
0
0
(4)当点D、E在点A的两侧,且 点D在D' 的位置时,如图,
∵AD'=AC ,∴
? ? ? ? ? AD?C ? 1800 ? ? D?AC ? 2 ? 1800 ? ? BAC ? 2,
在下图三角形的边上找出一点,使得该点与
三角形的两顶点构成 一个等腰三角形
C 110°
A
20°
50° B
1 、对∠ A进行讨论
3、对∠ C进行讨论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学等腰三角形的分类讨论
等腰三角形是一种特殊而又十分重要的三角形,就是因为这种特殊性,在具体处理问题时往往又会出现错误,因此,同学们在求解有关等腰三角形的问题时一定要注意分类讨论。
那么在什么情况下应该分类讨论呢?本文分以下几种情形讲述。
一、遇角需讨论
例1. 已知等腰三角形的一个内角为75°则其顶角为( )
A. 30°
B. 75°
C. 105°
D. 30°或75°
简析:75°角可能是顶角,也可能是底角。
当75°是底角时,则顶角的度数为
180°-75°×2=30°;当75°角是顶角时,则顶角的度数就等于75°。
所以这个等腰三角形的顶角为30°或75°。
故应选D 。
说明:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解。
二、遇边需讨论
例2. 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。
简析:已知条件中并没有指明5和6谁是腰长谁是底边的长,因此应由三角形的三边关系进行分类讨论。
当5是等腰三角形的腰长时,这个等腰三角形的底边长就是6,则此时等腰三角形的周长等于16;当6是腰长时,这个三角形的底边长就是5,则此时周长等于17。
故这个等腰三角形的周长等于16或17。
说明:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应在符合三角形三边关系的前提下分类讨论。
三、遇中线需讨论
例3. 若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。
简析:已知条件并没有指明哪一部分是9cm ,哪一部分是12cm ,因此,应有两种情形。
若设这个等腰三角形的腰长是x cm ,底边长为y cm ,可得⎪⎪⎩⎪⎪⎨⎧=+=+,1221,921y x x x 或⎪⎪⎩⎪⎪⎨⎧=+=+.92
1,1221y x x x
解得⎩⎨⎧==,9,6y x 或⎩
⎨⎧==.5,8y x 即当腰长是6cm 时,底边长是9cm ;当腰长是8cm 时,底边长是5cm 。
说明:这里求出来的解应满足三角形三边关系定理。
四、遇高需讨论
例4. 等腰三角形一腰上的高与另一腰所成的夹角为45°,求这个等腰三角形的顶角的度数。
简析:依题意可画出图1和图2两种情形。
图1中顶角为45°,图2中顶角为135°。
例5. 为美化环境,计划在某小区内用230m 的草皮铺设一块一边长为10m 的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长。
简析:在等腰ΔABC 中,设AB=10m ,作CD⊥AB 于D ,由3021=⋅⨯=∆CD AB S ABC ,可得CD=6m 。
如下图,当AB 为底边时,AD=DB=5m ,所以)(6122m AD CD BC AC =+==。
如下图,当AB 为腰且ΔABC 为锐角三角形时,
m AC AB 10==,所以)(822m CD AC AD =-=,
)(102,222m BD CD BC m BD =+==。
如下图,当AB 为腰且ΔABC 为钝角三角形时,
m BC AB 10==,)(822m CD BC BD =-=,
所以)(106,1822m AD CD AC m AD =+==。
说明:三角形的高是由三角形的形状决定的,对于等腰三角形,当顶角是锐角时,腰上的高在三角形内;当顶角是钝角时,腰上的高在三角形外。
五、遇中垂线需讨论
例6.在ΔABC 中,AB=AC ,AB 的中垂线与AC 所在直线相交所得的锐角为50°,则底角∠B=____________。
简析:按照题意可画出如图1和如图2两种情况的示意图。
如图1,当交点在腰AC 上时,ΔABC 是锐角三角形,此时可求得∠A=40°,所以 ∠B=∠C=2
1(180°-40°)=70°。
如图2,当交点在腰CA 的延长线上时,ΔABC 为钝角三有形,此时可求得 ∠BAC=140°,所以∠B=∠C=2
1(180°-140°)=20°
故这个等腰三角形的底角为70°或20°。
说明:这里的图2最容易漏掉,求解时一定要认真分析题意,画出所有可能的图形,这样才能正确解题。
六、和方程问题的综合讨论
例7. 已知ΔABC 的两边AB ,AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 长为5。
(1)k 为何值时,ΔABC 是以BC 为斜边的直角三角形?
(2)k 为何值时,ΔABC 是等腰三角形,并求ΔABC 的周长。
简析:(1)略。
(2)若ΔABC 是等腰三角形,则有AB=AC ,AB=BC ,AC=BC 这三种情形。
方程023)32(22=++++-k k x k x 可化为0)1)(2(=----k x k x ,即21+=k x ,12+=k x ,显然21x x ≠,即AC AB ≠。
当AB=BC 或AC=BC 时,5是方程023)32(22=++++-k k x k x 的根。
当5=x 时,代入原方程可得01272=+-k k ,解得31=k ,42=k 。
当3=k 时,原方程的解为4,521==x x ,等腰ΔABC 的三边长分别为5,5,4,周长为14。
当4=k 时,原方程的解为5,621==x x ,等腰ΔABC 的三边长分别为5,5,6,周长为16。
所以当3=k 或4=k 时,ΔABC 是等腰三角形,周长分别为14或16。