小学数学六年级有关圆的组合图形的面积问题50447
圆的组合图形面积及答案#
圆的组合图形面积姓名:【知识与方法】要解决与圆有关的题目,需要注意以下几点:1、熟练掌握有关圆的概念和面试公式:圆的面积= 圆的周长=扇形的面积= 扇形的弧长=(n是圆心角的度数)2、掌握解题技巧和解题方法:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。
例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
数学六年级-圆的组合图形面积计算
辅导讲义案例1:有一个著名的希波克拉蒂月牙问题.如图:以AB为直径作半圆,C是圆弧上一点,(不与A、B重合),以AC、BC为直径分别作半圆,围成两个月牙形(阴影部分).已知直径AC为6cm,直径BC为8cm,直径AB为10cm.(1)将直径分别为AB、AC、BC所作的半圆面积分别记作S AB、S AC、S BC.分别求出三个半圆的面积。
(2)请你猜测:这两个月牙形(阴影部分)的面积与三角形ABC的面积之间的数量关系,并说明理由。
案例2:归纳总结以下基本图面积计算方法(1)扇形:扇形的面积=扇形中的弧长部分=扇形的周长(2)弓形面积:弓形面积=(3)“弯角”面积:如图:(4)“谷子”面积:如图:例题1:如图,直径AB为3厘米的半圆以A点为圆心逆时针旋转60°,使AB到达AC的位置,求图中的阴影部分的面积。
例题2:如图,三角形ABC是等腰直角三角形,腰AB长为4厘米,求阴影部分的面积?试一试:如图,三角形ABC是直角三角形,AC=20,阴影(1)的面积比阴影(2)的面积小23,求BC的长?例题3:如图,ABCD 是一个正方形,2ED DA AF ===,阴影部分的面积是多少?试一试:下图中,cm DC DB AD 10===,求阴影部分的面积.例题4:如图,ABCD是平行四边形,8cm∠=︒,高4cmCH=,弧BE、DF分DABAB=,30AD=,10cm别以AB、CD为半径,弧DM、BN分别以AD、CB为半径,则阴影部分的面积为多少?(精确到0.01)例题5:如图所示,直角三角形ABC的斜边AB长为10厘米,60ABC∠=︒,此时BC长5厘米.以点B为中心,将ABC∆顺时针旋转120︒,点A、C分别到达点E、D的位置.求AC边扫过的图形即图中阴影部分的面积.试一试:如下图,Rt△CAB中,AB=3,AC=4,将它以A点为中心逆时针旋转60°,得到Rt△EAD,求阴影部分面积是多少?1.有8个半径为1的小圆,用它们圆周的一部分连成一个花瓣图形(如图阴影所示),图中黑点是这些圆的圆心,那么花瓣图形的面积是()(A)16(B)16π+(C)1162π+(D)162π+2.如图,一只羊被4米长的绳子拴在长为3米,宽为2米的长方形水泥台的一个顶点上,水泥台的周围都是草地,问这头羊能吃到草的草地面积是多少?(结果精确到0.01平方米)3.如图,已知正方形ABCD的边长为5,正方形CEFG的边长为3,求图中阴影部分的面积.(π为3.14)4.如图,ABCD是正方形,边长是8厘米,BE=4厘米,其中圆弧BD的圆心是C点,那么图中阴影部分的面积等于多少平方厘米?5.如图,两个正方形的边长分别是6和5.求图形中阴影部分的面积.6.7.8.如图所示,已知半圆的直径AB=12,BC所对的圆心角∠CAB=30°,并且小阴影面积为3.26,求大阴影的面积.7.如图,正方形的边长为10,那么图中阴影部分的面积是多少?8.如图,矩形的长为4,宽为5,求阴影部分的面积?A BDCA1.如图是以边长为40米的正方形ABCD 的顶点A 为圆心,AB 长为半径的弧与以CD 、BC 为直径的半圆构成的花坛(图中阴影部分).小杰沿着这个花坛边以相同的速度跑了6圈,用去了8分钟,求(1)花坛(图中阴影部分)面积;(2)小杰平均每分钟跑多少米?2.某同学用所学过的圆与扇形的知识设计了一个问号,如图中阴影部分所示,已知图中的大圆半径为4,两个小圆半径均为2,求图中阴影部分的面积。
圆的组合图形面积及答案
圆的组合图形面积姓名:【常识与办法】要解决与圆有关的标题,须要留意以下几点:1、闇练控制有关圆的概念和面试公式:圆的面积= 圆的周长=扇形的面积= 扇形的弧长=(n是圆心角的度数)2.控制解题技能息争题办法:加减法.朋分重组法.扭转平移法.半数法.抵消法.等积变形法.等量代换法.添帮助线法.例1.求暗影部分的面积.(单位:厘米)解:这是最根本的办法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求暗影部分的面积.(单位:厘米)解:这也是一种最根本的办法用正方形的面积减去圆的面积.设圆的半径为 r,因为正方形的面积为7平方厘米,所以=7, 所以暗影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中暗影部分的面积.(单位:厘米)解:最根本的办法之一.用四个圆构成一个圆,用正方形的面积减去圆的面积,所以暗影部分的面积:2×2-π=0.86平方厘米.例4.求暗影部分的面积.(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求暗影部分的面积.(单位:厘米)解:这是一个用最经常应用的办法解最罕有的题,为便利起见,我们把暗影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米别的:此题还可以算作是1题中暗影部分的8倍.例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多若干厘米?解:两个空白部分面积之差就是两圆面积之差(全加上暗影部分)π-π()=100.48平方厘米(注:这和两个圆是否订交.交的情形若何无关)例7.求暗影部分的面积.(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以暗影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割.补.增.减变形) 例8.求暗影部分的面积.(单位:厘米)解:右面正方形上部暗影部分的面积,等于左面正方形下部空白部分面积,割补今后为圆,所以暗影部分面积为:π()=3.14平方厘米例9.求暗影部分的面积.(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则暗影部分合成一个长方形,所以暗影部分面积为:2×3=6平方厘米例10.求暗影部分的面积.(单位:厘米)解:同上,平移阁下两部分至中央部分,则合成一个长方形,所以暗影部分面积为2×1=2平方厘米(注: 8.9.10三题是简略割.补或平移)11.例13.求暗影部分的面积.(单位:厘米)解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.所以暗影部分面积为:8×8÷2=32平方厘米12.例14.求暗影部分的面积.(单位:厘米)解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米 .13.例16.求暗影部分的面积.(单位:厘米)解:[π+π-π]=π(116-36)=40π=125.6平方厘米14.例17.图中圆的半径为5厘米,求暗影部分的面积.(单位:厘米) 解:上面的暗影部分以AB为轴翻转后,全部暗影部分成为梯形减去直角三角形,或两个小直角三角形AED.BCD面积和.所以暗影部分面积为:5×5÷2+5×10÷2=37.5平方厘米16.例19.正方形边长为2厘米,求暗影部分的面积.解:右半部分上面部分逆时针,下面部分顺时针扭转到左半部分,构成一个矩形.所以面积为:1×2=2平方厘米17.例25.如图,四个扇形的半径相等,求暗影部分的面积.(单位:厘米)剖析:四个空白部分可以拼成一个以2为半径的圆.所以暗影部分的面积为梯形面积减去圆的面积,4×(4+7)÷2-π=22-4π=9.44平方厘米18.例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求暗影部分的面积.解: 因为2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14平方厘米19.例28.求暗影部分的面积.(单位:厘米)解法一:设AC中点为B,暗影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5弓形面积为:[π÷2-5×5]÷2=7.125所以暗影面积为:12.5+7.125=19.625平方厘米20.例30.如图,三角形ABC是直角三角形,暗影部分甲比暗影部分乙面积大28平方厘米,AB=40厘米.求BC的长度.解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC 长为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米21.例33.求暗影部分的面积.(单位:厘米)解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为(π+π)-6=×13π-6=4.205平方厘米22.例34.求暗影部分的面积.(单位:厘米)解:两个弓形面积为:π-3×4÷2=π-6 暗影部分为两个半圆面积减去两个弓形面积,成果为π+π-(π-6)=π(4+-)+6=6平方厘米。
新人教版六年级上数学第五单元《含有圆的组合图形的面积》教案板书设计
新人教版六年级上数学第五单元《含有圆的组合图形的面积》教案板书设计本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!新人教版六年级上册数学第五单元《含有圆的组合图形的面积》教案板书设计第4节含有圆的组合图形的面积教学内容:教材第68-69页含有圆的组合图形的面积。
教学目标:1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
教学重难点:组合图形的认识及面积计算、图形分析。
教具学具准备:多媒体、各种基本图形纸片。
教学设计:⊙创设情境,认识圆环1.师:我们来欣赏一组美丽的图片。
出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……2.同学们,你们从图中发现了什么?3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。
你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?4.导入新课:这节课我们一起来探讨环形的知识。
设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。
⊙探索交流,解决问题1.画一画,剪一剪,发现环形特点。
画一画。
让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。
剪一剪。
指导学生先剪下所画的大圆,再剪下所画的小圆。
问:剩下的部分是什么图形?师:我们也称它为圆环。
教师手拿学生剪的圆环提问:这个圆环是怎样得到的?生明确:圆环是从外圆中去掉一个内圆得到的。
借助图示认识圆环的各部分名称。
你知道圆环各部分的名称吗?①外圆:又名大圆,它的半径用R表示。
②内圆:又名小圆,它的半径用r表示。
小学数学六年级有关圆的组合图形的面积问题
有关圆的组合图形的面积问题【典型例题】1、求下列组合图形阴影部分的面积。
2、①圆的周长是18.84cm,求阴影部分面积。
②长方形的面积和圆的面积相等,已知圆的半径是3cm,求阴影部分的周长和面积。
③求直角三角形中阴影部分的面积。
(单位:分米)④图中阴影①比阴影②面积小48平方厘米,AB=40cm,求BC的长。
⑤一个圆的半径是4cm,求阴影部分面积。
【变式训练】1、求下列各图中阴影部分的面积。
(单位:厘米)2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。
3、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。
4、求下列阴影部分面积和周长5、如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为.6、右图中正方形周长是20厘米。
图形的总面积是 平方厘米7、如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?8、右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心. 如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?9、如图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=πS 1S 210、有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图). 图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.11、已知ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .12、如图32,大正方形的边长为6厘米,小正方形的边长为4厘米。
求阴影部分的面积。
EDCB AGF。
小学数学六年级有关圆的组合图形的面积问题之欧阳光明创编
*欧阳光明*创编有关圆的组合图形的面积问题欧阳光明(2021.03.07)【典型例题】1、求下列组合图形阴影部分的面积。
2、①圆的周长是18.84cm,求阴影部分面积。
②长方形的面积和圆的面积相等,已知圆的半径是3cm,求阴影部分的周长和面积。
③求直角三角形中阴影部分的面积。
(单位:分米)④图中阴影①比阴影②面积小48平方厘米,AB=40cm,求BC的长。
⑤一个圆的半径是4cm,求阴影部分面积。
【变式训练】1、求下列各图中阴影部分的面积。
(单位:厘米)2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。
3、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。
4、求下列阴影部分面积和周长5、如右图,阴影部分的面积为2积为.6、右图中正方形周长是207、如图,半圆S1的面积是14.13*欧阳光明*创编 2021.03.07 平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?8、右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心. 如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?9、如图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是厘米.)14.3(=π10、有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图). 图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是平方厘米.11、已知ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是.12、如图32,大正方形的边长为6厘米,小正方形的边长为4厘米。
求阴影部分的面积。
E D C BAGF。
求与圆有关的组合图形的面积ppt课件
说说你知道了哪些数学信 息?要解决的问题是什么 ?
03
任务一
学校阅览室的窗户上面是半圆,下面是正方形(如下图)。窗
户的面积约是多少平方米?(得数保留整数。)
怎样算出这个图形的面积
?小 提 示 先分解,把它变成我们学过
的简单图形,然后再算这些简单
图形的面积的和。
03
任务一
学校阅览室的窗户上面是半圆,下面是正方形(如下图)。窗
板书设计
求与圆有关的组合图形的面积(1)
半圆的面积+正方形的面积=窗户的面积 圆环的面积=大圆的面积-小圆的面积 S环=π(R2-r2)
S=ah÷2
S=(a+b)h÷2
S=πr2
02
新知导入
根据这些平面图形,我们能够拼出很多不同形状的图形。
三角形+长方形
三角形+长方形+正方形+圆
02
新知导入
小提示
像这些由几个简单的平 面图形组合而成的图形,叫 做组合图形。
学习任务一
求与圆有关的组合图形的面积
03
任务一
学校阅览室的窗户上面是半圆,下面是正方形(如下图)。窗 户的面积约是多少平方米?(得数保留整数。)
户的面积约是多少平方米?(得数保留整数。)
思考: 这个图形可以分解成什么图形
?窗户的面积怎么计算?
03
任务一
学校阅览室的窗户上面是半圆,下面是正方形(如下图)。窗
户的面积约是多少平方米?(得数保留整数。)
半圆
1.2m
正方形
窗户的面积是1个半圆 与1个正方形面积的和。
上半部分半圆的直径与正 方形的边长有什么关系?
2米 8米
3.14×(102-82) =3.14×36 =113.04(m2)
人教版六年级数学上册第五单元第6课时《圆与正方形组合的面积问题的应用》课件
4.土楼是福建、广东等地 区的一种建筑形式,被列入 “世界物质文化名录”,土 楼的外围形状有圆形、方形、 椭圆形等。圭峰楼和德逊楼 是福建省南靖县两座地面是 圆环形的土楼,
圭峰楼外直径33 m,内直 径14 m;德逊楼外直径 26.4 m,内直径14.4 m。 两座土楼的房屋占地面积 相差多少? (选题源于教材P73第12题)
6.篮球场上的3 分线是由 两条平行线段和一个半 圆组成的。请你根据图 中的数据计算出3 分线 的长度和3 分线内区域 的面积。 (选题源于教材P73第14题)
半圆的弧长:3.14×6.75=21.195(m) 3分线的长度:21.195+2×1.575≈24.35(m) 半圆的面积:(3.14×6.752)÷2=71.533125(m2) 长方形的面积:6.75×2×1.575=21.2625(m2) 3分线内区域的面积:71.533125+21.2625≈92.80(m2) 答:3 分线的长度和3 分线内区域的面积是92.80m2。
3.14×(34÷2)2-3.14×(14÷2)2=753.6(m2) 3.14×(26÷2)2-3.14×(14÷2)2=376.8(m2) 753.6-376.8=376.8(m2)答:占地面积相差376m2。
5.一个圆的周长是62.8 m,半径增加了2 m 后,面积 增加了多少?(选题源于教材P73第13题) 62.8÷3.14÷2=10(m) 10+2=12(m) 3.14×122-3.14×102 =138.16(m2) 答:面积增加了138.16m2
(2)
4×4-3.14×(4÷2)2 =3.44(cm2)
(5×2)2-3.14×52 =21.5(m2)
3.解决问题 (1)在一块边长为20 cm的正方形铁片中,截取如图
上海2021年六年级数学 4.5 圆的组合图形的面积计算
4.5圆的组合图形的面积计算我们已经学过许多几何图形,例如三角形、长方形、圆、扇形等。
并掌握了它们的面积公式,我们将这些常见的图形称为基本图形.还有一些较为复杂的非基本图形,它们是由一些基本图形组合而成的,现在我们一起来研究如何求组合图形的面积.例1如图,直角梯形的面积是54平方厘米,求阴影部分的面积.解()=r 22S r r +÷梯形=54,解得r =6(厘米),所以2135=54-6360S π⨯⨯阴影=11.61(平方厘米).例2如图,直径AB 为3厘米的半圆以A 点为圆心逆时针旋转60°,使AB 到达AC 的位置,求图中阴影部分的面积.分析从图中可以看出,,阴影部分面积等于图形总面积减去空白部分面积.将以AC 为直径的半圆称为a ,扇形ABC 称为b ,以AB 为直径的半圆为c ,则阴影部分面积为:a +b -c .因为a 与c 的面积相等,则有:a +b -c =b .所以阴影部分面积等于扇形ABC 的面积.解26013.143=3.1493606⨯⨯⨯⨯=4.71(平方厘米)答:阴影部分的面积是4.71平方厘米.例3如图,正方形的边长是10厘米,那么图中阴影部分的面积是多少平方厘米?解阴影部分面积=半圆面积+扇形面积-直角三角形面积=2221113.145+ 3.1410-10282⨯⨯⨯⨯⨯=28.5(平方厘米)答:阴影部分的面积是28.5平方厘米.例4如图,∠AOB =90°,C 为AB 弧的中点,已知阴影甲的面积为16平方厘米,求阴影乙的面积.解设OB =2r ,由图得:甲+丙=21r 2π⨯⨯.乙+丙=245(2r)360π⨯⨯=21r 2π⨯⨯,即甲+丙=乙+丙,所以甲=乙=16(平方厘米).答:阴影部分面积为15平方厘米.练习4.5(1)1.如图,长方形的宽是8厘米,求阴影部分的面积.2.如图,△ABC 是一个等腰直角三角形,直角边的长度为1米,现在以C 点为圆心,把△ABC 顺时针旋转90°,求AB 边在旋转时所扫过的面积.3.如图,△ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径.已知:AB =BC =10,求阴影部分面积.4.已知等腰直角三角形ABC ,D 为斜边中点,AC =BC =2分米,弧DF \弧DH 分别是B 、C 为圆心画的弧,求阴影部分的面积.5.图中,△ABC 是等腰直角三角形,腰AB 长为4厘米,求阴影部分面积.例5如图,正方形的边长为6分米,求阴影部分面积;分析阴影部分面积=正方形面积-两个相同的小扇形的面积(或减去一个圆心角为90°的扇形的面积).解223.146690360⨯=⨯=7.74(平方分米).答:阴影部分面积为7.74平方分米.例6图中△ABC 是直角三角形,阴影(1)的面积比阴影(2)的面积小23平方米,求BC 的长度.解设BC 为x 米,由已知[阴影(2)的面积+空白部分面积]-[阴影(1)的面积+空白部分面积]=23即21120102322x π⨯⨯-∙=,10x -50π=23,10x =23+157,10x =180,x =18.答:BC 的长度是18米.例7如图,求阴影部分的面积.解左边正方形中的阴影部分,与右边正方形的空白部分形状相同,所以左右两个正方形的阴影部分恰好拼成一个边长为2的正方形,所以,所求阴影部分面积是:1×2+2×2=2+4=6.答:阴影部分的面积是6个平方单位.例8如图,一个大正方形各边都被四等分,分成十六个小正方形,图A 是一个圆,图B 是由三个半圆围成的图形,那么图A 与图B 周长的大小关系是,图A 与图B 面积的大小关系是;解设图A 的半径为r ,图A 的周长是2πr ,图B 的周长是2πr +π×2r =4πr ,4πr >2πr ,所以图B 的周长大于图A 的周长图A 的面积是2r π,图B 的面积是222(2r)2r r πππ⨯÷-=,22r r ππ=,所以图B 的面积等于图A 的面积.练习4.5(2)1.如图,阴影部分的面积是平方厘米.第1题图第2题图2.如图,阴影部分的周长是厘米,面积是平方厘米.3.如图,等腰Rt △ABC 腰长为10厘米,甲、乙两部分的面积相等,求扇形AEF 所在圆的面积.答案练习4.5(1)1.50.24平方厘米.2.0.6775平方米.3.32.125.4.1平方分米.练习4.5(2)1.5.72.2.16.13;12.185.4.5《圆的组合图形的面积计算》练习练习4.5(1)1.图中,三个同心圆的半径分别为2、6、10,则图中阴影部分占大圆面积的%.2.如图,各圆半径都是3厘米,则阴影部分的面积为平方厘米.3.已知等腰直角三角形ABC,D为斜边中点,且AC=BC=2分米,弧DF、弧DE分别是以B、C为圆心画的弧,弧DE交BC于G,阴影部分的面积是平方分米.4.如图,△ABC是等腰直角三角形,D是半圆周的中点,BC是半圆的直径.已知AB=BC=10,那么阴影部分的面积是多少?5.如图,∠AOB=90°,C为弧AB的中点,已知阴影甲的面积为16平方米,则阴影乙的面积是平方米.练习4.5(2)1.如图,其中四个圆的直径均为4厘米,那么阴影部分的面积为平方厘米.I2.如图,阴影部分的面积是平方厘米.3.如图,AB与CD是两条互相垂直的直径,圆O的半径为15厘米,∠ACB=90°,AEB是以C为圆心,AC为半径的圆弧,则阴影部分的面积为平方厘米.4.如图,阴影部分的面积是.5.如图,等腰Rt△ABC腰长为10厘米,甲、乙两部分的面积相等,则扇形EAF所在圆的面积是平方厘米.6.如图,小正方形的边长4厘米,大正方形边长6厘米,△DBE的面积为3.2平方厘米,求阴影部分的面积?答案练习4.5(1)1.33.提示:可将原图变形为如图形式,这样阴影部分I 的面积占大圆面积的14,即:S I 2110254ππ⨯⨯=,S II =221(62)84πππ⨯⨯-⨯=,所以=33S π阴影,00=100=33S π大圆.2.3.87.提示:因为3个扇形的半径相等,圆心角的和等于三角形内角和为180°,所以可以拼成一个半圆.阴影部分面积=直角三角形-半圆面积,即()()23+33+32-3.1432⨯÷⨯÷=3.87(平方厘米).3.1.提示:解法一:设AB =2R ,则CD =R ;扇形DBF 的面积=218R π.扇形ECG 的面积=214R π,三角形ABC 的面积=2×2÷2=2.三角形ABC 面积也可以用()2224R R ÷=,可知2=2R ,空白部分面积=112-22+248ππ⎛⎫⨯÷⨯ ⎪⎝⎭=1,所以阴影部分面积为2-1=1(平方分米);解法二:通过剪拼后如图:阴影部分的面积为边长1分米的正方形,21=1平方分米.4.32.125.提示:如图作出辅助线,则阴影部分的面积为△AED 的面积减去正方形BEDO 的面积再加上圆面积的14.△AED 的面积是:()()110+102102=37.52÷⨯÷⨯,圆面积的14是()21 3.14102=19.6254⨯⨯÷,故阴影部分面积:375-25+19.625=32.125。
圆的组合图形面积及答案
圆的组合图形面积姓名:【知识与方法】要解决与圆有关的题目,需要注意以下几点:1、熟练掌握有关圆的概念和面试公式:圆的面积= 圆的周长=扇形的面积= 扇形的弧长=(n是圆心角的度数)2、掌握解题技巧和解题方法:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。
例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
圆的组合图形面积及重点标准答案
圆旳组合图形面积姓名:【知识与措施】要解决与圆有关旳题目,需要注意如下几点:1、纯熟掌握有关圆旳概念和面试公式:圆旳面积= 圆旳周长=扇形旳面积= 扇形旳弧长=(n是圆心角旳度数)2、掌握解题技巧和解题措施:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。
例1.求阴影部分旳面积。
(单位:厘米)解:这是最基本旳措施:圆面积减去等腰直角三角形旳面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分旳面积。
(单位:厘米)解:这也是一种最基本旳措施用正方形旳面积减去圆旳面积。
设圆旳半径为r,由于正方形旳面积为7平方厘米,因此=7,因此阴影部分旳面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分旳面积。
(单位:厘米)解:最基本旳措施之一。
用四个圆构成一种圆,用正方形旳面积减去圆旳面积,因此阴影部分旳面积:2×2-π=0.86平方厘米。
例4.求阴影部分旳面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分旳面积。
(单位:厘米)解:这是一种用最常用旳措施解最常用旳题,为以便起见,我们把阴影部分旳每一种小部分称为“叶形”,是用两个圆减去一种正方形,π()×2-16=8π-16=9.12平方厘米此外:此题还可以当作是1题中阴影部分旳8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆旳3倍,问:空白部分甲比乙旳面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆与否相交、交旳状况如何无关)例7.求阴影部分旳面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5。
小学数学六年级有关圆的组合图形的面积问题总结.doc
有关圆的组合图形的面积问题2、①圆的周长是18.84cm,求阴影部分面积。
②长方形的面积和圆的面积相等,已知圆的半径是3cm,求阴影部分的周长和面积。
③求直角三角形中阴影部分的面积。
(单位:分米)④图中阴影①比阴影②面积小48平方厘米,AB=40cm,求BC的长。
⑤一个圆的半径是4cm,求阴影部分面积。
【变式训练】1、求下列各图中阴影部分的面积。
(单位:厘米)2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。
3、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。
4、求下列阴影部分面积和周长5、如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为.6、右图中正方形周长是20厘米。
图形的总面积是平方厘米.7、如图,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?S1S28、右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心. 如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?9、如图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π10、有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图). 图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.11、已知ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .EDCB AGF12、如图32,大正方形的边长为6厘米,小正方形的边长为4厘米。
求阴影部分的面积。
小学赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。
科学研究证实,虽然大脑的重量只占人体重量的2%-3%,但大脑消耗的能量却占食物所产生的总能量的20%,它的能量来源靠葡萄糖氧化过程产生。
人教版六年级数学上册第五单元《圆与正方形组合的面积问题的应用》课件
3.14
r
2-
1 2
2r
r
2
=
1.14r
ቤተ መጻሕፍቲ ባይዱ
2
这节课你有什么收获?
1 “外方内圆” 图形中,圆的直径等于正方形的边长。 如果圆的半径为r,那么正方形和圆之间部分的面 积为0.86r2。
2 “外圆内方”图形中,这个正方形的对角线等于圆 的直径。如果圆的半径为r,那么圆和正方形之间 部分的面积为1.14r2。
图(1)
下图中正方形的边长是多少呢?
可以把图中的正方形看成两个三角形, 它的底和高分别是……
从图(2)可以看出:
图(2)
1 2
2
1
2
=
2
m2
3.14-2=1.14(m²)
那么我们解答得对不对呢? 有什么方法验证吗?
如果两个圆的半径都 是r,结果又是怎样的?
左图:(2r)²-3.14×r²=0.86r²
7.(易错题)如图,大正方形的面积比小正方形的面 积多10 cm2。两正方形之间圆的面积是多少?
假设圆的半径为r cm。 (2r)2-2r×r÷2×2=10 r2=5 3.14×5=15.7(cm2) 答:两正方形之间圆的面积是15.7 cm2。
点拨:假设圆的半径为r cm,则大正方形的面积为 4r2 cm2,小正方形的面积为2r×r÷2×2=2r2(cm2), 由题意可知,4r2-2r2=10,所以r2=5,则圆的面积 为3.14×5=15.7(cm2)。
点拨:外圆内方图形中圆和正方形之间部 分的面积为1.14r2,其中r=4 dm,代入求 解即可。
提 升 点 1 “外方内圆”面积计算的应用
5.如图,将一块正方形纸板剪去4个等圆,每个 圆的周长均是9.42厘米,这块纸板的剩余面 积是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关圆的组合图形的面积问题
2、①圆的周长是18.84cm,求阴影部分面积。
②长方形的面积和圆的面积相等,已知圆的半径是3cm,求阴影部分的周长和面积。
③求直角三角形中阴影部分的面积。
(单位:分米)
④图中阴影①比阴影②面积小48平方厘米,AB=40cm,求BC的长。
⑤一个圆的半径是4cm,求阴影部分面积。
【变式训练】
1、求下列各图中阴影部分的面积。
(单位:厘米)
2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。
3、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。
4、求下列阴影部分面积和周长
5、如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为
.
6、右图中正方形周长是20厘米。
图形的总面积是 平方厘米
7、如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?
S 1
S 2
8、右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心. 如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?
9、如图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π
10、有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图). 图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.
11、已知ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .
E
D
C
B A
G
F
12、如图32,大正方形的边长为6厘米,小正方形的边长为4厘米。
求阴影部分的面积。