轨迹方程求解常用方法
求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法点的轨迹方程是描述点在运动过程中所经过的路径的数学方程。
在数学和物理等领域,有许多方法可以推导和描述点的轨迹方程。
下面介绍六种常见的方法。
一、直角坐标系方法直角坐标系方法是最常见的一种方法,通常用于平面分析。
在直角坐标系下,点的位置可以用横坐标x和纵坐标y来表示。
如果已知点的坐标与时间的关系,可以通过方程联立或者曲线拟合的方法得到点的轨迹方程。
二、参数方程方法参数方程方法是一种将点的位置用参数表示的方法。
通过引入参数t,点的坐标可以用关于t的函数表示,如x=f(t)和y=g(t),这样就可以得到点的轨迹方程。
参数方程方法适用于描述直线、圆和其他曲线的方程。
三、极坐标系方法极坐标系方法是一种将点的位置用极径r和极角θ来表示的方法。
通过引入极径和极角的关系表达式,可以得到点的轨迹方程。
例如,对于圆的方程可以表示为r=f(θ),其中f(θ)是关于极角θ的函数。
四、矢量方程方法矢量方程方法是一种用矢量表示点的位置的方法。
通过引入位置矢量r(t),可以得到点的轨迹方程。
位置矢量r(t)通常用分量表示,如r=(x,y,z)。
矢量方程方法适用于描述曲线在三维空间中的轨迹。
五、微分方程方法微分方程方法是一种通过点的运动规律和动力学方程来推导轨迹方程的方法。
通过对点的位置向量或者其分量进行微分,并代入运动规律方程,可以得到点的轨迹方程。
微分方程方法适用于描述受力作用下点的运动。
六、变分原理方法变分原理方法是一种通过极小化或者极大化一些物理量来推导轨迹方程的方法。
通过对点的位置或路径的泛函进行变分,可以得到使泛函取得极值的轨迹方程。
变分原理方法适用于描述光的传播、质点在介质中的传播等问题。
综上所述,点的轨迹方程可以通过直角坐标系方法、参数方程方法、极坐标系方法、矢量方程方法、微分方程方法和变分原理方法等六种常见方法推导和描述。
不同的方法适用于不同的情况和问题,选择合适的方法可以更方便地求解轨迹方程。
例谈动点的轨迹方程的四种求法

思路探寻求动点的轨迹方程问题经常出现在解析几何试题中,这类问题侧重于考查同学们的推理、分析以及运算能力.求解这类问题的主要方法有定义法、参数法、相关点法和交轨法.下面结合实例,谈一谈这四种方法的特点以及应用技巧.一、定义法定义法是指运用圆锥曲线的定义解题.若发现动点的轨迹形如椭圆、圆、双曲线、抛物线或其中的一部分曲线,就可以根据椭圆、圆、双曲线、抛物线的定义,确定定点、焦点、焦点与动点之间的关系,求得椭圆、圆、双曲线、抛物线方程中的各个参数,便可以快速确定曲线的轨迹方程.例1.如图1所示,已知圆C1:x2+(y+4)2=25和圆C2:x2+(y-4)2=1,某动圆C分别与圆C1和圆C2外切,求动圆圆心C的轨迹方程.图1解:由题意知两圆的圆心为C1(0,-4),C2(0,4),半径为r1=5,r2=1,设动圆C的半径为r,因为圆C分别与圆C1和圆C2外切,所以||CC1=r+5,||CC2=r+1,所以||CC1-||CC2=4<8,即点C到两定点C1、C2的距离之差为常数4,所以动圆圆心C的轨迹是以C1、C2为焦点的双曲线的上支,可得2a=4,2c=||C1C2=8,所以b2=c2-a2=12.所以动圆圆心C的轨迹方程是y24-x212=1(y≥2).结合图形分析动圆C与圆C1、圆C2的位置关系,即可发现||CC1=r+5,||CC2=r+1,即可得出||CC1-||CC2=4<8,由此可联想到双曲线的定义,即平面内到两定点的距离之差为定值的点的轨迹,确定动点的轨迹,求得a、b、c值,即可求得动点的轨迹方程.二、参数法参数法是解答数学问题的重要方法.若动点受某些变量的影响,而我们又无法确定这些变量的取值,则需运用参数法,即用参数表示出变量,设出直线的斜率、点的坐标、曲线的方程等,然后将其代入题设中,建立关系式,通过恒等变换消去参数,即可求得动点的轨迹方程.例2.已知抛物线y2=4px(p>0)的顶点为O,A,B是抛物线上的两个动点,且OA⊥OB,OM⊥AB于点M,求点M的轨迹方程.解:设M(x,y),直线AB的方程为y=kx+b,因为OA⊥OB,所以k=-xy,由ìíîy2=4px,y=kx+b,得k2x2+(2kb-4p)x+b2=0,所以x1x2=-b2k2,y1y2=-4pb k,因为OA⊥OB,所以y1y2=-x1x2,所以-4pbk=-b2k2,即b=-4kp,所以直线AB的方程为y=kx+b=k(x-4p),将k=-xy代入,得x2+y2-4px=0(x≠0),即所求点M的轨迹方程为x2+y2-4px=0(x≠0).解答本题主要运用了参数法,即先引入参数x、y,49k 、b 、x 1、x 2、y 1、y 2,设出动点M 的坐标、直线AB 的方程以及A 、B 两点的坐标;然后将直线与抛物线的方程联立,根据一元二次方程的根与系数的关系建立关系式;最后通过恒等变换消去参数,得到关于x 、y 的方程,即为动点的轨迹方程.三、相关点法若两个动点之间存在某种特定的关系,则可以采用相关点法求解.先分别设出两个动点的坐标,并根据二者之间的关系,用所求动点的坐标表示另一个动点的坐标;然后根据另一个动点的几何关系,建立关于所求动点坐标的关系式,从而求得动点的轨迹方程.运用相关点法解题,要注意寻找两个动点之间的联系,并确定另一个动点所满足的几何关系.例3.如图2所示,在圆x 2+y 2=4上任意选取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,求线段PD中点M 的轨迹方程.图2解:设点M (x ,y ),P (x 0,y 0),因为M 为线段PD 的中点,所以ìíîïïx =x 0,y =y 02,得{x 0=x ,y 0=2y ,又因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,将{x 0=x ,y 0=2y ,代入上述方程中,得x 24+y 2=1,所以点M 的轨迹为一个椭圆,其方程为x 24+y 2=1.本题中P 、M 均为动点,且点M 随着点P 的运动而变化,需采用相关点法求解,先分别设出P 、M 两点的坐标;然后用M 点的坐标表示P 的坐标;再将其代入点P 的轨迹方程,即可确定点M 的轨迹及其方程.四、交轨法当问题中所求的动点为两条动曲线的交点时,往往需采用交轨法,即将两条动曲线的方程联立,消去其中的参数,得到的关于x 、y 的方程即为所求的动点的轨迹方程.例4.如图3所示,已知双曲线C :y 24-x 23=1与y轴交于点A 1(0,-2)与点A 2(0,2),直线l :y =m 与双曲线交于点P ,Q ,直线A 1P 与直线A 2Q 相交于点M ,试求点M 的轨迹方程.图3解:设P (x 1,m ),Q (-x 1,m ),M (x ,y ),因为点P 在双曲线上,所以m 24-x 123=1.当x 1≠0时,直线PA 1的方程为y +2=m +2x 1x ,直线QA 2的方程为y -2=2-m x 1x,可得y 2-4=4-m 2x 12x 2,所以x 12=3m 2-124,将其代入y 2-4=4-m 2x 12x 2,得y 2-4=-43x 2,化简整理得y 24+x 23=1.当x 1=0时,点M 的坐标满足方程y 24+x 23=1.综上所述,点M 的轨迹方程为y 24+x 23=1.仔细分析题意可知,M 为直线A 1P 与直线A 2Q 的交点,且点A 1、A 2、P 、Q 都满足双曲线的方程,于是采用交轨法,求得两动直线A 1P 与A 2Q 的方程,再将两方程联立,消去参数,即可求出交点M 的轨迹方程.总之,求动点的轨迹方程,关键是要根据题目中的几何条件,寻找动点的横坐标与纵坐标之间的关系,建立关于动点的横坐标与纵坐标的方程.求动点的轨迹方程的方法很多,同学们需熟练掌握一些常用方法的特点、适用情形、解题思路,才能将其灵活地应用于解题中.(作者单位:江苏省南通市海门实验学校)思路探寻50。
求轨迹方程的方法

求轨迹方程的方法轨迹方程是描述物体在运动过程中所遵循的路径的数学表达式。
轨迹方程的求解方法因物体的运动方式而异。
下面将介绍几种常见的物体运动方式,并讨论如何求解它们的轨迹方程。
1.直线运动:物体在直线上做匀速或变速直线运动时,其轨迹方程为y = mx + b,其中m为斜率,b为截距。
若已知起始点的坐标和运动速度,则可以通过这些参数来确定轨迹方程。
2.曲线运动:物体在空间中做曲线运动时,其轨迹方程一般无法用简单的直线方程表示。
这时需要通过其他方法来求解轨迹方程。
以下是几种常见的曲线运动例子:-圆周运动:若物体做匀速圆周运动,其轨迹方程可以用参数方程表示:x = r * cos(θ),y = r * sin(θ),其中r为圆的半径,θ为角度。
通过改变θ的取值范围,可以得到整个圆周的轨迹方程。
-椭圆运动:椭圆运动可以用参数方程表示:x = a * cos(θ),y = b * sin(θ),其中a和b分别为椭圆长轴和短轴的长度。
同样通过改变θ的取值范围,可以得到整个椭圆的轨迹方程。
-抛物线运动:物体做匀速或变速抛物线运动时,其轨迹方程可以用解析几何中的一般二次方程表示:y = ax^2 + bx + c,其中a、b和c为常数。
通过给定的起始点和速度,可以确定这些常数,从而求解轨迹方程。
-双曲线运动:物体做匀速或变速双曲线运动时,其轨迹方程可以用参数方程表示:x = a * sec(θ),y = b * tan(θ),其中a和b为常数。
同样通过改变θ的取值范围,可以得到整个双曲线的轨迹方程。
除了上述运动方式外,还存在许多其他复杂的运动形式,例如螺线、摆线等。
对于这些运动形式,求解轨迹方程的方法往往需要借助更高级的数学工具,如极坐标、参数方程、微分方程等。
总结起来,轨迹方程的求解方法因物体的运动方式而异。
对于直线运动,可以直接得到轨迹方程;对于曲线运动,常常需要借助参数方程、解析几何等数学工具来求解。
对于更加复杂的运动形式,可能需要借用更高级的数学方法来确定轨迹方程。
求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
轨迹方程的求法

轨迹方程的求法一、直接法求轨迹方程的一般步骤:“建、设、限、代、化” 1、建立恰当的坐标系; 2、设动点坐标(),x y ;3、限制条件列出来(如一些几何等量关系);4、代入:用坐标代换条件,得到方程(),0f x y =;5、化简(最后要剔除不符合条件的点).例1、过点()2,4P 作两条互相垂直的直线1l 、2l ,1l 交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.巩固训练1:平面内动点M 与两定点()1,0A -、()2,0B 构成MAB ∆,且2MBA MAB ∠=∠,求动点M 的轨迹方程.巩固训练2:已知点A 、B 的坐标分别为()5,0-、()5,0,直线AM 、BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程.巩固训练3:已知直角坐标平面上的点()2,0Q 和圆221C x y +=:,动点M 到圆C 的切线长与MQ 的比等于常数(0)λλ>,求动点M 的轨迹方程.二、定义法:如果动点的轨迹满足某已知曲线的定义,则可以依据定义求出轨迹方程.如圆、椭圆、双曲线、抛物线等. 规律可寻:(1)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.例2、(1)求与圆221:(3)1C x y ++=外切,且与222:(3)81C x y -+=内切的动圆圆心P 的轨迹方程.(2)已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,求动圆圆心M 的轨迹方程.巩固训练1:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆221:42F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练2:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆2211:24F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练3:在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,求点M 的轨迹方程.巩固训练4:已知点1F 、2F 分别是椭圆22:171617C x y +=的两个焦点,直线1l 过点2F 且垂直于椭圆长轴,动直线2l 垂直1l 于点G ,线段1GF 的垂直平分线交2l 于点H ,求点H 的轨迹方程.巩固训练5:在极坐标系Ox 中,直线l 的极坐标方程为sin 2ρθ=,点M 是直线l 上任意一点,点P 在射线OM 上,且满足4OP OM ⋅=,记点P 的轨迹方程为C ,求曲线C 的极坐标方程.三、相关点法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程. “相关点法”的基本步骤:(1)设点:设被动点的坐标为(),x y ,主动点的坐标为()00,x y ;(2)求关系式:求出两个动点坐标之间的关系式()()00,,x f x y y g x y =⎧⎪⎨=⎪⎩; (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.例3、已知点P 是圆22:4C x y +=上任意一点,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,求线段PD 的中点M 的轨迹方程.巩固训练1:已知在ABC ∆中,()2,0A -,()0,2B -,第三个顶点C 在曲线231y x =-上动点,求ABC ∆的重心的轨迹方程.巩固训练2:已知点P 是圆22:25C x y +=上任意一点,点D 是点P 在x 轴上的投影,点M 为PD 上一点,且满足45MD PD =,当点P 在圆上运动时,求点M 的轨迹方程.四、参数法:如果动点(),P x y 的坐标之间的关系不容易找,可以考虑将,x y 用一个或几个参数表示,最后消参数,得出,x y 之间的关系式,即轨迹方程.常用参数有角度θ、直线的斜率、点的横、纵坐标,线段的长度等.例4、过抛物线24y x =的顶点O 引两条互相垂直的直线分别与抛物线相交于,A B 两点,求线段AB 的中点P 的轨迹方程.巩固训练1:设椭圆方程为2214y x +=,过点()0,1M 的直线l 交椭圆于,A B ,O 是坐标原点,直线l 的动点P 满足()12OP OA OB =+,当直线l 绕点M 旋转时,求点P 的轨迹方程.五、交轨法:写出动点所满足的两个轨迹方程后,组成方程组分别求出,x y ,再消去参数,即可求解,这种方法一般适合于求两条动直线交点的轨迹方程.例5、设1A 、2A 是椭圆22195x y +=的长轴的两端点,1P 、2P 是垂直于12A A 的弦的端点,求直线11A P 与22A P 的交点的轨迹方程.巩固训练1:已知双曲线2212x y -=的左、右顶点分别为1A 、2A ,点()11,P x y 、()11,Q x y -是双曲线上不同的两个动点,求直线1A P 与2A Q 的交点的轨迹E 的方程.。
求轨迹方程的常用方法及例题

求解轨迹方程的常用方法主要有以下几种:
参数方程法:通过引入参数,将轨迹上的点的坐标表示为参数的函数形式,然后通过给定参数的取值范围,确定轨迹上的点的位置关系。
隐式方程法:将轨迹方程中的自变量与因变量通过一个方程联系起来,形成一个隐式方程,然后通过对方程进行求解和化简,得到轨迹的几何性质。
极坐标方程法:对于某些曲线,使用极坐标系可以更方便地描述其轨迹。
通过将轨迹上的点的极坐标表示,可以得到轨迹的极坐标方程。
下面是一个例题:
例题:求解椭圆的轨迹方程。
解答:椭圆是一个平面上的闭合曲线,其定义特点是到两个焦点的距离之和恒定。
我们可以使用参数方程法来求解椭圆的轨迹方程。
假设椭圆的焦点为F1和F2,长轴长度为2a,短轴长度为2b。
取参数θ,定义点P在椭圆上的坐标为(x, y)。
那么根据椭圆的定义,可以得到以下参数方程:
x = a * cos(θ) y = b * sin(θ)
其中,θ的取值范围为0到2π。
通过给定θ的取值范围,我们可以得到椭圆上的点的坐标关系。
进一步化简参数方程,可以得到椭圆的隐式方程:
(x^2 / a^2) + (y^2 / b^2) = 1
这就是椭圆的轨迹方程,其中a和b分别为椭圆的长轴和短轴长度。
以上是求解轨迹方程的常用方法和一个椭圆轨迹方程的例题。
根据具体的问题和曲线类型,选择合适的方法进行求解和推导。
求轨迹方程的五种方法

求轨迹方程的五种方法1.直线轨迹方程的求解方法:直线的轨迹方程可以通过以下五种方法求解。
1.1斜率截距法:当直线已知斜率m和截距b时,可以使用斜率截距法求解。
直线的轨迹方程为:y = mx + b。
1.2点斜式方法:当直线已知斜率m和通过的一点(x1,y1)时,可以使用点斜式方法求解。
直线的轨迹方程为:(y-y1)=m(x-x1)。
1.3两点式方法:当直线已知通过的两点(x1,y1)和(x2,y2)时,可以使用两点式方法求解。
直线的轨迹方程为:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。
1.4截距式方法:当直线已知x轴和y轴上的截距时,可以使用截距式方法求解。
直线的轨迹方程为:x/a+y/b=1,其中a和b分别为x轴和y轴上的截距。
1.5法向量法:当直线已知法向量n和通过的一点(x1,y1)时,可以使用法向量法求解。
直线的轨迹方程为:n·(r-r1)=0,其中n为法向量,r为直线上的任意一点的位置矢量,r1为通过的一点的位置矢量。
2.圆轨迹方程的求解方法:圆的轨迹方程可以通过以下五种方法求解。
2.1一般式方法:当圆的圆心为(h,k)且半径为r时,可以使用一般式方法求解。
圆的轨迹方程为:(x-h)²+(y-k)²=r²。
2.2标准式方法:当圆的圆心为(h,k)且半径为r时,可以使用标准式方法求解。
圆的轨迹方程为:(x-h)²+(y-k)²=r²。
2.3参数方程方法:当圆的圆心为(h,k)且半径为r时,可以使用参数方程方法求解。
圆的轨迹方程为:x = h + rcosθ,y = k + rsinθ,其中θ为参数。
2.4三点定圆方法:当圆已知经过三点(x1,y1),(x2,y2)和(x3,y3)时,可以使用三点定圆方法求解。
圆的轨迹方程为:(x-x1)(x-x2)(x-x3)+(y-y1)(y-y2)(y-y3)-r²(x+y+h)=0,其中h为x平方项和y平方项的系数之和。
求轨迹方程的五种方法

求轨迹方程的五种方法有五种方法可以求解轨迹方程,分别是:1.参数方程法2.一般方程法3.极坐标方程法4.隐函数方程法5.线性方程组法接下来将对这五种方法进行详细解释。
1.参数方程法:参数方程法是指将坐标轴上的点的位置用一个参数表示,通过参数的变化来表示轨迹。
例如,一个点在x轴上运动,其速度为v,经过时间t后的位置可以用参数方程表示为x = vt。
参数方程法可以很方便地描述物体的运动轨迹,特别适用于描述曲线的参数方程。
2.一般方程法:一般方程法是指将轨迹上的点的位置用一般方程表示。
例如,对于一个圆形轨迹x^2+y^2=r^2,其中r为半径,可以通过该一般方程来描述圆的轨迹。
一般方程法可以描述各种曲线轨迹,但是求解过程可能较为繁琐。
3.极坐标方程法:极坐标方程法是指将轨迹上的点的位置用极坐标系表示。
极坐标系由极径和极角两个参数组成,其中极径表示点到原点的距离,极角表示点在极坐标系中的方向角度。
通过给定极径和极角的值可以唯一确定一个点的位置。
例如,对于一个以原点为中心的圆形轨迹,可以用极坐标方程表示为r=R,其中R为圆的半径。
极坐标方程法适用于描述具有对称性的轨迹,如圆形、椭圆形等。
4.隐函数方程法:隐函数方程法是指将轨迹上的点的位置用隐函数方程表示。
隐函数方程是一个含有多个变量的方程,其中至少有一个变量无法用其他变量表示。
通过给定其他变量的值,可以计算出不能用其他变量表示的变量的值,从而确定轨迹上的点的位置。
例如,对于一个抛物线轨迹y = ax^2 + bx + c,其中a、b、c为常数,可以根据给定的x的值求解出y的值,从而确定轨迹上的点的位置。
5.线性方程组法:线性方程组法是指将轨迹上的点的位置用线性方程组表示。
线性方程组是由多个线性方程组成的方程组,其中每个方程的未知数是轨迹上的点的坐标。
通过求解线性方程组可以得到轨迹上的点的坐标。
线性方程组法适用于描述由多个轨迹组成的复杂图形,如多边形等。
以上就是求解轨迹方程的五种方法,分别是参数方程法、一般方程法、极坐标方程法、隐函数方程法和线性方程组法。
轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。
在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。
在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。
一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。
2. 将轨迹上的点的坐标表示为一般形式。
3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。
二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。
3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。
求轨迹方程的几种方法

求轨迹方程的几种方法
求轨迹方程是力学研究中一个重要而复杂的问题,在物理学和航空工程中也得到了广泛的应用。
求轨迹方程的方法主要有四种,分别是绝对运动方程法、局部运动方程法、递归法和坐标变换法。
(1)绝对运动方程法
绝对运动方程法是在任意时刻求解物体运动参数的一种方法,它根据给定物体运动学模型,由物体在某时刻的力学状态参数和动力学参数,通过解绝对运动方程组,来确定物体在任一时刻的动力学状态参数,从而求出物体的轨迹方程。
局部运动方程法是将物体分别在短时间间隔以及限定范围(敏感区域)内求解物体的运动参数。
近似地将本征方程的原始状态矢量化分割为N个有限子空间(子步空间),而在每个子步空间内以满足其局部特性的运动学方程进行求解,最后给出物体整个运动过程的轨迹方程。
(3)递归法
递归法是以递归定理为依据,从原始状态矢量的速度和加速度的代数形式出发,进行递归求解的运动学方法。
根据求轨迹方程的思路,它将复杂的原始状态矢量特性表达式逐步分解局部状态矢量,最终得到物体运动轨迹方程。
(4)坐标变换法
坐标变换法是求轨迹方程的一种新方法,它将物体运动学模型和坐标变换方法结合起来,以坐标变换统一计算附近各点的物体坐标及其速度矢量,从而求得物体在时变情况下的轨迹方程。
与传统的求轨迹运动的方法相比,坐标变换法更容易理解,更加准确,并能节约计算量。
以上就是求轨迹方程的几种方法,在实际工程中也会用到上述某种方法,从而分析对象在特定状态下的运动特性,为有效分析建立良好的基础。
求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
求轨迹方程的常用方法

求轨迹方程的常用方法轨迹方程是描述物体运动轨迹的数学表达式。
常用的方法包括几何法、解析法和向量法。
一、几何法通过几何分析,可以利用直观的图形来确定轨迹方程。
1.1圆轨迹对于物体在平面上以一些固定点为中心做等速圆周运动的情况,其轨迹是一个圆。
圆轨迹可以通过半径和圆心坐标来表示。
1.2椭圆轨迹对于物体在空间中以一些固定点为焦点的椭圆轨迹,可以利用焦点坐标和半径长度来确定椭圆方程。
1.3抛物线轨迹物体在重力作用下自由落体的运动可以近似为一个抛物线运动。
其轨迹方程可以通过焦点坐标和准线方程来确定。
1.4双曲线轨迹一些情况下,物体运动的轨迹是一个双曲线。
双曲线轨迹可以通过焦点坐标和半轴长度来描述。
二、解析法解析法是通过分析物体在坐标系下的运动方程来确定轨迹方程。
2.1直角坐标系下的解析法在直角坐标系下,物体的运动可以由水平方向和垂直方向上的运动方程确定。
利用运动方程,可以消除时间因素,得到轨迹方程。
2.2极坐标系下的解析法在极坐标系下,物体的运动可以由径向运动方程和角度方程确定。
通过解析极坐标下的方程,可以得到轨迹方程。
2.3参数方程下的解析法在参数方程下,物体的运动可以由参数方程表示。
通过参数方程分别给出$x$和$y$坐标与参数$t$之间的关系,可以得到轨迹方程。
三、向量法向量法是通过运用向量的概念和运算来分析物体的运动轨迹。
3.1数量积表示轨迹方程通过设定一个合适的道路向量,可以用向量内积的形式表示运动方程,从而得到轨迹方程。
3.2向量积表示轨迹方程通过设定一个合适的平面向量,可以用向量叉积的形式表示运动方程,进而得到轨迹方程。
综上所述,求轨迹方程的常用方法包括几何法、解析法和向量法。
在实际应用中,根据具体问题的特点和要求选择合适的方法来求解轨迹方程。
求动点的轨迹方程常用方法

求动点的轨迹方程常用方法动点的轨迹方程是描述动点运动轨迹的数学表达式。
在物理学和数学中,有几种常用方法来求解动点的轨迹方程。
下面将介绍其中的三种常见方法:欧拉-拉格朗日方程、牛顿定律和分离变量法。
一、欧拉-拉格朗日方程欧拉-拉格朗日方程是描述一般运动的最基本方式之一、它可以用来求解多自由度系统的运动方程,从而推导出动点的轨迹方程。
其步骤如下:1.确定系统的广义坐标和广义速度。
广义坐标是用来描述系统状态的独立变量,广义速度是广义坐标对时间的导数。
2.编写拉格朗日函数。
拉格朗日函数是系统动能和势能的差值,可以表示为L=T-V,其中T是系统的动能,V是系统的势能。
3.根据拉格朗日函数,得出欧拉-拉格朗日方程。
欧拉-拉格朗日方程可以用拉格朗日函数对广义坐标求导的形式表示。
4.解方程得到广义坐标的函数形式,即为动点的轨迹方程。
二、牛顿定律牛顿定律是经典力学中最为基础的定律之一、使用牛顿定律可以求解物体的运动轨迹。
其步骤如下:1.描述物体所受的外力。
外力是物体运动的原因,可以是引力、摩擦力等。
2.应用牛顿第二定律,F=m*a。
其中F是物体所受合力,m是物体的质量,a是物体的加速度。
应用力的平衡条件和牛顿第二定律可以得到物体的运动方程。
3.解运动方程得到物体的位置关于时间的函数形式,即为动点的轨迹方程。
三、分离变量法分离变量法是微分方程的一种常见解法,可以用来求解一类特殊的微分方程,即可分离变量的微分方程。
其步骤如下:1.根据动点的运动特征,列出微分方程。
微分方程应符合动点的运动规律。
2.将微分方程化为可分离变量的形式。
对微分方程进行代数运算,将未知函数和变量分离。
3.对方程两边进行积分,得到物体位置关于时间的函数形式,即为动点的轨迹方程。
这三种方法是求解动点轨迹方程的常用方法。
根据具体情况选择适合的方法可以更高效地求解出动点的轨迹方程。
求轨迹方程的常用方法

求轨迹方程的常用方法
确定轨迹方程的常用方法有以下几种:
1.直接法:通过直接描绘或测量物体相应位置的坐标来确定轨迹方程。
这种方法适用于已知运动物体的运动轨迹形状简单且容易测量的情况。
常
用的直接法包括使用工具如尺子或量角器来绘制直线或角度,或者使用工
具如摄像机或激光测距仪来测量物体的位置。
2.参数方程法:将物体的位置用参数表示,通过参数方程来描述物体
的轨迹。
参数方程法常用于描述复杂的曲线或曲面轨迹,如圆、椭圆、抛
物线和螺旋线等。
以平面曲线为例,设参数为t,物体在x轴和y轴上的
坐标分别为x(t)和y(t),则轨迹方程可以表示为:x=x(t),y=y(t)。
3.方程法:通过列出满足物体位置的方程来确定轨迹方程。
方程法常
用于描述几何形状特定的轨迹,如圆、椭圆、抛物线和双曲线等。
以平面
曲线为例,设物体在x轴和y轴上的坐标分别为x和y,则轨迹方程可以
表示为一个关于x和y的方程:F(x,y)=0。
4.微分方程法:通过物理或几何相关的微分方程来确定轨迹方程。
微
分方程法常用于描述物体的运动过程,根据物体的运动方程可以推导出其
轨迹方程。
以平面运动为例,设物体在x轴和y轴上的位置分别为x(t)
和y(t),则可以通过物体的运动方程来求解位置关于时间的微分方程,
然后进一步解得轨迹方程。
以上是确定轨迹方程的常用方法,不同方法适用于不同的情况。
在实
际应用中,可以根据问题的具体要求和已知条件选择合适的方法来确定轨
迹方程。
求动点轨迹方程的几种方法

求动点轨迹方程的几种方法由运动轨迹求解方程是解析几何中的一个重要问题。
一、直接法通过给定固定点满足的几何条件列出方程,然后将坐标代入并,化简得到期望的轨迹方程。
这种方法称为直接法。
例1、已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程。
解析:设点P的坐标为(x,y),则由题意可得。
(1)当x≤3时,方程变为,化简得。
(2)当x>3时,方程变为,化简得。
故所求的点P的轨迹方程是或。
二、定义法通过对给定动点所满足的几何条件进行简化变形,可以看出动点满足二次曲线的定义,进而得到轨迹方程。
这种方法叫做定义法。
例2、已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。
解析:设动圆的半径为R,由两圆外切的条件可得:,。
∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,c=4,a=2,b2=12。
故所求轨迹方程为。
三、待定系数法从题意可以知道曲线的类型,将方程设为曲线方程的一般形式,利用题意给出的条件得到所需的待定系数,进而得到轨迹方程。
这种方法称为待定系数法。
例3、已知双曲线中心在原点且一个焦点为F(,0),直线y=x-1与其相交于M、N两点,MN中点的横坐标为,求此双曲线方程。
解析:设双曲线方程为。
将y=x-1代入方程整理得。
你从维耶塔定理得到的。
同时,联立方程被求解。
∴此双曲线的方程为。
四、参数法选取合适的参数,分别用参数表示动点的坐标,得到动点轨迹的参数方程,然后消去参数得到动点轨迹的一般方程。
这种方法称为参数法。
例4、过原点作直线l和抛物线交于A、B两点,求线段AB的中点M的轨迹方程。
解析:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。
把它代入抛物线方程。
因为直线和抛物线相交,所以△>0,解得。
设A(),B(),M(x,y),由韦达定理得。
由消去k得。
又。
∴点M的轨迹方程为。
求轨迹方程的几种常用方法

求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1.直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。
解:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则有A (,0)a -,B (,0)a 。
设动点C 为(,)x y ,∵222||||||AC BC AB +=,∴2224a +=,即222x y a +=.由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点,故所求方程为222x y a +=(x a ≠±)。
2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例2:已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且:1:2AM MB =,求动点M 的轨迹方程。
解:设A (,0)a ,B (0,)b ,M (,)x y ,一方面,∵||6AB =,∴2236a b +=, ①另一方面,M 分AB 的比为12,∴1022133122130121312a x a a xb y b y b ⎧+⨯⎪==⎪⎪+⎧=⎪⎪⇒⎨⎨⎪⎪=+⎩⎪==⎪+⎪⎩ ② ②代入①得:223()(3)362x y +=,即221164x y +=。
评注:本例中,由于M 点的坐标随着A 、B 的变化而变化,因而动点M 的坐标(,)x y 可以用A 、B 点的坐标来表示,而点M 又满足已知条件,从而得到M 的轨迹方程。
求轨迹方程方法总结

求轨迹方程方法总结轨迹方程是描述物体运动路径的数学表达式。
当我们了解物体的运动规律时,可以使用轨迹方程来描述其运动轨迹,从而帮助我们更好地理解和预测物体的运动。
下面将总结几种常用的推导轨迹方程的方法。
一、基础几何方法:1. 直线运动:对于直线运动,轨迹方程可以通过位移与时间的关系来推导。
如果物体的初始位置为(x0, y0),速度为v,则物体在时间t后的位置(x,y)可以表示为 x = x0 + vt,y = y0。
从而得到轨迹方程 y = y0 + vt。
2.曲线运动:对于曲线运动,可以通过几何关系来推导轨迹方程。
例如,对于抛体运动,可以通过重力加速度和初速度的关系,推导出位置关于时间的二次方程,从而得到轨迹方程。
二、解微分方程方法:1.一阶微分方程:对于一阶微分方程,可以通过求解微分方程得到轨迹方程。
例如,对于匀加速直线运动,可以得到速度关于时间的一阶微分方程,通过求解得到速度与时间的表达式,再通过积分得到位移与时间的表达式,从而得到轨迹方程。
2.二阶微分方程:对于二阶微分方程,可以通过推导得到物体的运动规律,并进一步得到轨迹方程。
例如,对于单摆运动,可以通过考虑受力平衡和受力大小的关系,推导出物体的运动方程,从而得到轨迹方程。
三、向量方法:1.位矢法:对于具有速度和加速度的运动,可以通过位矢法推导轨迹方程。
位矢是一个描述位置和方向的向量,通过将速度积分得到位矢,再通过对位矢微分得到速度,通过对速度微分得到加速度,从而得到物体的位矢关于时间的表达式。
2.矢量投影法:对于运动方向发生变化的运动,可以利用矢量投影法推导轨迹方程。
将位矢投影到坐标轴上,得到物体在各个坐标轴上的分量,从而得到轨迹方程。
四、参数方程方法:1.参数方程是一种用参数表示物体运动轨迹的方法。
可以将物体的运动分解为水平方向与竖直方向上的分量,再通过参数来表示时间的变化。
将水平和竖直方向的分量分别定义为x(t)和y(t),则轨迹方程可以表示为(x(t),y(t))。
轨迹方程求法汇总

轨迹方程求法汇总轨迹方程是描述物体运动轨迹的数学表达式。
在不同情况下,轨迹方程的求法也会有所不同。
下面将对一些常见的情况下的轨迹方程求法进行汇总。
1.直线运动:当物体做直线运动时,轨迹方程可以使用直线的一般方程来表示。
直线的一般方程是y = kx + b,其中k表示直线的斜率,b表示直线在y轴上的截距。
根据物体的运动情况和给定的初始条件,可以求解出k和b的值,从而得到轨迹方程。
2.圆周运动:当物体做圆周运动时,轨迹方程可以使用圆的标准方程来表示。
圆的标准方程是(x-a)²+(y-b)²=r²,其中(a,b)表示圆心的坐标,r表示圆的半径。
根据物体的运动情况和给定的初始条件,可以求解出(a,b)和r的值,从而得到轨迹方程。
3.椭圆运动:当物体做椭圆运动时,轨迹方程可以使用椭圆的标准方程来表示。
椭圆的标准方程是(x-a)²/a²+(y-b)²/b²=1,其中(a,b)表示椭圆心的坐标。
根据物体的运动情况和给定的初始条件,可以求解出(a,b)的值,从而得到轨迹方程。
4.抛物线运动:当物体做抛物线运动时,轨迹方程可以使用抛物线的标准方程来表示。
抛物线的标准方程是y = ax² + bx + c,其中a, b, c为常数。
根据物体的运动情况和给定的初始条件,可以求解出a, b, c的值,从而得到轨迹方程。
5.双曲线运动:当物体做双曲线运动时,轨迹方程可以使用双曲线的标准方程来表示。
双曲线的标准方程是(x-a)²/a²-(y-b)²/b²=1,其中(a,b)表示双曲线的中心坐标。
根据物体的运动情况和给定的初始条件,可以求解出(a,b)的值,从而得到轨迹方程。
6.螺旋线运动:当物体做螺旋线运动时,轨迹方程可以使用极坐标方程来表示。
极坐标方程是r=aθ,其中r表示到原点的距离,θ表示与x轴的夹角,a为常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线补充(1) 轨迹方程求解常用方法一.定义法如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
熟悉一些基本曲线的定义是用定义法求曲线方程的关键。
(1) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(2) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (3) 抛物线:到定点与定直线距离相等。
例1一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:A :抛物线B :圆C :椭圆D :双曲线一支 【解答】令动圆半径为R ,则有⎩⎨⎧-=+=1||1||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。
故选D 。
例 2 已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
【解析】由,sin 45sin sin C A B =+可知1045==+c a b ,即10||||=+BC AC ,满足椭圆的定义。
令椭圆方程为12'22'2=+by ax ,则34,5'''=⇒==b c a ,则轨迹方程为192522=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。
练习:1. 点M 到点F (4,0)的距离比它到直线的距离小1,则点M 的轨迹方程为____________。
【解答】:依题意,点M 到点F (4,0)的距离与它到直线的距离相等。
则点M 的轨迹是以F (4,0)为焦点、为准线的抛物线。
故所求轨迹方程为。
2.已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.解:如右图,以直线AB 为x 轴,线段AB 的中点为原 点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2,即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中,1,2='='c a ,3='b ,故C 的轨迹方程为)2,0(13422-≠<=+x x y x.二.直接法如果动点P 的运动规律满足的等量关系易于建立,则可以用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
(有时要借助相关图形的几何性质)例3 已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x =u u u r u u u r·,则点P 的轨迹是( ) A.圆B.椭圆 C.双曲线 D.抛物线解析:由题知(2)PA x y =---u u u r ,,(3)PB x y =--u u u r,, 由2PAPB x =u u u r u u u r·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D.例4 线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?解 设M 点的坐标为),(y x ,在直角三角形AOB 中,OM=,22121a a AB =⨯= 22222,a y x a y x =+=+∴M 点的轨迹是以O 为圆心,a 为半径的圆周.例5(几何性质)过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。
解:设M (x ,y ),连结MP ,则A (2x ,0),B (0,2y ),∵l 1⊥l 2,∴△PAB 为直角三角形,||21||AB MP ,=由直角三角形的性质 2222)2()2(·21)4()2(y x y x +=-+-∴ 化简,得x +2y -5=0,此即M 的轨迹方程。
练习:1.动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?【解答】∵|P A |=2222)3(||,)3(y x PB y x +-=++代入2||||=PB PA 得222222224)3(4)3(2)3()3(y x y x y x y x +-=++⇒=+-++化简得(x -5)2+y 2=16,轨迹是以(5,0)为圆心,4为半径的圆.2. (几何性质)已知经过点P (4,0)的直线1l ,经过Q (-1,2)的直线为2l ,若21l l ⊥,求1l 与2l 交点S 的轨迹方程。
解:设动点S 的坐标为(x,y ),设1l 、2l 的斜率为1k 、2k ,∵)1(12),4(421-≠+-=≠-=x x y k x x y k 由21l l ⊥有121-=k k , ∴)1,4(,1124-≠≠-=+-•-x x x y x y 得:042322=-+-+y x y x ……①当4=x 或1-=x 时①式有解。
∴S 的轨迹方程为:042322=-+-+y x y x 三 .相关点法如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
例6 点P(x 0,y 0)在圆x 2+y 2=1上运动,则点M (2x 0,y 0)的轨迹是 ( ) A.焦点在x 轴上的椭圆 B. 焦点在y 轴上的椭圆 C. 焦点在y 轴上的双曲线 D. 焦点在X 轴上的双曲线解:令M 的坐标为),,(y x 则⎪⎩⎪⎨⎧==⇒⎩⎨⎧==y y x x y y x x 00022代入圆的方程中得1422=+y x ,选A 例7 设P 为双曲线-42x y 2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是 。
解析:(1)答案:x 2-4y 2=1设P (x 0,y 0) ∴M (x ,y )∴2,200y y x x == ∴2x =x 0,2y =y 0 ∴442x -4y 2=1⇒x 2-4y 2=1例8 如图,从双曲线1:22=-y x C 上一点Q 引直线2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.解:设),(),(11y x ,Q y x P ,则)2,2(11y y x x N --.ΘN 在直线l 上,.22211=-+-∴y y x x ① 又l PN ⊥得,111=--x x y y 即011=-+-x y y x .②y Q OxN P联解①②得⎪⎪⎩⎪⎪⎨⎧-+=-+=22322311x y y y x x .又点Q 在双曲线C 上,1)223()223(22=-+--+∴x y y x ,化简整理得:01222222=-+--y x y x ,此即动点P 的轨迹方程.练习:1.已知圆的方程为(x-1)2+y 2=1,过原点O 作圆的弦0A ,则弦的中点M 的轨迹方程是 .【解答】:令M 点的坐标为(),y x ,则A 的坐标为(2)2,y x ,代入圆的方程里面得:)0(41)21(22≠=+-x y x 2. 的的中点求线段为定点上的动点是椭圆点M AB ,a ,,A by a x B )02(12222=+ 轨迹方程。
【解析】设动点M 的坐标为(x ,y ),而设B 点坐标为(x 0,y 0) 则由M 为线段AB 中点,可得⎩⎨⎧=-=⇒⎪⎪⎩⎪⎪⎨⎧=+=+y y a x x y y x ax 22220220000 即点B 坐标可表为(2x -2a ,2y ),上在椭圆点又1)(222200=+b y a x ,y x B Θ,by a a x bya x 1)2()22(12222220220=+-=+∴从而有 14)(42222=+-by a a x M ,的轨迹方程为得动点整理 四 . 交轨消去参数法在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
例9两条直线01=--my x 与01=-+y mx 的交点的轨迹方程是 . 【解答】:直接消去参数m 即得(交轨法):022=--+y x y x例10当参数m 随意变化时,则抛物线的顶点的轨迹方程为___________。
【解答】:抛物线方程可化为 它的顶点坐标为消去参数m 得:故所求动点的轨迹方程为。
练习:1.设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C2. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .求直线A 1P 与A 2Q 交点M 的轨迹方程;.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.。