第八章-相关与回归分析

合集下载

《应用统计学》第八章相关和回归分析

《应用统计学》第八章相关和回归分析

《应用统计学》第八章相关和回归分析相关和回归分析是统计学中常用的分析方法,用来研究变量之间的关系以及预测因变量的值。

本章将介绍相关和回归分析的原理和应用。

相关分析是研究两个或多个变量之间关系的统计方法。

通过计算相关系数来衡量变量之间的线性相关程度。

常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

皮尔逊相关系数适用于两个连续变量的相关分析,而斯皮尔曼相关系数适用于两个有序变量的相关分析。

回归分析是研究因变量与自变量之间关系的统计方法。

通过建立回归模型来预测因变量的值。

回归模型可以是线性模型、非线性模型或者多元回归模型。

线性回归模型的表达式为Y=a+bX,其中Y为因变量,X为自变量,a和b为参数。

回归分析有两个主要目的,一是预测因变量的值,二是研究自变量对因变量的影响程度和方向。

常用的回归分析方法有简单线性回归分析、多元线性回归分析和逻辑回归分析等。

相关和回归分析在实际应用中有着广泛的应用。

在社会科学研究中,相关和回归分析可以用来研究变量之间的关系,如收入和教育水平的相关性。

在医学研究中,相关和回归分析可以用来探索疾病与一些特定因素之间的关系,如高血压和体重的相关性。

在商业领域中,相关和回归分析可以用来分析销售量与广告投资的关系,预测未来的销售量。

需要注意的是,相关和回归分析只是描述性分析方法,并不能确定因果关系。

除了变量之间的线性关系,还可能存在其他非线性的关系。

此外,相关和回归分析只能用于连续变量的分析,不能用于分类型变量的分析。

在进行相关和回归分析时,需要注意几个问题。

首先是样本的选择和数据的收集,确保样本具有代表性,并获得准确和可靠的数据。

其次是确保数据满足相关和回归分析的假设前提。

例如,线性回归模型要求因变量与自变量之间呈线性关系,并且误差项满足正态分布和独立性。

最后是正确选择和解释统计指标,如相关系数和回归系数。

总之,相关和回归分析是应用统计学中常用的分析方法,用来研究变量之间的关系和预测因变量的值。

第八章 相关分析与回归分析

第八章 相关分析与回归分析
第8章 回归分析
下一页
返回本节首页
19
③在数据区域中输入B2:C11,选择“系列产 生在—列”,如下图所示,单击“下一步” 按钮。
上一页
第8章 回归分析
下一页
返回本节首页
20
④打开“图例”页面,取消图例,省略标题,如 下图所示。
上一页
第8章 回归分析
下一页
返回本节首页
21
⑤单击“完成”按钮,便得到XY散点图如下图 所示。
n 8, x 36.4, x 207.54 , y 104214 y 880, . xy 4544 6
2 2
r
n xy x y n x2 x 2 n y2 y 2 8 4544 6 36.4 880 .
第8章 回归分析
40
(二)回归分析的种类: 1、按自变量 x 的多少,分为一元回归和多 元回归; 2、按 y 与 x 关系的形式,分为线性回归和 非线性回归。
第8章 回归分析
41
二、一元线性回归分析
x y 62 86 80 110 115 132 135 160
42
(一)一元线性回归方程:
2、非线性相关:当一个变量变动时, 另一个变量也相应发生变动,但这种变 动是不均等的。
第8章 回归分析
9
㈢根据相关关系的方向 1、正相关:两个变量间的变化方向一 致,都是增长趋势或下降趋势。 2、负相关:两个变量变化趋势相反。
上一页
第8章 回归分析
下一页
返回本节首页
10
(四)根据相关关系的程度 1、完全相关:两个变量之间呈函数关系 2、不相关:两个变量彼此互不影响,其 数量的变化各自独立

第八章 相关与回归分析

第八章 相关与回归分析

相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。

统计学原理第八章相关与回归分析

统计学原理第八章相关与回归分析
相关分析的内容 1.判断现象之间是否存在相关关系; 2.如果存在相关关系,则要进一步判断相
关关系的种类和关系的紧密程度; 3.对相关系数进行显著性检验。
回归分析的内容
• 1. 建立反映变量间依存关系的数学模型 即回归方程;
• 2.对回归方程进行显著性检验; • 3.用回归过程进行预测。
回归分析和相关分析的主要区别
4.相关系数的绝对值越接近于1,表示相关 程度越强;越接近于0,表示相关程度越 弱。具体标准为:
R 的绝对值:0.3以下 微弱相关;
0.3-0.5 低度相关;
0.5-0.8 显著相关;
0.8以上 高度相关。
以上结论必须建立在对相关系数的显著性 检验基础之上。
三、相关系数的显著性检验
显著性检验的具体步骤:
资料:
销售量 500
(公斤)
价格 10
(元)
相关表

700 9
900 7
600 9
1000 800 89
1200 6
销售量 500
(公斤)
价格 10
(元)
600 9
700 9
800 9
900 7
1000 8
1200 6
相关图(散点图)
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
一、一元线性回归方程
❖ 只涉及一个自变量的回归
❖ 因变量y与自变量x之间为线性关系
➢ 被预测或被解释的变量称为因变量,用y表示
➢ 用来预测或用来解释因变量的一个或多个变量称为
自变量,用x表示
❖ 因变量与自变量之间的关系用一个线性方 程来表示
一元线性回归模型
❖ 一元线性回归模型可表示为

第八章相关分析与回归分析

第八章相关分析与回归分析

x
2 ( x x )
n
、x的标准差 y
2 ( y y )
n
2 2
、y标准差
( x x)( y y ) ( x x)( y y ) 即r 或r n ( x x) ( y y )
x y
《统计基础》
协方差的意义
①、显示x与y是正相关还是负相关 协方差为负,是负相关, 协方差为正,是正相关。 ②、协方差显示x与y相关程度的大小 当相关点在四个象限呈散乱的分布,相关程度很低 当相关点分布在x与y的平均值线上时,表示不相关 当相关点靠近一直线,表示相关关系密切 当相关点全部落在一直线,表示完全相关
二、相关分析和回归分析的区别与联系
《统计基础》
三、简单线性回归方程:
1、简单线性方程式:yc a bx 2、变量y不仅受x的影响,还受其他随机因素的影 响,因此通过相关图,可以直观地发现各个相关点 并不都落在一条直线上,而是在直线上下波动,只 呈现线性相关的趋势。 3、我们试图在相关图的散点中引出一条模拟的回 归直线,以表明两变量x与y的关系,称为估计回归 线,回归方程: yc a bx yc 为y的估计值 a—纵轴截距 b—回归系数,代表自变量增加一个单位时因变量的 平均增加值。
《统计基础》
4、计算a、b值
当实际值y与估计值 yc 的离差平方和为最小值时, 则此直线为最优的理想直线。 即: Q y y 2 y a bx2 最小值
得方程: na b x y .......... ....... a x b x xy
《统计基础》
6、回归分析和相关分析的特点:
回归分析是研究两变量之间的因果关系,所以 必须通过定性分析来确定哪个是自变量,哪个是因 变量。 回归分析是研究两变量具有因果关系的数学形式 回归分析中回归系数有2个(区分自变量、因变量) 相关分析中相关系数有1个(不区分自变量、因变 量)对于回归方程进行预测估计时,只能根据x估 计 yc ,不能根据 yc 估计x

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题参考答案一、名词解释函数关系:函数关系亦称确定性关系,是指变量(现象)之间存在的严格确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,必定有另一个且只有一个变量有确定的值与之对应。

相关关系:是指变量(现象)之间存在着非严格、不确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,可以有另一变量的若干数值与之相对应。

这种关系不能用完全确定的函数来表示。

相关分析:相关分析主要是研究两个或者两个以上随机变量之间相互依存关系的方向和密切程度的方法,直线相关用相关系数表示,曲线相关用相关指数表示,多元相关用复相关系数表示。

回归分析:回归分析是研究某一随机变量关于另一个(或多个)非随机变量之间数量关系变动趋势的方法。

其目的在于根据已知非随机变量来估计和预测随机变量的总体均值。

单相关:单相关是指仅涉及两个变量的相关关系。

复相关:复相关是指一个变量对两个或者两个以上其他变量的相关关系。

正相关:正相关是指两个变量的变化方向是一致的,当一个变量的值增加(或减少)时,另一变量的值也随之增加(或减少)。

负相关:负相关是指两个变量的变化方向相反,即当一个变量的值增加(或减少)时,另一个变量的值会随之减少(或增加)。

线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈一条直线,则称为线性相关。

非线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈现出某种曲线形式,则为非线性相关。

相关系数:相关系数是衡量变量之间线性相关密切程度及相关方向的统计分析指标。

取值在-1到1之间。

两个变量之间的简单样本相关系数的计算公式为:()()niix x y y r --∑二、单项选择1.B;2.D;3.D;4.C;5.A;6.D 。

三、判断题(正确的打“√”,错误的打“×”) 1.×; 2.×; 3.√; 4.×; 5.×; 6.×; 7.×; 8.√. 四、简答题1、什么是相关关系?相关关系与函数关系有什么区别?答:相关关系,是指变量(现象)之间存在着非严格、不确定的依存关系。

第8章 相关与回归分析

第8章 相关与回归分析

4、在相关关系中,变量之间是平等关系,不存在自变量和因变量。 、在相关关系中,变量之间是平等关系,不存在自变量和因变量。
而在回归分析中必须明确划分自变量和因变量。 而在回归分析中必须明确划分自变量和因变量。
8-9
统计学
STATISTICS
8.2 简单线性相关与回归分析
8 - 10
STATISTICS
8-5
统计学
STATISTICS
(三)从变量相关关系变化的方向看 从变量相关关系变化的方向看 变化的方向 正相关: A 正相关:变量同方向变化 , 即同增同减 (A) 同增同减 负相关:变量反方向变化, 负相关:变量反方向变化, 即一增一减 (B) B 一增一减 从变量相关的程度 相关的程度看 (四)从变量相关的程度看
完全相关 (B) 不完全相关 (A) 不相关 (C)
8-6
25 20 15 10 5 0 0 2 4 6 8 10 12
25 20 15 10 5 0 0 2 4 6 8 10 12
C
35 30 25 20 15 10 5 0 0 5 10 15
统计学
STATISTICS
三、回归分析
回归一词的由来: 回归一词的由来:
8 - 13
见第218页例题 页例题 见第 页例
统计学
STATISTICS
相关系数的特点: 相关系数的特点:
1、r 的取值范围是 − 1 ≤ r ≤ 1 。 、 2、r<0时,β<0 为负相关;r>0时, β>0 为正相关。 为负相关; 为正相关。 、 时 时 3、|r|=1,为完全相关。r =1,为完全正相关;r = -1, 、 ,为完全相关。 ,为完全正相关; , 为完全负正相关。 为完全负正相关。 4、r = 0,不存在线性相关。 、 线性相关。 ,不存在线性相关 5、|r|越趋于 表示两变量线性关系越密切;|r|越趋于 、 越趋于 表示两变量线性关系越密切; 越趋于 越趋于1表示两变量线性关系越密切 越趋于0 表示两变量线性关系越不密切。 表示两变量线性关系越不密切。 线性关系越不密切 6、r是一个随机变量。 、 是一个随机变量 是一个随机变量。

相关 分析与回归分析

相关 分析与回归分析
下一页 返回
第二节 相关关系的判断
2.相关表 相关表就是把被研究现象的观察值对应排列所形成的统计表
格。如某地区工业劳动者人数和增加值的历史资料对应排列 如表8-1所示。 相关表中的两行数据叫相关数列,它有别于变量数列。相关 表中的数值是变量的观测值,是实际资料,是样本数据,它 是判别相关关系的基础。在相关表中,如果观测值的分布呈 现一定的规律性,则表明现象间存在相关关系。如随着一个 变量数值的增加或减少,另一个变量的值也大致以某一固定 的速率和数量增加或减少,这就可以初步判别现象间存在相 关关系。如果两个变量的观测值不表现出任何规律性,则可 以判定现象间不存在相关关系。
上一页 下一页 返回
第一节 相关分析的一般问题
2.判定相关关系的表现形态和密切程度 相关关系是一种数量上不严格的相互依存关系。只有当变量间
确实存在高度密切的相关关系时,才可能进行相关分析,对社 会经济现象进行预测、推算和决策。因此,判定现象间存在相 关关系后,需要进一步确定相关关系的表现形态和密切程度。 统计上,一般是通过编制相关表、绘制相关图和计算相关系数 来做出判断的。根据相关图表可对相关关系的表现形态和密切 程度做出一般性的判断,依据相关系数则能做出数量上的具体 分析。在我们判断中学生的学习成绩和身高之间有无相关性时, 如果我们发现有部分相关联的点,我们还要进行相关程度的判 断,看两种现象之间的相关程度的高低,以此来判定其是否具 有研究相关性的必要。
除上例外,在其他方面也都可以编制类似的双变量分组相关 表。如工业企业按产量和成本水平同时分组;对同行业的商 业企业,按企业规模和流通费水平同时分组等。这种双变量 分组相关表,可作为探寻最佳方案、提高经济效益的一种工 具。但是,根据双变量分组表的资料来计算相关分析指标比 较复杂,所以,在相关分析中较少使用。

统计学原理第8章相关与回归分析[精]

统计学原理第8章相关与回归分析[精]

估计标准误差就是因变量的估计值yc与实际值y之间差异 公 的平均程度。记为Syx,它的基本公式为:


式中,Syx表示估计标准误差;下标yx表示y依x的回归方程; y是因变量的实际值;yc是因变量的估计值。
例8.4以例8.1的资料计算估计标准误差。
步骤: 1.设计一张计算表,将已知x的值代入回归方程求出对应的yc的值 2.计算离差y-yc并加以平方求和 3.求出估计标准误差Syx。
数关系。
当r=0时,表示x与y完全没有线性相关。
当0<|r|<1时,表示x与y存在着一定的线性相关。一般分四个
等级,判断标准如下:
若0<|r|<0.3,则称x与y为微弱相关;
若0.3<|r|<0.5, 则称x与y为低度相关;
若0.5<|r|<0.8, 则称x与y为显著相关;
若0.8<|r|<1, 则称x与y为高度相关。
8.3.2简单直线回归方程
a, b是待定参数 利用最小二乘法 得到a,b求值,再反解得到方程式
建立回归直线的过程:列计算表,求出∑xy,∑x2,∑y2,x,y; 计算Lxy,Lxx和Lyy的值;求出b和a的值并写出方程
例 8.2某工厂某产品的产量与单位成本资料见表8.2,试 求单位成本依产量的回归直线方程。
★ 填空题 (1) 现象之间的相关关系,从相关因素的个数看,可分为()和();从相关的形式
的两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,

统计学原理第八章相关分析与回归分析

统计学原理第八章相关分析与回归分析

21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6

24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。

统计学基础-第八章-相关与回归分析

统计学基础-第八章-相关与回归分析

统计学基础第八章相关与回归分析【教学目的】1.掌握相关系数的测定和性质2。

明确相关分析与回归分析的特点3.建立回归直线方程,掌握估计标准误差的计算【教学重点】1。

相关关系、相关分析和回归分析的概念2。

相关系数计算3.回归方程的建立和依此进行估计和预测【教学难点】1.相关分析和回归分析的区别2.相关系数的计算3。

回归系数的计算4。

估计标准误的计算【教学时数】教学学时为8课时【教学内容参考】第一节相关关系一、相关关系的含义宇宙中任何现象都不是孤立地存在的,而是普遍联系和相互制约的。

这种现象间的相互联系、相互制约的关系即为相关关系。

相关关系因其依存程度的不同而表现出相关程度的差别。

有些现象间存在着严格的数据依存关系,比如,在价格不变的条件下销售额量之间的关系,圆的面积与半径之间的关系等等,均具有显著的一一对应关系。

这些关系可由数学中的函数关系来确切的描述,因而也可以认为是一种完全相关关系.有些现象间的依存关系则没有那么严格。

当一种现象的数量发生变化时,另一种现象的数量却在一定的范围内发生变化,比如身高与体重的关系就是如此。

一般来说,身高越高,体重越重,但二者之间的关系并非严格意义上的对应关系,身高1.75米的人,对应的体重会有多个数值,因为影响体重的因素不只身高而已,它还会受遗传、饮食习惯等因素的制约和影响.社会经济现象中大多存在这种非确定的相关关系。

在统计学中,这些在社会经济现象之间普遍存在的数量依存关系,都成为相关关系。

在本章,我们主要介绍那些能用函数关系来描述的具有经济统计意义的相关关系。

二、相关关系的特点1。

现象之间确实存在数量上的依存关系如果一个现象发生数量上的变化,则另一个现象也会发生数量上的变化.在相互依存的两个变量中,可以根据研究目的,把其中的一个变量确定为自变量,把另一个对应变量确定为因变量。

例如,把身高作为自变量,则体重就是因变量.2。

现象之间数量上的关系是不确定的相关关系的全称是统计相关关系,它属于变量之间的一种不完全确定的关系。

统计学原理第8章相关与回归分析

统计学原理第8章相关与回归分析
两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,因
此x与y间相关的程度比较高。()
27
同步练习
★ 判断题 (1) 根据结果标志对因素标志的不同反映,可以把现象间数量上的依存关系划分为
函数关系和相关关系。() (2) 正相关指的就是因素标志和结果标志的数量变动方向都是上升的。() (3) 相关系数是测定变量间相关密切程度的唯一方法。() (4) 只有当相关系数接近于1时,才能说明两变量之间存在高度相关系数。() (5) 若变量x的值减少,y的值也减少,说明变量x与y之间存在相关关系。() (6) 回归系数b和相关系数r都可以来判断现象之间相关的密切程度。() (7) 若回归直线方程为:yc=160-2.3x,则变量x与y之间存在负的相关关系。() (8) 回归分析中,对于没有明显因果关系的两个变量x与y,可以建立y依x和x依y的
D产量每增加1000件时,单位成本下降78元
E产品的产量随生产用固定资产价值的减少而减少
(4) 测定现象间有无相关关系的方法是()。
A编制相关表 B绘制相关图 C对客观现象作定性分析
D计算估计标准误系数时,()。
A相关的两个变量都是随机的
B相关的两个变量是对等的关系
C相关的两个变量一个是随机的,一个是可以控制的量
特点 在进行回归分析时,必须根据研究目的确定相关的变量中谁为自变 量,谁为因变量。 回归方程的作用在于由自变量的数值来估计因变量的值。一个回 归方程只能作一种推算或估计。 在回归分析中,因变量是随机的,自变量是可以控制的量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章相关与回归分析一1. 进行相关分析,要求相关的两个变量(A. 都是随机的B.C. 一个是随机的,一个不是随机的D.2. 相关关系的主要特征是(A.B. 某一现象的标志与另一标志之间存在着一定的关系,但它们不是确定的关系C.D. 某一现象的标志与另一标志之间存在着函数关系3. 相关分析是研究(A. 变量之间的数量关系B.C.变量之间相互关系的密切程度D.4. 相关关系的取值范围是(A. r=0B. -1≤r≤0C. 0≤r≤1D. -1≤r≤15. 现象之间相互依存关系的程度越低,则相关系数(A. 越接近于0B. 越接近于-1C. 越接近于1D. 越接近于0.56. 当所有观察值都落在回归直线上,则x与y之间的相关系数()。

A. r=0B. -1<r<1C. |r|=1D. 0<r<17. 在回归直线中,若b<0,则x与y之间的相关系数(A. r=0B. r=1C. 0<r<1D. -1<r<08. 在回归直线中,b表示(A. 当x增加一个单位,y增加a的数量B. 当y增加一个单位时,x增加bC. 当x增加一个单位时,y的平均增加量D. 当y增加一个单位时,x9. 当相关系数r=0时,表明(A. 现象之间完全无关B.C. 现象之间完全相关D.10. r值越接近于-1,表明两变量间(A. 没有相关关系B. 线性相关关系越弱C. 负相关关系越强D.11. 下列直线回归方程中,肯定错误的是(A. y=2+3x,r=0.88B. y=4+5x,r=0.55C. y=-10+5X,R=-0.90D. y=-100-0.9x,r=-0.8312. 正相关的特点是(A.B.C.D.13. 下列现象的相关密切程度高的是(A. 某商店的职工人数与商品销售额之间的相关系数为0.87B. 流通费用率与商业利润率之间的相关系数为-0.94C. 商品销售额与商业利润率之间的相关系数为0.51D. 商品销售额与流通费用率之间的相关系数为-0.8114. 计算估计标准误差的依据是(A. 因变量的数列B.C. 因变量的回归变差D.15. 两个变量间的相关关系称为(A. 单相关B. 复相关C. 无相关D.16. 从变量之间相关的方向看,可分为(A. 正相关与负相关B.C. 单相关与复相关D.17. 从变量之间相关的表现形式看,可分为()。

A. 正相关与负相关B.C. 单相关与复相关D.18. 物价上涨,销售量下降,则物价与销售量之间属(A. 无相关B. 负相关C. 正相关D.19. 相关系数是(A. 适用于线性相关B.C. 既适用于单相关也适用于复相关D.20. 估计标准误差是反映(A. 平均数代表性的指标B.C. 回归直线的代表性指D. 序时平均数代表性指标21. 在回归分析中,要求对应的两个变量(A. 都是随机变量B.C. 不是对等关系D.22.回归直线斜率和相关系数的符号是一致的,其符号均可用来判断现象是(A. 正相关还是负相关B. 线性相关还是非线性相关C. 单相关还是复相关D. 完全相关还是不完全相关23.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立回归方程y=a+bx。

经C计算,方程为y=20-0.8x,该方程参数的计算(A. a值是明显不对的B. bC. a值和b值都是不对的D. a值和b值都是正确的24. 在相关分析中,要求相关的两个变量(A. 都是随机变量B.C. 其中因变量是随机变量D.25. 现象之间相互关系的类型有(A. 函数关系和因果关系B. 相关关系和函数关系C. 相关关系和因果关系D. 回归关系和因果关系26. 在计算相关系数之前,必须对两个变量做()。

A. 定性分析 B.C. 回归分析D.27. 相关系数r=-1,说明两个变量之间(A. 完全负相关B.C. 完全正相关D.28.在因变量的总变差中,若回归变差所占比重大,而相应剩余变差所占比重小,则自变量与因变量()。

A.零相关B. 相关程度低C. 完全相关D. 相关程29. 计算估计标准误差的依据是(A. 因变量数列与自变量数列B. 因变量的总变差C. 因变量的回归变差D. 因变量的剩余变量30.当两个相关变量之间只能配合一条回归直线时,那么这两个变量之间的关系()。

A.存在明显因果关系B.C. 存在自身相关关系D. 存在完全相关关系二、1. 下列现象属于相关关系的是(A.家庭收入越多,则消费也增长B.C.D.E.2. 直线相关分析的特点有(A. 两个变量是对等关B. 只能算出一个相关系数C. 相关系数有正负号,表示正相关或负相关D.相关的两个变量必须都是随机的E.3. 从变量之间相互关系的表现形式看,相关关系可分为(A. 正相关B. 负相关C. 直线相关D. 曲线相关E. 不相关和完全相关4. 估计标准差是反映(A.自变量数列的离散程度的指标B.C.D. 因变量估计值平均数的代表性的可靠程度的指标E.5. 直线相关分析与直线回归分析的区别在于()。

A. 相关的两个变量都是随机的,而回归分析中自变量是给定的数值,因变量是随机的B.C. 相关系数有正负号,而回归系数只能D.E. 相关分析中根据两个变量只能计算出一个相关系数,而回归分析中根据两个变量可以计算出两6. 如果x和y之间相关系数等于1,那么()。

A.观察值和理论值的离差不存在B. yB.x与y是函数关系 D. x与y是完全正相关E. x与y7. 配合直线回归方程是为了(A.确定两个变量之间的变动关系B.C. D. 两个变量相互推算E.8. 在直线回归方程中(A. 在两个变量中须确定自变量和因变量B.C. 回归系数只能取正值D.E.9. 在回归方程中,回归系数(A. 说明自变量与因变量的变动比例关系B.C.D.E.10. 确定直线之间方程必须满足的条件是(A.现象之间存在着直接因果关系B. 现象之间存在着较密切的直线相关关系C. 相关关系必须等于1D.E.11. 在回归分析中,确定直线回归方程的两个变量必须是(A.一个是自变量,一个是因变量B. 均为随机变量C. 对等关系的变量D. 一个是随机变量,一个是确定变量E. 不对等关系的变量12. 直线回归方程中的回归系数(A.能表明两变量间的变动程度B.B.能说明两变量间的变动方向D.E.13. 相关关系与回归系数(A. 回归系数大于零则相关系数大于零B.C. 回归系数大于零则相关系数小于零D.E.14. 下列关系中属于正相关的有(A. 物价水平与商品需求量B. 施肥量与亩产量C.单位产品成本与原材料消耗量D. 商业的劳动效率和流通费用率E.15. 现象之间相互联系的类型有(A. 函数关系B. 相关关系C. 回归关系D. 随机关系E.16. 判定现象之间有无相关关系的方法有(A. 对客观现象作定量分析B. 对客观现象作定性分析D.编制相关表 D. 绘制相关图E. 计算估计标准误差17. 相关关系种类(A.按相关方向分为正相关和负相关B. 按相关形态分为线性相关和曲线相关C.D. 按影响因素多少分为单相关和复相关E.18. 相关关系按相关程度可分为(A. 不相关B. 完全相关C. 正相关D.不完全相关E. 负相关19. 相关分析中的正相关是指()。

A. 自变量的值增加,因变量值随之相应增加B. 自变量的值减少,因变量值随之相应减少C. 自变量的值增加,因变量值相应地减少D. 自变量的值减少,因变量值相应地增加E. 自变量的值变动,因变量值不随之变动三、1. 工人的技术水平提高,使得劳动生产率提高。

这种关系是一种不完全的正相关关系。

(2. 正相关指的就是两个变量之间的变动方向都是上升的。

(3. 负相关指的是两个变量变化趋势相反,一个上升而另一个下降。

(4. 相关系数是测定变量之间相关密切程度的唯一方法。

(5. 回归分析和相关分析一样,所分析的两个变量都一定是随机变量。

(6. 回归分析中,对于没有明显因果关系的两个变量可以求得两个回归方程。

()7. 当回归系数大于零时,则正相关,当回归系数小于零时,则负相关。

(8. 相关的两个变量,只能算出一个相关系数。

()9. 计算回归方程时,要求因变量是随机的,而自变量不是随机的,是给定的数值。

()10. 一种回归直线只能作一种推算,不能反过来进行另一种推算。

(11. 估计标准误差是以回归直线为中心反映各观察值与估计值平均数之间离差程度的大小。

()12. 总变差等于回归变差和剩余变差之差。

(13. 回归系数的绝对值小于1。

(四、1.2.3.4.5.6.五、1.月份产量(千件)单位成本(元/件)1 2 732 3 723 4 714 3 735 4 696 5 68要求:②确定单位成本对产量的直线回归方程,指出产量每增加1000件时,单位成本平均下降多少元?③如果单位成本为702.年份人均收入(千元/人)人均支出(千元/人)1997 4 31998 5 41999 7 52000 9 62001 15 12要求:①求人均支出(y)与人均收入(x)的回归方程。

②根据计算结果,解释回归系数b的经济涵义。

③计算当人均收入为12千元时,人均支出为多少?3. 有10个同类企业的生产性固定资产平均价值和工业总产值资料如下:企业编号生产性固定资产价值(万元)工业总产值(万元)1 318 5242 910 10193 200 6384 409 8155 415 9136 502 9287 314 6058 1210 15169 1022 121910 1225 1624(1)(2)求出直线回归方程;(3)计算估计标准差;(4)估计生产性固定资产为11004. 已知:n=6,ΣX=21,ΣY=426,ΣX2=79,ΣY2=30268,ΣXY=1481要求计算:(1)直线回归方程;(2)相关系数;(35. 兹有如下数据:n=7,ΣX=1890,ΣY=31.1,ΣX2=535500,ΣY2=174.15,ΣXY=9318。

要求:确定Y与X一、单项选择题1.A2.B3.C4.D5.A6.C7.D8.C9.D 10.C 11.D 12.B 13.B 14.D 15.A 16.A 17.B 18.B 19.A 20.C 21.C 22.A 23.B24.A 25.B 26.A 27.A 28.D 29.D 30A二、多项选择题1.A BD2.ABCD3.CD4.CDE5.ADE6.ACD7.AC8.ABE9.AE 10.ABE 11.ADE12.AC 13.AB 14.BC 15.AB 16.ABCD 17.ABCD 18.ABD 19.AB三、判断题1.T2.F3.T4.F5.F6.T7.T8.T9.T 10.T 11.T 12.F 13.F五、计算题1. (1)r=-0.909 说明产量与单位成本高度负相关(2)y=77.364-1.818x 其中:y——成本 x——产量产量每增加1000件时,单位成本平均下降1.818元。

相关文档
最新文档