不可压缩流体动力学基础习题问题详解

合集下载

流体力学 第七章 不可压缩流体动力学基础

流体力学 第七章 不可压缩流体动力学基础

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载流体力学第七章不可压缩流体动力学基础地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第七章不可压缩流体动力学基础在前面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的观点,求得平均量。

但是,很多问题需要求得更加详细的信息,如流速、压强等流动参数在二个或三个坐标轴方向上的分布情况。

本章的内容介绍流体运动的基本规律、基本方程、定解条件和解决流体问题的基本方法。

第一节流体微团的运动分析运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。

位移和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则是基于液体的易流动性而特有的运动形式,在刚体是没有的。

在直角坐标系中取微小立方体进行研究。

一、平移:如果图(a)所示的基体各角点的质点速度向量完全相同时,则构成了液体基体的单纯位移,其移动速度为。

基体在运动中可能沿直线也可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不变)。

二、线变形:从图(b)中可以看出,由于沿y轴的速度分量,B点和C点都比A点和D点大了,而就代表时液体基体运动时,在单位时间内沿y轴方向的伸长率。

,,三、角变形(角变形速度)角变形:四、旋转(旋转角速度)即,那么,代入欧拉加速度表达式,得:各项含义:平移速度(2)线变形运动所引起的速度增量(3)(4)角变形运动所引起的速度增量(5)(6)微团的旋转运动所产生的速度增量流体微团的运动可分解为平移运动,旋转运动,线变形运动和角变形运动之和。

——亥姆霍兹速度分解定理第二节有旋运动1、无涡流(势流)如在液体运动中,各涡流分量均等于零,即,则称这种运动为无涡流。

第七章不可压缩流体动力学基础

第七章不可压缩流体动力学基础
一、物理模型
刚体任意参考点的平移速度
刚体的运动速度
绕参考点的旋转速度
质点上任意参考点的平移速
流体任一质点速度 绕度通过该点的瞬时轴旋转速度
变形速度
流体力学 移动
流体微团的运动 转动
变形运动
流体力学
各点速度关系: M点速度: vx , vy C点速度:
BAMFra bibliotekCvCX
vx
vx x
dx 2
vCY
vy
流体力学
方程组的定解条件
初始条件 定解条件
边界条件
流体力学
1、初始条件
初始条件是指在起始瞬时t=0所给定的流场中每一点的 流动参数。
也就是说,求得的解在t=0时所应分别满足的 预先给定的坐标函数。
定常流动不需要给定初始条件。
流体力学
2、边界条件
边界条件是指任一瞬时运动流体所占 空间的边界上必须满足的条件。
根据质量守恒定律:
(ρVx x
)
(ρVy y
)
(ρVz z
)
ρ t
净流入微元体质量流量=流体质量增长率
ρt
(ρVx x
)
(ρVy y
)
(ρVz z
)
0

dρ dt
ρt
Vx
ρx
Vy
ρy
Vz
ρ z
引入

ρ t
dρ dt
(Vx
ρx
Vy
ρy
Vz
ρz )
流体力学
代入上式

ddρt ρ(
vBx
vCx
vx x
dx
经过dt时间BC边伸长

第四章 流体动力学例题

第四章 流体动力学例题
2 2 2
按照不可压连续方程,有:
lV l1V l2 V
由上两式得:
1 l1 (1 co s 0 )l 2 1 l 2 (1 co s 0 )l 2
设射流受到沿y方向的合力为Fy, 写出沿y方向的动量方程:
Fy V lsin0
2
平板受到的合力即为 R= -Fy
用文特利管测流量如下图所示流动为定常不可压流流体密度为用文特利管测流量如下图所示流动为定常不可压流流体密度为收缩段和出口截面的压强差收缩段和出口截面的压强差pp11p22
连续方程的应用 1) 证明下述不可压缩流体的运动不存在
u x,
v y,
w z
证明:不可压缩流应满足的连续方程为
v 0
v1 P , A 1 1
P2, A2 v2
5 p 27.58 10 Pa 下图中,水以 qV 5.663m / s , 1
3
进入弯头,弯头的进口与出口面积分别为
A1=0.1858m2, A2=0.0929m2, 忽略摩擦及重力影响。
试计算:
1)
v1 , v2 , p2
a

b
2)水对弯头内壁的作用力。
求合力的作用点:
t
r V dV (r V) (V n)dS r F
V S
(一般形式的动量矩方程 )
r 2 2
l r ctg 0 2
思考练习
1. 不可压定常流动中,速度随面积如何变化? 可压缩流动中变化又如何? 2. 写出不可压流的伯努利方程,质量力为重力, 并指出各项的物理意义。 3. 可压绝热流的温度随速度如何变化?不计质 量力的不可压流压力随速度如何变化?

《流体力学》试题及答案

《流体力学》试题及答案

《流体力学》试题及答案一、选择题(每题5分,共25分)1. 下列哪个选项不属于流体力学的三大基本方程?A. 连续性方程B. 动量方程C. 能量方程D. 牛顿第二定律答案:D2. 在不可压缩流体中,流速和压力之间的关系可以用下列哪个方程表示?A. 伯努利方程B. 欧拉方程C. 纳维-斯托克斯方程D. 帕斯卡方程答案:A3. 下列哪个现象表明流体具有粘性?A. 流体流动时产生涡旋B. 流体流动时产生湍流C. 流体流动时产生层流D. 流体流动时产生摩擦力答案:D4. 在下列哪种情况下,流体的动能和势能相等?A. 静止流体B. 均匀流动的流体C. 垂直下落的流体D. 水平流动的流体答案:C5. 下列哪个因素不会影响流体的临界雷诺数?A. 流体的粘度B. 流体的密度C. 流体的流速D. 流体的温度答案:D二、填空题(每题5分,共25分)6. 流体力学是研究______在力的作用下运动规律的科学。

答案:流体7. 不可压缩流体的连续性方程可以表示为______。

答案:ρV = 常数8. 在恒定流场中,流体质点的速度矢量对时间的导数称为______。

答案:加速度矢量9. 伯努利方程是______方程在不可压缩流体中的应用。

答案:能量10. 流体的湍流流动特点为______、______和______。

答案:随机性、三维性、非线性三、计算题(每题25分,共50分)11. 一个直径为10cm的管道,流体的流速为2m/s,流体的密度为800kg/m³,求管道中流体的流量。

解:流量Q = ρvA其中,ρ为流体密度,v为流速,A为管道截面积。

A = π(d/2)² = π(0.05)² = 0.00785m²Q = 800kg/m³ 2m/s 0.00785m² = 12.44 kg/s答案:管道中流体的流量为12.44 kg/s。

12. 一个直径为20cm的圆柱形储罐,储罐内充满水,水面高度为1m。

流体力学(热能)第5章 不可压缩流体动力学基础概要

流体力学(热能)第5章 不可压缩流体动力学基础概要
u z u y x y z
x
y
u x u z z x
y
涡量场
z
x 2 x, y, z, t
z
u y

u x y
2、涡量连续性微分方程
u ( u ) 0
x y z 0 x y z
三、亥姆霍兹速度分解定理 (了解) 设流体微团内某点M0(x,y,z),速度为u 、 u y0 x0 则邻边M0的另一点M (x+dx,y+dy,z+dz)的速度为
uz0 、

u x u x 0 dux u y u y 0 duy
uz0 u x0
M0
M
u z u z 0 duz 展开 dux …….,变换整理得
u y0
ux ux0 z dy y dz x dx z dy y dz u y u y 0 x dz z dx y dy x dz z dx uz uz 0 y dx x dy z dz y dx x dy
s x y z
u z u y u y u x u x u z dydz dxdy dzdx A y z z x x y

dA dA dA dA
线变形、
变形运动 角变形 B A E D dx uy M ux F C dy
二、运动分析
以二元流动的情况为例,研究几种 基本运动形式的速度表达式。 如图,方形流动微团
各侧边中点A、B、C、D的流速分量分别为 M
ux

流体力学练习习题集及答案

流体力学练习习题集及答案

流体力学练习习题集及答案一、填空题1. 流体力学研究的对象是_________。

答案:流体(液体和气体)2. 流体的连续性方程是_________。

答案:质量守恒方程3. 在不可压缩流体中,伯努利方程表示_________。

答案:流速、压力和高度之间的关系4. 流体静力学中,帕斯卡原理适用于_________。

答案:静止流体5. 流体动力学中,纳维-斯托克斯方程描述了_________。

答案:流体运动的速度、压力和温度之间的关系二、选择题1. 以下哪种流体是不可压缩的:()A. 水蒸气B. 空气C. 液体D. 气体答案:C2. 以下哪个方程是流体力学中的动量方程:()A. 连续性方程B. 伯努利方程C. 纳维-斯托克斯方程D. 帕斯卡原理答案:C3. 在伯努利方程中,流速和压力之间的关系是:()A. 成正比B. 成反比C. 无关D. 伯努利方程不涉及流速和压力之间的关系答案:B4. 以下哪种流体现象可以用伯努利方程解释:()A. 飞机翼升力B. 水轮机的工作原理C. 帕斯卡原理D. 液体静力学答案:A三、计算题1. 一台水轮机直径为2m,转速为1000r/min,水的密度为1000kg/m³,求水轮机的输出功率。

解:首先,计算水轮机的流速v:v = π * D * n / 60v = π * 2m * 1000r/min / 60v ≈ 104.72 m/s然后,计算水轮机的输出功率P:P = ρ * g * H * Q其中,H为水轮机的高度,Q为流量,ρ为水的密度,g为重力加速度。

假设水轮机高度为10m,则输出功率为:P = 1000kg/m³ * 9.8m/s² * 10m * π *(2m)² * 1000r/min / 60P ≈ 3.14 * 10⁷ WP ≈ 3.14 * 10⁴ kW答案:水轮机的输出功率约为3.14 * 10⁴ kW。

2. 一台离心泵的流量为100m³/h,扬程为20m,水的密度为1000kg/m³,求泵的输出功率。

不可压缩流体动力学基础习题答案

不可压缩流体动力学基础习题答案

不可压缩流体动力学基础1.已知平面流场的速度分布为xy x u x+=2,y xy u y 522+=。

求在点(1,-1)处流体微团的线变形速度,角变形速度和旋转角速度。

解:(1)线变形速度:y x xu x x +=∂∂=2θ 54+=∂∂=xy y u yy θ 角变形速度:()x y y u x u x y z +=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=222121ε 旋转角速度:()x y x u x u x y z -=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=222121ω 将点(1,-1)代入可得流体微团的1=x θ,1=y θ;23/z =ε;21/z =ω2.已知有旋流动的速度场为322+=y u x,x z u y 32+=,y x u z 32+=。

试求旋转角速度,角变形速度和涡线方程。

解:旋转角速度:2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=z u y u y z x ω 2121=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ω 2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x yz ω 角变形速度:2521=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=z u y u y z x ε 2521=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ε 2521=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x y z ε 由z y x dz dy dx ωωω==积分得涡线的方程为:1c x y +=,2c x z +=3.已知有旋流动的速度场为22z y c u x+=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。

解:流场的涡量为: 0=∂∂-∂∂=zu y u y z x Ω 22z y cz xu z u z x y +=∂∂-∂∂=Ω 22z y cy y u x u x yz +-=∂∂-∂∂=Ω旋转角速度分别为:0=x ω222zy czy +=ω 222z y cyz +-=ω 则涡线的方程为:c dz dy z y +=⎰⎰ωω 即c y dz z dy +-=⎰⎰可得涡线的方程为:c c y =+22 4.求沿封闭曲线2 22b y x =+,0=z 的速度环量。

流体力学课后习题答案龙天渝

流体力学课后习题答案龙天渝
3-1恒定流是:
(a)流动随时间按一定规律变化;
(b)流场中任意空间点的运动要素不随时间变化;
(c)各过流断面的流速分布不同;
(d)各过流断面的压强相同。
3-2非恒定流是:
(a)?u/?t=0;
(b)?u/?t≠0;
(c)?u/?s=0;
(d)?u/?s≠0。
3-3一元运动是:
(a)均匀流;
(b)速度分布按直线变化;
22求流线方程并画出若干条流线。(x+y=c)
3-15已知平面流动的速度场为u=(4y-6x)ti+(6y-9x)tj。求t=1时的流线方程并绘出x=0至x=4区间穿过x轴的4条流线图形。(1.5x-y=c)
3-16水管的半径r0=30mm,流量q=401l/s,已知过流断面上的流速分布为u=umax(y/r0)1/7。式中:umax是断面中心点的最大流速,y为距管壁的距离。试求:
求水头h。水头损失不计。(1.23m)
【篇二:流体力学_龙天渝_流体动力学基础】
ass=txt>一、学习指导1.主要概念:
流线,过流断面,均匀流,渐变流,恒定流
注:①流体是空间曲线。对恒定流其空间位置不变,对非恒定流随时间而变化。
②渐变流是将流速的大小和方向变化不大的流段看成均匀流所作的工程近似,与均匀流无明确的界定,根据经验而定。例:锥角较小的扩散段或收缩段,断面面积a(s)满足da/ds=0的断面附近的流段是渐变流。
(2)是几元流动?
(3)是恒定流还是非恒定流;
(4)是均匀流还是均匀定流?
3-13已知平面流动的速度分布为ux=a,uy=b,其中a、b为常数。求流线方程并画出若干条y0时的流线。((b/a)x-y=c)
3-14已知平面流动速度分布为ux=-cy/(x2+y2),uy= cx/(x2+y2),其中c为常数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不可压缩流体动力学基础1.已知平面流场的速度分布为xy x u x+=2,y xy u y 522+=。

求在点(1,-1)处流体微团的线变形速度,角变形速度和旋转角速度。

解:(1)线变形速度:y x xu x x +=∂∂=2θ 54+=∂∂=xy y u yy θ 角变形速度:()x y y u x u x y z +=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=222121ε 旋转角速度:()x y x u x u x y z -=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=222121ω 将点(1,-1)代入可得流体微团的1=x θ,1=y θ;23/z =ε;21/z =ω2.已知有旋流动的速度场为322+=y u x,x z u y 32+=,y x u z 32+=。

试求旋转角速度,角变形速度和涡线方程。

解:旋转角速度:2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=z u y u y z x ω 2121=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ω 2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x yz ω 角变形速度:2521=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=z u y u y z x ε 2521=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ε 2521=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x y z ε 由z y x dz dy dx ωωω==积分得涡线的方程为:1c x y +=,2c x z +=3.已知有旋流动的速度场为22z y c u x+=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。

解:流场的涡量为: 0=∂∂-∂∂=zu y u y z x Ω 22z y cz x u z u z x y +=∂∂-∂∂=Ω 22z y cy y u x u x yz +-=∂∂-∂∂=Ω旋转角速度分别为:0=x ω222zy czy +=ω 222z y cyz +-=ω 则涡线的方程为:c dz dy z y +=⎰⎰ωω 即c y dz z dy +-=⎰⎰可得涡线的方程为:c c y =+22 4.求沿封闭曲线2 22b y x =+,0=z 的速度环量。

(1)Ax u x =,0=y u ;(2)Ay u x =,0=y u ;(3)0=y u ,r A u =θ。

其中A 为常数。

解:(1)由封闭曲线方程可知该曲线时在z =0的平面上的圆周线。

在z =0的平面上速度分布为:Ax u x =,0=y u涡量分布为:0=z Ω根据斯托克斯定理得:0==⎰z Az s dA ΩΓ (2)涡量分布为:A z -=Ω根据斯托克斯定理得:2b A dA z Az s πΩΓ-==⎰(3)由于0=r u ,r A u =θ 则转化为直角坐标为:22b Ay y r A u x -=-=,2bAx u y = 则22bA y u x u x yz =∂∂-∂∂=Ω 根据斯托克斯定理得:A dA z Az s πΩΓ2==⎰ 5.试确定下列各流场是否满足不可压缩流体的连续性条件?答:不可压缩流体连续性方程 直角坐标:0=∂∂+∂∂+∂∂zu y u x u z y x (1) 柱面坐标:0=∂∂+∂∂+∂∂+zu r u r u r u z r r θθ (2) (1)0,,=-==z y xu ky u kx u 代入(1) 满足 (2)y x u x z u z y u z y x +=+=+=,, 代入(1) 满足(3)0),(),(2222=+=-+z y x u y x k u y xy x k u 代入(1) 不满足(4)0,sin ,sin =-==z y xu xy k u xy k u 代入(1) 不满足 (5)0,,0===z ru kr u u θ 代入(2) 满足 (6)0,0,==-=z ru u r k u θ 代入(2) 满足 (7)0,sin 2,cos sin 22=-==z r u r u r u θθθθ 代入(2) 满足6.已知流场的速度分布为y x u x2=,y u y 3-=,22z u z =。

求(3,1,2)点上流体质点的加速度。

解:y x y x x y xy y x zu u y u u x u u t u a x z x y x x x x 22322320320-=+⋅-⋅+=∂∂+∂∂+∂∂+∂∂= y z u u y u u x u u tu a y z y y y x yy 9=∂∂+∂∂+∂∂+∂∂= 28z zu u y u u x u u t u a z z z y z x z z =∂∂+∂∂+∂∂+∂∂= 将质点(3,1,2)代入a x 、a y 、a z 中分别得:27=x a ,9=y a ,64=z a7.已知平面流场的速度分布为2224y x y t u x +-=,222y x x u y +=。

求0=t 时,在(1,1)点上流体质点的加速度。

解:()()()⎥⎥⎦⎤⎢⎢⎣⎡+-+-++⎥⎥⎦⎤⎢⎢⎣⎡+⋅⎪⎪⎭⎫ ⎝⎛+-+=∂∂+∂∂+∂∂=2222222222222420222244y x y y x y x x y x y x y x y t y u u x u u t u a x y x x x x 当0=t 时,()()2222222222284y x y x x y x xy a x +--+-=将(1,1)代入得3=x a()()()22222222222224242240y x xy y x x y x x y x y x y t y u u xu u t u a y y y x yy +-⋅++⎥⎥⎦⎤⎢⎢⎣⎡+-+⎪⎪⎭⎫ ⎝⎛+-+=∂∂+∂∂+∂∂= 当t=0时,将(1,1)代入得:1-=y a8.设两平板之间的距离为2h ,平板长宽皆为无限大,如图所示。

试用粘性流体运动微分方程,求此不可压缩流体恒定流的流速分布。

解:z 方向速度与时间无关,质量力:g f x -=运动方程:z 方向:2210dxu d z p υρ+∂∂-= x 方向:→∂∂--=x p g ρ10 积分:)(z f gx p +-=ρ∴p 对z 的偏导与x 无关,z 方向的运动方程可写为z p dyu d ∂∂=μ122 积分:21221C x C x z p u ++∂∂=μ 边界条件:h x ±=,0=u得:01=C ,221h zp C ∂∂-=μ ∴⎥⎦⎤⎢⎣⎡-∂∂-=22)(12h x z p h u μ 9.沿倾斜平面均匀地流下的薄液层,试证明:(1)流层内的速度分布为()θμγsin y by u 222-=;(2)单位宽度上的流量为θμγsin 33b q =。

解:x 方向速度与时间无关,质量力θsin g f x =,θcos g f y -=运动方程:x 方向:221sin 0dy ud x p g υρθ+∂∂-= ①y 方向:y pg ∂∂--=ρθ1cos 0 ②②→积分)(cos x f gy p +-=θρb y = a p p = )(cos x f gb a +-=θρρ∴θρcos )(y h g p p a -+=∵=b 常数 ∴p 与x 无关①可变为μθρsin 22g dy u d -=积分)21(sin 212C y C y g u ++-=μθρ边界条件:0=y ,0=u ;b y =, 0=dy du∴b C -=1,02=C∴θμμθρsin )2(2)2(2sin 2y by ry b y g u -=-=θμγθμγsin 3sin )2(23200b dy y by udy Q b b =-==⎰⎰10.描绘出下列流速场解:流线方程: yx u dy u dx =(a )4=x u ,3=y u ,代入流线方程,积分:c x y +=43直线族(b )4=x u ,x u y 3=,代入流线方程,积分:c x y +=283抛物线族(c )y u x 4=,0=y u ,代入流线方程,积分:c y =直线族(d )y u x 4=,3=y u ,代入流线方程,积分:c y x +=232抛物线族(e )y u x 4=,x u y 3-=,代入流线方程,积分:c y x =+2243椭圆族(f )y u x 4=,x u y 4=,代入流线方程,积分:c y x =-22双曲线族(g )y u x 4=,x u y 4-=,代入流线方程,积分:c y x =+22同心圆(h )4=x u ,0=y u ,代入流线方程,积分:c y =直线族(i )4=x u ,x u y 4-=,代入流线方程,积分:c x y +-=22抛物线族(j )x u x 4=,0=y u ,代入流线方程,积分:c y =直线族(k )xy u x 4=,0=y u ,代入流线方程,积分:c y =直线族(l )rc u r =,0=θu ,由换算公式:θθθsin cos u u u r x -=,θθθcos sin u u u r y += 220y x cx r x r c u x +=-=,220y x cy r y r c u y +=+= 代入流线方程积分:c y x =直线族(m )0=r u ,r c u =θ,220y x cy r x r c u x +-=-=,220y x cx r x r c u y +=+= 代入流线方程积分:c y x =+22同心圆 11.在上题流速场中,哪些流动是无旋流动,哪些流动是有旋流动。

如果是有旋流动,它的旋转角速度的表达式是什么? 解:无旋流有:x u y u y x ∂∂=∂∂(或r r u u r ∂∂=∂∂θθ)(a ),(f ),(h ),(j ),(l ),(m )为无旋流动,其余的为有旋流动对有旋流动,旋转角速度:)(21yu x u x y ∂∂-∂∂=ω (b )23=ω (c )2-=ω (d )2-=ω (e )27-=ω (g )4-=ω (i )2-=ω (k )x 2-=ω 12.在上题流速场中,求出各有势流动的流函数和势函数。

解:势函数⎰+=dy u dx u y x ϕ流函数⎰-=dx u dy u y x ψ(a )⎰+=+=y x dy dx 3434ϕy x dx dy 4334--=-=⎰ψ(e )⎰⎰⎰⎰-+=-+=yy x x xdy dx y xdy ydx 0034340ϕ取),(00y x 为)0,0(则积分路线可选其中0,0:0,0,0==→y dy xx x dx y x x ==→,0:,0,)34()30(0000⎰⎰⎰⎰-++-+=y y x x xdy ydx xdy dx ϕxy xy 3)30()00(-=-++=2223234x y xdx ydy +=--=⎰⎰ψ其他各题略13.流速场为r c u u a r==θ,0)(,r u u b r 2,0)(ωθ==时,求半径为1r 和2r 的两流线间流量的表达式。

相关文档
最新文档