圆周角和圆心角定理
圆心角与圆周角的关系圆周角定理PPT教学课件
❖ 如果圆心不在圆周角的一边上,结果会怎样?
❖ 3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样? A
老师提示:能否也转化为1的情况?
C
过点B作直径BD.由1可得:
●O B
∠ABD
=
∠1 AOD,∠CBD
2
=
∠1 COD,
2
∴ ∠ABC = ∠1 AOC. 一条弧所对的圆周角等于它所
有另一个交点,像这样 的角,叫做圆周角.
想一想
圆周角
驶向胜利 的彼岸
❖ 当球员在B,D,E处射门时,
他所处的位置对球门AC
分别形成三个张角∠ABC,
∠ADC,∠AEC.这三个角
A
C
的大小有什么关系?.
A
E
E ●O
B
D
B
D
C
圆周角 顶点在圆上, 它的两边分别 与圆还
有另一个交点,像这样
的角,叫做圆周角.
制 乙烯
如何验证乙烯中混有SO2、CO2?
品红 溶液
酸性 品红 澄清 高锰 溶液 石灰水 酸钾
小结:在确定气体发生装置和收集装置是时应
常 考虑的因素 见
反应物的状态 固体+固体
气 体
气体发生装置
的
固体+液体 反应条件 :是否需要加热等
制
取
与
气体密度比空气
净 化
排空气法 大——向上排气法
气体收集装置
鉴定所用试剂
C2H2 C2H4
通过装有酸性 KMnO4溶液 (或Br2水)的洗 气瓶洗气
通入装有酸性 KMnO4溶液(或 Br2水、或Br2的 四氯化碳溶液), 是否褪色
圆周角6个定理
圆周角6个定理
圆周角定理是指在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。
该定理也称为圆周角定理或圆心角定理。
除此之外,还有以下五个圆周角定理:
1. 同弧或等弧所对的圆周角相等。
2. 相等的圆周角所对的弧也相等。
3. 半圆所对的圆周角是直角。
4. 90 度的圆周角所对的弦是直径。
5. 在同圆或等圆中,两个圆周角、两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等。
这些圆周角定理对于解决几何问题非常有用,例如可以用同弧所对的圆周角相等来证明等腰三角形的判定定理。
圆周角、圆心角
第二讲 圆心角、圆周角知识点一:圆心角、圆周角圆心角:顶点在 的角叫做圆心角.... 圆周角:顶点在 ,并且两边都与圆相交的角,叫做圆周角. 知识点二:弧、弦、圆心角的关系在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,他们所对应的各组量也相等。
即:(1)在同圆或等圆中,相等的圆心角所对的弧 、所对的弦 。
(2)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角 ,所对的弦 。
(3)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角 ,所对的弧 。
【典型例题】例1.如图,已知AB 、CD 为⊙O 的两条弦,AD=BC, 求证:AB=CD例2.如图,在O⊙中, ∠ACB =60°, 求证:∠AOB =∠BOC =∠AOC 。
例3.如图,MN 为半圆O 的直径,A 是BC 的中点, ∠BOC=120°,BC//MN ,求证:( 1 ) 四边形ABOC 为菱形; (2)求∠MNB 的度数.AB C D MNO知识点三:圆心角和圆周角的关系圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对所对的圆心角的 。
推论:(1)半圆(或直径)所对的圆周角是 ,90°的圆周角所对的弦是 。
(2)在同圆或等圆中,如果两个圆周角相等,他们所对的弧一定 。
【典型例题】例1.如图,已知AB=AC ,∠APC=60°.(1)求证:△ABC 是等边三角形;(2)若BC=2cm ,求⊙O 的面积.例2.如图,ABC △是O 的内接三角形,点C 是优弧AB 上一点(点C 不与A B ,重合),设OAB α∠=,C β∠=. (1)当35α=时,求β的度数; (2)猜想α与β之间的关系,并给予证明.例3. 如图,已知⊙O 的半径为2,弦BC的长为A 为弦BC 所对优弧上任意一点 (B ,C 两点除外)。
⑴求∠BAC 的度数;⑵求△ABC 面积的最大值.知识点四:圆的内接多边形(1)如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做 ,这个圆叫做这个多边形的 。
圆周角定理 课件
3.关于圆周角定理推论的理解
(1)在推论1中,注意:“同弧或等弧”改为“同弦或等弦” 的话结论就不成立了,因为一条弦所对的圆周角有两种可 能,在一般情况下是不相等的.
(2)圆心角的度数和它所对的弧的度数相等,但并不是 “圆心角等于它所对的弧”.
(3)“相等的圆周角所对的弧也相等”的前提条件是“在 同圆或等圆中”.
【示例2】 如图,D,E分别为△ABC边AB,AC 的中点,直 线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明: (1)CD=BC; (2)△BCD∽△GBD.
证明 (1)因为D,E分别为AB,AC的中点,所以DE∥BC.又 已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD = AD. 而 CF∥AD , 连 接 AF , 所 以 ADCF 是 平 行 四 边 形 , 故 CD=AF.
证明 连结 CE、CF、EF,∵BC 为⊙O 的直径,∴∠BFC =90°,∠BEC=90°.又∵∠ACB=90°,∴∠BCE=∠A. 又∵∠BFE=∠BCE,∴∠BFE=∠A.又∵∠EBF=∠DBA, ∴△BEF∽△BDA.∴EBFE=ABDD. ∵∠BFC=∠BCA,∠CBD=∠CBD, ∴△CBF∽△DBC.∴CBCF=CBDD. 又∵AD=CD,∴EBFE=CBCF,∴BBCE=CEFF.
(4)在同圆或等圆中,由弦相等⇒弧相等时,这里的弧要求 同是优弧或同是劣弧,一般选劣弧.
题型一 圆中相关角度数的求解
【例 1】 在半径为 5 cm 的圆内有长为 5 3 cm 的弦 AB,求此弦
所对的圆周角.
[思维启迪] 对于弦所对的圆周角要考虑全面.
解 如图所示,过 O 点作 OD⊥AB 于点 D.因为 OD⊥AB,OD
反思感悟 弦所对的圆周角有两个,易丢掉120°导致错误,另外求圆周角时易应用到解三角形的知识.
圆周角定义及定理
圆周角的定义是:顶点在圆上,角的两边都与圆相交的角。
其特点可归纳为:①顶点在圆上,②两边都和圆相交。
这两个条件缺一不可。
圆周角定理为:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
具体来说,定理有三方面的意义:
圆心角和圆周角在同一个圆或等圆中;
它们对着同一条弧或者对的两条弧是等弧;
具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半。
此外,还有以下推论:
在同圆或等圆中,相等的圆周角所对的弧相等。
直径(半圆)所对的圆周角是直角;90°的圆周角所对的弦为直径。
如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形。
圆心角与圆周角定理
圆心角与圆周角定理如下:
•圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等。
•圆周角定理:
•圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。
•同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。
•同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。
•半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。
•圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
请注意,这些定理和性质在几何学和三角学中非常重要,它们被广泛应用于各种实际问题中,例如计算角度、长度和面积等。
同时,这些定理和性质也是数学竞赛和考试的重要内容之一。
圆周角定理及其推论
图1 不是
图2 不是 图3
是
不是
图4
不是
图5
在下图中,当球员在B,D,E处射门时,它所处的 位置对球门AC分别形成三个张角∠ABC.∠ADC. ∠AEC.这三个角的大小有什么关系?
在同圆或等圆中,相等
的弧所对的圆心角相等.
那么在同圆或等圆中,
A
相等的弧所对的圆周角
C
有什么关系?
B
D
E
类比圆心角探知圆周角
习题
分析:
AB所对圆周角是∠ACB, 圆心角是∠AOB. 则∠ACB= 1 ∠AOB.
BC所对圆周角是∠ BAC , 圆心角是∠BOC, 则∠ BAC=2_12__∠BOC
证明:∠ACB= 12∠AOB ∠BAC= 21∠BOC ∠AOB=2∠BOC
O
A
C
∠ACB=2∠BAC
B
规律:解决圆周角和圆心角的计算和证明问题,要准确找出 同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理
试一试
②当圆心(O)在圆周角(∠ABC)的内部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样?
提示:能否转化为①的情况? 过点B作直径BD.由①可得:
AD C
∠ABD = 1∠AOD,∠CBD = 1∠COD,
●O
2
2
∴ ∠ABC = 1∠AOC.
2
B
你能写出这个命题吗? 一条弧所对的圆周角等于 它所对的圆心角的一半.
试一试
③当圆心(O)在圆周角(∠ABC)的外部时,圆周 角∠ABC与圆心角∠AOC的大小关系会怎样?
提示:能否也转化为①的情况?
A
C
过点B作直径BD.由①可得:
∠ABD = 1∠AOD,∠CBD = 1∠COD, B
数学知识点:圆周角定理_知识点总结
数学知识点:圆周角定理_知识点总结
顶点在圆上,它们的两边在圆内的部分分别是圆的弦.
圆周角定理:
一条弧所对的圆周角等于它所对的圆心角的一半。
圆心角定理:
圆心角的度数等于它所对弧的度数。
推论1:
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:
半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径,高考物理。
圆周角的特点:
(1)角的顶点在圆上;
(2)角的两边在圆内的部分是圆的弦.
圆周角和圆心角相对于圆心与直径的位置关系有三种:
解题规律:
解决圆周角和圆心角的计算和证明问题,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理.。
初中数学知识点精讲精析-圆周角和圆心角的关系
3·3圆周角和圆心角的关系要点精讲1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.典型例题1.已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.【解析】证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AOC=2∠ABO.即∠ABC=12∠AOC.如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD=12∠AOD,∠CBD=12∠COD,∴∠ABD+∠CBD=12(∠AOD+∠COD),即∠ABC=12∠AOC.在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD=12∠AOD,∠CBD=12∠COD.∴∠ABD-∠CBD=12(∠AOD-∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径. ABCDO(1)若OD ∥AC ,与 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC ∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论. AB CDEFO【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径,与同伴交流.BDCDEO1 23CABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.BA CDOP【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.AB CD OEGF【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC. ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。
圆周角的定理及推论的应用
圆周角的定理及推论的应用圆周角是数学中的一个重要概念,掌握圆周角的定理及其推论,对于解决许多几何问题非常有帮助。
本文将围绕圆周角的定理及推论的应用展开阐述。
一、圆周角的定义圆周角是指落在圆周上的两条弧所对的角,即两个弧之间的角度量。
一般用大写字母表示圆周角,如∠ABC。
二、圆周角的定理1、相等圆周角定理:在同一个圆周上,所对的圆周角相等。
证明:作弦AB、CD相交于点E,则∠AEB=∠CED。
由于AE、BE、CE、DE均是从一个圆心O引出的弦,故∠AEB=∠CEB,∠CED=∠BED,又因为OE=OE,故OEB≌OED,由此可得∠OEB=∠OED,即∠AEB=∠CED。
2、圆心角的定理:在同一个圆中,所对的圆心角相等。
证明:连接圆心O到AB的中垂线OH,H为AB的中点。
则OH垂直于AB,因此∠AOH、∠BOH均为直角,所以∠AOB=2∠AOH=2∠BOH。
3、正弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:sinA=a/2R,sinB=b/2R,sinC=c/2R证明:如下图所示,以AB、BC、CA为边作三角形ABC的外接圆,设圆心为O。
连接AO、BO、CO,过O点作弦AD、BE、CF,则OD=OE=OF=R,所以AOD、BOE、COF都是等边三角形。
因此,∠OAB=∠CFO、∠OBA=∠CEO、∠OBC=∠AEO、∠OCB=∠AFO。
设∠BAC=x,∠ABC=y,∠ACB=z,由三角形内角和公式得:x+y+z=180又由圆周角定理得:∠BOC=2y,∠AOC=2z,∠AOB=2x于是:∠AOB+∠BOC+∠AOC=3602x+2y+2z=360,即x+y+z=180。
将sinA、sinB、sinC带入上述公式中,可得:sinA/BC=sinB/CA=sinC/AB=1/2R即sinA=a/2R,sinB=b/2R,sinC=c/2R。
4、余弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:cosA=(b²+c²-a²)/2bc,cosB=(a²+c²-b²)/2ac,cosC=(a²+b²-c²)/2ab证明:将ABC的外接圆的半径延长到BC、AC和AB上分别交于点D、E、F。
圆心角与圆周角的关系
3
同弧或等弧所对的圆周角 相等
4
圆周角定理推论2:
5
直径所对的圆周角是直角
6
90o的圆周角所对的弦是直 径
圆周角和圆心角的关系(2)
A
C
A
O
B
B
E
D
O
C
预习成果展示
∠A= ∠B
A C
B O
D
圆周角和圆心角的关系(2)
A
C
A
B
O
B
E
O
C
D
1
学习目标:
2
掌握圆周角定理的推论, 会熟练运用推论解决问题
探究一
1
2
A
1
C
2
1 ∠B=
∠AOC
O
∠D=
2 ∠E=
B∠AOC
∠AOC
E
∴ ∠B= ∠D= ∠E
D 同弧所对的圆周角相等
⌒⌒
若AB=CD,∠E与∠F的大小有什么关系?为OD
又∵∠E=
1 ∠AOB
2
∠F=
1∠DOC
2
∴∠E=∠F
O A
B
等弧所对的圆周角相等
D C
同弧或等弧所对的圆周角相等
A B
O
探究二
90o的圆周角所 对的弦是直径
C
直径所对的圆周 角是直角
1
谈谈收获
2
人教版数学九年级圆心角和圆周角关系定理的理解和解题运用
人教版数学九年级圆心角与圆周角关系定理的理解与解题运用一、知识解读1、圆周角与圆心角的关系:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半。
在理解关系定理的内涵时,要理清如下几点:①定理的使用范围:必须在同圆中,这是一种情况;第二是必须在等圆中。
否则,不能乱用定理。
②理解好两种等量关系一是同弧所对的圆周角相等,二是等弧所对的圆周角相等。
这是寻找角相等的基本方向。
③确定准圆周角的度数大小一是同弧所对的圆周角相等,且等于这条弧所对圆心角的一半。
二是等弧所对的圆周角相等,且等于这条弧所对圆心角的一半。
④理解好“一半”的意义在这里,有两层意义:一是当同弧或等弧所对的圆周角与圆心角度数不知道时,满足如下等量关系: 设所对的圆周角是∠1,所对的圆心角是∠2,则∠1=21∠2,或∠2=2∠1, 二是当同弧或等弧所对的圆周角与圆心角度数知道时,满足如下等量关系: 设所对的圆周角是∠1=x °,所对的圆心角是∠2=y °,则x=21 y °,或y=2 x °, 2、推论在同圆或等圆中,半圆所对的圆周角是直角;直径所对的圆周角是直角;90°的圆周角所对的弦是直径。
二、考点剖析考点1、直接用定理例1、如图1所示,⊙O 中,弦AB DC ,的延长线相交于点P ,如果120AOD ∠=o ,25BDC ∠=o ,那么P ∠= .方法解读:∠AOD 、∠ABD 是同一条弧,AD 弧上的圆心角和圆周角,根据定理就能求∠ABD 的度数; ∠ABD 是三角形PBD 的一个外角,所以,∠ABD=∠BDC+∠P ;这样,就把所求与已知联系起来了。
解:因为,∠AOD 、∠ABD 是同一条弧,AD 弧上的圆心角和圆周角,所以,∠ABD=21∠AOD=21×120°=60°, 因为,∠ABD 是三角形PBD 的一个外角,所以,∠ABD=∠BDC+∠P ,因为,∠BDC=25°,所以,∠P=60°-25°=35°。
17-第三章4圆周角和圆心角的关系
栏目索引
8.(2019黑龙江哈尔滨道外一模)如图3-4-6,AB、BC为☉O的两条弦,∠AOC -∠ABC=60°,则∠ABC的度数为 ( )
A.120°
B.100°
C.160°
图3-4-6 D.150°
4 圆周角和圆心的关系
答案
B
如图,在优弧
︵
AC
上取点D,连接DA、DC,
温馨提示 任何一个四边形都最多只有一个外接圆,但是一个圆的内接四边形有无数个
4 圆周角和圆心的关系
2.圆内接四边形的性质
内容
性质
圆内接四边形的对角互补
详解
∵ ︵ 与 ︵ 所对的圆心角之
ABC ADC
和为360°,∴∠ABC+∠D= 1×36
2
0°=180°.同理,∠BCD+∠BAD=1
80°
拓展
∵∠ABC+∠D=180°,∠CBE+∠ ABC=180°,∴∠CBE=∠D. 结论:圆内接四边形的任何一个 外角等于它的内对角
2
栏目索引
③如图3-4-1(3)所示,圆心O在∠BAC的外部.连接AO并延长交☉O于点D,由
①得∠BAD= 1 ∠BOD,∠CAD= 1 ∠COD,∴∠CAD-∠BAD= 1(∠COD-∠
2
2
2
BOD),即∠BAC= 1 ∠BOC.
2
提示:不能把“一条弧所对的”去掉,而简单说成“圆周角等于圆心角的一
解析 因为四边形ADBC内接于☉O,所以∠2+∠D=180°,同理可得∠1+∠ E=180°,所以∠1+∠2+∠D+∠E=360°,又∠1+∠2=180°-∠BAC=130°,所以 ∠D+∠E=230°.
初中数学《圆周角定理及点圆关系》讲义及练习
内容基本要求略高要求较高要求圆的有关概念 理解圆及其有关概念 会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质 知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题圆周角 了解圆周角与圆心角的关系;了解直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题一、圆周角定理圆心角和圆周角1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等. 2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.圆是平面几何中的一个重要内容.由于圆与直线型图形可组合成一些复杂的几何问题,所以它经常出现在数学竞赛中. 圆的基本性质有:⑴ 直径所对的圆周角是直角. ⑵ 同弧所对的圆周角相等.⑶ 经过圆心及一弦中点的直线垂直平分该弦.二、圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,其它各组量都相等。
三、点与圆的位置关系点与圆的位置关系知识点睛中考要求第十讲圆周角定理及点与圆关系点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.设O⊙的半径为r,点P到圆心O的距离为d,则有:点在圆外⇔d r>;点在圆上⇔d r<.=;点在圆内⇔d r确定圆的条件1. 圆的确定确定一个圆有两个基本条件:①圆心(定点),确定圆的位置;②半径(定长),确定圆的大小.只有当圆心和半径都确定时,圆才能确定.2. 过已知点作圆⑴经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.⑵经过两点A B、、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B 的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C、、三点不共线时,圆心是线段AB、、共线时,过三点的圆不存在;若A B C与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆⑷过n()4心.3. 定理:不在同一直线上的三点确定一个圆.注意:⑴”不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵”确定”一词的含义是”有且只有”,即”唯一存在”.4. 三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.⑶锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB和CD交于O⋅=⋅.⊙内一点P,则PA PB PC PDP ODC BA相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.一、圆周角定理【例1】 (08山西太原)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC AD ,,若35CAB ∠=,则ADC ∠的度数为 .【解析】 直径所对圆周角是90°且同弧所对圆周角相等. 所以得55°. 【巩固】⑴(08龙岩)如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.⑵ 如图,ABC △的三个顶点都在O ⊙上,302cm C AB ∠==,,则O ⊙的半径为______cm .O1BAOCBAOCBA【解析】 ⑴ ()117040152∠=︒-︒=︒. ⑵ 连接OA ,OB∵30C ∠=︒,∴260O C ∠=∠=︒,又∵OA OB =,∴OAB ∆为等边三角形, ∴2OA AB ==,即O 的半径为2.【巩固】⑴ 已知O ⊙的弦AB 长等于圆的半径,求该弦所对的圆周角.⑵ (06年安徽课改)如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )A.22B.4C.23D.5CBD OA重、难点例题精讲BABA【解析】 ⑴ 连接OA 、OB ,设弦AB 所对的圆周角为ACB ∠.∵AB OA OB ==∴AOB ∆是等边三角形 ∴60AOB ∠=︒∴当点C 在AB 上时(劣弧上),1(360)2ACB AOB ∠=︒-∠1(36060)1502=⨯︒-︒=︒.当点C 在AmB 上时(优弧上),1302ACB AOB ∠=∠=︒故该弦所对的圆周角为30︒或150︒. ⑵ 如右图所示连接OA 、OB ,因为45C ∠=︒,290AOB C ∠=∠=︒4AB=,所以半径为OA OB ==.【例2】 (07年威海中考题)如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.B ABA【解析】 连接AC 、BC∵AB 是O 的直径,∴90ACB ∠=︒,∴90CAB CBA ∠+∠=︒, 又∵D CBA ∠=∠,E CAB ∠=∠,∴90D E ∠+∠=︒, 又∵DCE D E ∠=∠=∠,∴45DCE D E ∠=∠=∠=︒,∴9045135DAB EBA DCB ECA ACB DCE ∠+∠=∠+∠=∠+∠=︒+︒=︒, 即135A B +=︒∠∠【巩固】(08年济宁改编)如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【解析】 以A 为圆心,AB 为半径作辅助圆则C D 、均在A ⊙上,∴1382CBD CAD ∠=∠=︒,226BAC BDC ∠=∠=︒.【例3】 如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若218AB DE E =∠=︒,,求AOC ∠的度数.EE【解析】 连结OD∵AB 是直径,2AB DE =,∴12DE AB OD ==∴18DOE E ∠=∠=︒,∴36ODC DOE E ∠=∠+∠=︒∵OC OD =,∴36OCD ODC ∠=∠=︒, ∴54AOC OCD E ∠=∠+∠=︒.【巩固】如图所示CD 是O ⊙的直径,87EOD ∠=︒,AE 交O ⊙于B ,且AB OC =,求A ∠ 的度数.DD【解析】 连结OB∵AB OC =,OB OC =,∴OB AB = 设A x ∠=,则BOA x ∠=. ∴2OBE BOA A x ∠=∠+∠=. ∵OE OB =,∴2OEA OBE x ∠=∠=.∴387EOD E A x ∠=∠+∠==︒ ∴29x =︒,即29A ∠=︒.【巩固】如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.B【解析】 连结AC .设∠DCA =x°,则∠DBA =x°,所以∠CAB =x°+20°.因为AB 为直径,所以∠BCA=90°,则∠CBA +∠CAB =90°.又 ∠DBC =50°,∴ 50+x +(x +20)=90. ∴ x =10.∴∠CBE =60°.所以答案是60°.【例4】 (07重庆)已知,如图:AB 为O ⊙的直径,AB AC =,BC 交O ⊙于点D ,AC 交O ⊙于点E ,45BAC ∠=︒.给出以下五个结论:①22.5EBC ∠=︒,;②BD DC =;③2AE EC =;④劣弧AE 是劣弧DE 的2倍;⑤AE BC =.其中正确结论的序号是 .【解析】 由题意可知122.52EBC BAC ∠=∠=︒,故①正确,连接AD 可得90ADB ∠=︒,由等腰三角形三线合一的性质可知BD DC =,故②正确;2ABE EBD ∠=∠,由弧的度数和它所对的圆心角是相等的,可知2AE DE =,故④正确, ∴正确结论的序号是:①②④.【例5】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【解析】 延长AC 交BD 的延长线于E ,∵AB 是半圆的直径,AD 平分CAB ∠, 则可得10AE AB ==,BD ED =, ∴4CE AE AC =-=,∵90ACB ∠=︒,∴8BC =,在RtBCE ∆中,BE =,∴BD DE ==∴AD =【例6】 (08乌鲁木齐)如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.DCA B【例7】 ⑴(09河北)如下左图,四个边长为1的小正方形拼成一个大正方形,A B O 、、是小正方形顶点,O ⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则APB ∠等于__________.PO BAB⑵(09四川成都)如上右图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.⑶(09山东泰安)O ⊙的半径为1,AB 是O ⊙的一条弦,且AB =AB 所对圆周角的度数为_____________.【解析】 ⑴45︒;⑵60︒或120︒.【例 1】 (07年枣庄中考题)如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .A【解析】 连接CD .证明ABD CDB ∆∆≌,∴6BC AD ==.【例8】 如图,过O ⊙的直径AB 上两点M N ,,分别作弦CD EF ,,若CD EF AC BF =,∥.求证:⑴BEC ADF =;⑵ AM BN =.【解析】 ⑴ ∵AC BF =,∴AC BF =, ∵AB 是直径,∴AEB ADB =,∴AEB AC ADB BF -=-,即BEC ADF =. ⑵ 由⑴可知CAM FBN ∠=∠,∵CD EF ∥,∴CMA DMB FNB ∠=∠=∠,又AC BF =,∴ACM BFN ∆∆≌,∴AM BN =.【例9】 如图,点A B C 、、是O ⊙上的三点,AB OC ∥.⑴ 求证:AC 平分OAB ∠;⑵ 过点O 作OE AB ⊥于点E ,交AC 于点P .若230AB AOE =∠=︒,,求PE 的长.【解析】 ⑴ ∵AB OC ∥,∴BAC C ∠=∠,∵OA OC =,∴OAC C ∠=∠,∴BAC OAC ∠=∠,∴AC 平分OAB ∠.⑵ ∵OE AB ⊥,∴112AE AB ==,在Rt AOE ∆中,9030OEA AOE ∠=︒∠=︒,,∴22AO AE OE ==,以下可以用两种不同方法解答:解法一:∵AB OC ∥,∴12AE PE OC OP ==∴13PE OE =解法二:由⑴得AC 平分OAB ∠,∴2OA OPAE PE==,∴13PE OE =【例10】 ⑴如图,AB 是O ⊙的直径,CD AB ⊥,设COD α∠=,则2sin 2AB AD α⋅=_____________.O PFEDC B A⑵ 如图,AB 是O ⊙的直径,弦PC 交OA 于点D ,弦PE 交OB 于点F ,且OC DC OF EF ==,.若C E ∠=∠,则CPE ∠=___________.⑶ 已知:如图,MN 是O ⊙的直径,点A 是半圆上一个三等分点,点B 是AN 的中点,P 是MN 上一动点,O ⊙的半径为1,则PA PB +的最小值是_____________.【解析】 ⑴1;⑵40︒;⑶作B 点关于MN 的对称点B ′,连结AB ′与MN 交于点P , 易证得,此时PA PB +取得最小值.根据圆的对称性,B ′点在O ⊙上,且B N BN =′, ∵A 是半圆的三等分点,∴13AN MAN =,∴60AON ∠=︒,∵B 是AN 的中点,∴1302BON AON ∠=∠=︒,∴30B ON ∠=︒′,∴90AOB AON B ON ∠=∠+∠=︒′′, ∵O ⊙半径为1,∴1OA OB ==′,∴AB ′,∴PA PB +【巩固】(09浙江衢州)如图,AD 是O ⊙的直径.⑴ 如图1,垂直于AD 的两条弦11B C ,22B C 把圆周4等分,则1B ∠的度数是___________,2B ∠的度数是____________;⑵ 如图2,垂直于AD 的三条弦112233B C B C B C 、、把圆周6等分,分别求123B B B ∠∠∠,,的度数;⑶ 如图3,垂直于AD 的n 条弦112233n n B C B C B C B C ,,,…,把圆周2n 等分,请你用含n 的代数式表示n B ∠的度数(只需直接写出答案).图3图2图1-1n -2B n 3B B 2【解析】 ⑴ 22.567.5︒︒,;⑵ ∵圆周被6等分,∴111223360660B C C C C C ===÷=︒.∵直径11AD B C ⊥,∴1111302AC B C ==︒,∴()()12311153060453060607522B B B ∠=︒∠=⨯︒+︒=︒∠=⨯︒+︒+︒=︒,,.⑶ ()()90451136036012222n n B n n n n -︒︒︒⎡⎤∠=⨯+-⋅=⎢⎥⎣⎦(或3604590908nB n n ︒︒∠=︒-=︒-)【例11】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【解析】 ∵ACB BCN ∠=∠,又∵ACB ADB ∠=∠;BCN BAD ∠=∠, ∴BAD BDA ∠=∠, ∴BA BD =.【巩固】已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,过B 作BM AC ⊥于M ,BN CD ⊥于N ,则下列结论中一定正确的有 .①CM CN =;②MBN ABD ∠=∠;③AM DN =;④BN 为⊙O 的切线.【解析】 可证得BCM ∆≌BCN ∆.∴CM CN =,故①正确;四边形BMCN 的内角和为360︒可知,180MBN MCN ∠+∠=︒, 又∵180MCN ACD ∠+∠=︒, ∴MBN ACD ∠=∠, ∵ACD ABD ∠=∠,∴MBN ABD ∠=∠,故②正确;利用外角平分线易证AB BD =,又∵BM BN =,AMB DNB ∠=∠, ∴ABM DBN ∆∆≌,∴AM DN =,故③正确;若BN 为⊙O 的切线,则NBC BAC ∠=∠, ∵90NBC BCN ∠+∠=︒,而BCN ACB ∠=∠, ∴90BAC ACB ∠+∠=︒, ∴AC 为O ⊙直径.而AC 不一定为O ⊙直径,故④不正确.【巩固】(09辽宁)已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E .⑴ 求证:AD 的延长线平分∠CDE ;⑵ 若30∠=︒BAC ,∆ABC 中BC边上的高为2∆ABC 外接圆的面积.AB CD【解析】 ⑴ 如图,设F 为AD 延长线上一点∵D 在∆ABC 外接圆上(A B C D 、、、四点共圆) ∴∠=∠CDF ABC又=AB AC ,∴∠=∠ABC ACB , 且∠=∠ADB ACB ,∴∠=∠ADB CDF对顶角∠=∠EDF ADB ,故∠=∠EDF CDF , 即AD 的延长线平分∠CDE .⑵ 设O 为外接圆圆心,连接AO 交BC 于H ,则⊥AH BC . 连接OC ,由题意15∠=∠=︒OAC OCA ,75∠=︒ACB , ∴60∠=︒OCH .设圆半径为r,则2+=r 2=r ,外接圆的面积为4π.二、圆心角、弧、弦、弦心距之间的关系【例12】 如图所示在O ⊙中,2AB CD =,那么( )A.2AB CD >B.2AB CD <C.2AB CD =D.AB 与2CD的大小关系不能确定【解析】 如图所示,作DE CD =,则2CE CD =,∵在CDE ∆中CD DE CE +>,∴2CD CE >, ∵2AB CD =,∴AB CE >,∴AB CE >,即2AB CD >. 故选A .【例13】 已知AB AC 、是O ⊙的弦,AD 平分BAC ∠交O ⊙于D ,弦DE AB ∥交AC 于P ,求证:OP 平分APD ∠.【解析】 过O 点分别作OF AC OG DE ⊥⊥,,垂足分别为F G 、.∵DE AB ∥,∴BAD D ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴CAD D ∠=∠, ∴AE CD =,∴AE EC CD EC +=+,即AC DE = ∴AC DE =, ∵OF AC OG DE ⊥⊥,,∴OF OG =,∴点O 在APD ∠的平分线上,即OP 平分APD ∠.【巩固】已知,如图M N ,为O 中劣弧AB 的三等分点,E F ,为弦AB 的三等分点,连接ME 并延长,交直线MF 于点P ,连接AP BP ,交O 于C D ,两点,求证:3AOB APB ∠=∠.PNMOFEDCBAQPNMOFEDCBA【解析】 连接CN AN ,,ON OM ,,连接MN 并延长,交PA 的延长线于Q .∵M N ,三等分AB ,∴AM BN =,故MN AB ∥,由AE EF =,可证得QM MN =, 由AM MN =得AM MN =, ∴MA MQ MN ==, ∴QAN ∠为直角,∴90CAN ∠=︒,故CN 为O 直径, 故O 在CN 上∴22AON ACN MON ∠=∠=∠∴MON ACN ∠=∠,故OM AP ∥, 同理可证:ON AB ∥于是可证得:MON APB ∠=∠,∵3AOB MON ∠=∠,∴3AOB APB ∠=∠.【例14】 (2008年广州市数学中考试题)如图,射线AM 交一圆于点B C ,,射线AN 交该圆于点D 、E ,且BC DE =.⑴ 求证:AC AE =⑵ 分别作线段CE 的垂直平分线与MCE ∠的平分线,两线交于点F .求证:EF 平分CEN ∠.NME【解析】 ⑴ 作OP AM ⊥,OQ AN ⊥,由BC DE =,得OP OQ =,证APO AQO ∆∆≌,可得AP AQ =, 由BC CD =,得CP EQ = ∴AC AE =. ⑵ ∵AC AE =,∴ACE AEC ∠=∠,∴MCE NEC ∠=∠, ∵F 在线段CE 的中垂线上, ∴FC FE =,∴FCE FEC ∠=∠,∵12FCE MEC ∠=∠,∴12FEC NEC ∠=∠,即EF 平分CEN ∠.三、点与圆的位置关系【例15】 一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.【解析】 ⑴ 当点在圆外时,512cm 2r -==,⑵ 当点在圆内时,513cm 2r +==.【例16】 已知:四边形ABCD 中,AB CD ∥,AD BC =,135BAD ∠=︒,20AB =,40CD =,以A 为圆心,AB 长为半径作圆.求证:在A ⊙上,在A ⊙内,A ⊙外都有线段DC 上的点.C【解析】 如图所示,作AE CD ⊥于E∵ABCD 是等腰梯,AE CD ⊥,135BAD ∠=︒,20AB =,40CD =∴20AD =<,20AC = ∴D 点在A ⊙内,C 点在A ⊙外,圆内一点与圆外一点的连线,必与圆有一交点, 所以A ⊙上,A ⊙内, A ⊙外都有线段DC 上的点.【例17】 在平面直角坐标系内,以原点O 为圆心,5为半径作O ⊙,已知A ,B ,C 三点的坐标分别为()34A ,,()33B --,,(4C ,,试判断A ,B ,C 三点与O ⊙的位置关系.【解析】∵5OA =5OB =5OC >∴点A 在O ⊙上,点B 在O ⊙内,点C 在O ⊙外.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.【例18】 在ABC ∆ 中,90C ∠=︒,4AC =,5AB =,以点C 为圆心,以r 为半径作圆,请回答下列问题,并说明理由.⑴ 当r 取何值时,点A 在C ⊙上,且点B 在C ⊙内部?⑵ 当r 在什么范围内取值时,点A 在C ⊙外部,且点B 在C ⊙的内部? ⑶ 是否存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部?CBA【解析】 如右图所示在Rt ABC ∆中,90C ∠=︒,4AC =,5AB =,根据勾股定理得:3BC ==⑴ 当4r =时,点A 在C ⊙上,且点B 在C ⊙内.因为4AC r ==,所以点A 在C ⊙上,34BC r =<=,所以B 在C ⊙内; ⑵ 当34r <<时,点A 在C ⊙的外部,且点B 在C ⊙的内部.由于3BC =,要使点B 在C ⊙的内部,必须C ⊙的半径3r >;又由于4AC =,要使点A 在C ⊙的外部,必须C ⊙的半径4r <. 综合上述两方面可知,34r <<.⑶ 不存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部.因为3BC =,要使点B 在C ⊙上,必须3r =,此时,由于4AC r =>,所以点A 在C ⊙的外部,点A 不在C ⊙的内部,所以这样的实数r 不存在.【例19】 已知ABC ∆中,90C ∠=︒,2AC =,3BC =,AB 的中点为M ,⑴ 以C 为圆心,2为半径作C ⊙,则点A ,B ,M 与C ⊙的位置关系如何? ⑵ 若以C 为圆心作C ⊙,使A ,B ,M 三点至少有一点在C ⊙内,且至少有一点在C ⊙外,求C ⊙半径r 的取值范围.M CBA【解析】 如右图所示⑴ ∵2AC =,且C ⊙的半径也为2,即AC r =∴点A 在C ⊙上.又∵3BC =,2R =,BC r > ∴点B 在C ⊙外.在ABC ∆中,AB = ∵M 为AB 的中点∴122MC AB ==<∴点M 在C ⊙内; ⑵ ∵2AC =,3BC =,MC ∴BC AC MC >>∴要使A ,B ,M 三点中至少有一点在C ⊙内,且至少有一点在C ⊙外,则C ⊙的半径r 的3r <<.【点评】⑴ 要判定点A ,B ,M 与C ⊙的位置关系,只要比较AC ,BC ,MC 的长度与C ⊙的半径的大小关系即可;⑵ 由⑴求得AC ,BC ,MC 的长度即可确定C ⊙的半径r 的取值范围.【例20】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【解析】 作高AD ,设点O 是ABC ∆OB∵AB AC =,AD BC ⊥,∴16BD BC ==在Rt ABD ∆中,8AD 设O ⊙的半径为R ,则OB AO R ==,8OD R =-. 在Rt OBD ∆中, 222OB BD OD =+∴2226(8)R R =+-,解得254R =.∴外接圆的半径为254.【点评】运用外心到三角形的三个顶点的距离相等这一性质,注意,三角形的外心在等腰三角形底边的中垂线上.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PCPD ⋅=⋅.相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项. 【例21】 ⑴ 如下左图,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = cm .⑵ 如下中图,在O ⊙中,弦AB 与半径OC 相交于点M ,且OM MC =,若 1.54AM BM ==,,则OC 的长为( )A. BC. D .⑶ 如下右图,在O ⊙中,P 为弦AB 上一点,PO PC ⊥,PC 交O ⊙于C ,那么( )A .2OP PA PB =⋅ B .2PC PA PB =⋅C .2PA PB PC =⋅D .2PB PA PC =⋅【解析】 ⑴6;⑵D ;⑶B .【例22】如图,圆的半径是A C 、两点在圆上,点B 在圆内,6AB =,2BC =,90ABC ∠=︒求点B到圆心的距离.【解析】 连结OB ,则线段OB 的长就是所求点B 到圆心的距离.连结OA ,延长AB 交O ⊙于D ,过O 点作OE AD ⊥于E ,延长CB 交O ⊙于F . 设BD x =,由相交弦定理可得AB BD BC BF ⋅=⋅,则3AB BDBF x BC⋅==,∵OE AD ⊥,∴()()11166222AE AD x BE x ==+=-,,()()11132232222OE CF BC x x =-=+-=-,在Rt AOE ∆中,90AEO ∠=︒,∴222OE AE OA +=,即()()22113265044x x -++=,解得4x =,∴()()1134256412OE BE=⨯-==-=,,OB =【例23】 如图,正方形ABCD 内接于O ⊙,点P 在劣弧AB 上,连结DP 交AC 于点Q .若QP QO =,则QCQA的值为___________.【解析】 连结DO ,设O ⊙半径为r ,QO m =,则QP m QC r m QA r m ==+=-,,.在O ⊙中,根据相交弦定理得QA QC QP QD ⋅=⋅,即()()r m r m mQD -+=,∴22r m QD m-=,由勾股定理得222QD DO QO =+,即22222r m r m m ⎛⎫-=+ ⎪⎝⎭,解得33m r =. ∴313231QC r m QA r m ++===+--.【习题1】 (2007浙江温州)如图,已知ACB ∠是O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( )A .40︒B . 50︒C . 80︒D . 100︒【解析】 考察同弧所对圆心角圆周角关系.答案选:D .【习题2】 如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则AmB 等于 .A . 60°B . 90°C . 120°D . 150°mBAO【解析】 答案选C .【习题3】 (09四川凉山)如图,O ⊙是ABC ∆的外接圆,已知50ABO ∠=︒,则ACB ∠的大小为__________.OCBA【解析】 40︒.【习题4】 (09四川南充)如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=︒,AD OC ∥,则AOD ∠=___________.OD CBA家庭作业【解析】 40︒.【习题5】 如果两条弦相等,那么( )A .这两条弦所对的弧相等B .这两条弦所对的圆心角相等C .这两条弦的弦心距相等D .以上答案都不对【解析】 考察圆心角定理,关键是这些条件成立的前提是在同圆或等圆中.所以选D .【习题6】 如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°. 现给出以下四个结论:①∠A =45°; ②AC =AB ; ③AE BE =; ④22CE AB BD ⋅=. 其中正确结论的序号是A .①②B .②③C .②④D .③④ED C BAO【解析】 考察利用圆中角可推出等弧,等弦,相似.答案选 C .【习题7】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180,70,30,则PAQ ∠的大小为( )A .10B .20C .30D .40【解析】 考察同弧所对圆心角是圆周角的2倍.答选 B .【习题8】 (首师大附中2008-2009初三月考)定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD 如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.GEK DB A【解析】 连结KE AK 、,由题意可知K ⊙的半径为6cm ,6cm EK AB BE ⊥=,,∴8cm AE =,∴2210cm AK AE EK =+=, ∴点A 与K ⊙的距离为1064cm -=.【备选1】 如图,CD 为O ⊙的直径,过点D 的弦DE 平行于半径OA ,若D ∠的度数是50︒,则C ∠的度数是 A .25︒ B .40︒ C .30︒ D .50︒O EDCA【解析】 A .【备选2】 (08泰安)如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.OEDCBA【解析】 ()136018022mD E m ∠+∠=︒-=︒-.【备选3】 如图,已知⊙O 的弦AB 、CD 相交于点E ,AC 的度数为60°,BD 的度数为100°,则AEC∠等于( )A . 60°B . 100°C . 80°D . 130°EDC BO A【解析】 连结BC ,则∠AEC =∠B +∠C =21×60°+21×100°=80°.所以答案是C .【备选4】 设Rt ABC ∆的两条直角边长分别为3,4则此直角三角形的内切圆半径为 ,外接圆半径为【解析】 内切圆半径为1()12r a b c =+-=;外接圆半径为 2.52cR ==.【备选5】 等边三角形的外接圆的半径等于边长的( )倍.月测备选A .23B .33C .3D .21【解析】 考察等边三角形与外接圆半径的关系,所以选B【备选6】 (08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE相等的角有( )BAA . 2个B . 3个C . 4个D . 5个【解析】 考察同弧,等弧所对圆周角相等,所以选B .【备选7】 (宜宾)已知:如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧CD 上不同于点C 的任意一点,则BPC ∠的度数是( )A.45︒ B .60︒ C.75︒ D.90︒P【解析】 连接BO ,CO ,可得90BOC ∠=︒,∴1452BPC BOC ∠=∠=︒,故选A .【备选8】 (09浙江温州)如图,80AOB ∠=︒,则弧AB 所对圆周角ACB ∠的度数是A .40︒B .45︒C .50︒D .80︒【解析】 A .【备选9】 Rt ABC ∆的两条直角边3BC =,4AC =,斜边AB 上的高为CD ,若以C 为圆心,分别以12r =,2 2.4r =,33r =为半径作圆,试判断D 点与这三个圆的位置关系.DCBA【解析】 在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,∴5AB =由面积相等得,AC BC AB CD ⋅=⋅.∴122.45AC BC CD AB ⋅===∴ 2.4d CD ==∴1d r >, 2d r =, 3d r <∴点D 与三个圆的位置关系分别是:在圆外,在圆上,在圆内.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.。
《圆周角和圆心角的关系》圆PPT课件3(1)
E
●O
C
B
D
A
E B
C D
同弧或等弧所对的圆周角相等。
如图,在⊙O中,∠B,∠D,∠E的大小有什么关系?
为什么?
D
同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所 对的弧也相等。
B E
●O
A
C
⑴“同弧或等弧”能否改为“同弦或等弦” 不能 ?
⑵ “同圆或等圆”这一条件能否省去? 不能
随堂练习: 1.如图,在⊙O 中,∠BOC=50°,求∠BAC 的大小。
圆周角定理推论:
C
同弧(等弧)所对的圆周角相等.
都等于这条弧所对的圆心角的一半.
D
O
A
在同圆或等圆中, B 相等的圆周角所对的弧相等.
• 想一想:
• 在射门游戏中,当球员在B,D,E处射门时,他所处的位置对球 门AC分别形成三个角∠ABC, ∠ADC,∠AEC.这三个角的大 小有什么关系?你能用圆周角定理去解决问题。
九年级数学(下)第三章 圆
3.4 圆周角和圆心角的关系
A
E B
C D
知识回顾
1.圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.
2.圆也是中心对称图形. 它的对称中心就是圆心.
3.顶点在圆心的角叫做圆心角.
4.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等。
A
E
●O
C
B
D
A
E B
C D
圆周角定义:
A
顶点在圆上,并且两边都和圆 E
相交的角叫圆周角.
●O
C
B
特征: ① 角的顶点在圆上. ② 角的两边都与圆相交 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆周角和圆心角的关系》第1课时教学设计
会昌县白鹅初中邹焰辉
教学过程设计说明
创设问题情境[师]前面我们学习了与圆有关的哪种角?它有什
么特点?请同学们画一个圆心角.
[生]学习了圆心角,它的顶点在圆心.
[师]圆心是圆中一个特殊的点,当角的顶点在圆
心时,就有圆心角.这样角与圆两种不同的图形
产生了联系,在圆中还有比较特殊的点吗?如果
有,把这样的点作为角的顶点,会是怎样的图形?
回顾旧知,导入新课
设置悬念,激发学生学
习欲望。
探索新知
认识概念 [师]同学们请观察下面的图(1).(出示投影片
3.3.1A)
[师]图中的∠ABC,顶点在什么位置?角的两边
有什么特点?
[生]∠ABC的顶点B在圆上,它的两边分别和圆
有另一个交点.(通过学生观察,类比得到定义)
圆周角(angle in a circular segment)定义:
顶点在圆上,并且角的两边和圆相交的角.
[师]请同学们考虑两个问题:
(1)顶点在圆上的角是圆周角吗?
(2)圆和角的两边都相交的角是圆周角吗?
请同学们画图回答上述问题.
[师]通过画图,相互交流,讨论认清圆周角概念
的本质特征,从而总结出圆周角的两个特征:
在通过射门游戏引入圆
周角的概念。
让学生认识圆周角的两
个重要特征。
(1)角的顶点在圆上;
(2)两边在圆内的部分是圆的两条弦.试
一试1(出示投影片)
列举一些反例让学生进
行辨析。
联想建构
验证猜想 [师]在图(1)中,当球员在B、D、E处射门时,
他所处的位置对球门AC分别形成三个张角∠AB
C,∠ADC,∠AEC.这三个角的大小有什么关
系?
我们知道,在同圆或等圆中,相等的弧所对的圆
心角相等.那么,在同圆或等圆中,相等的弧所
对的圆周角有什么关系?
[师]请同学们动手画出⊙O中弧AC所对的圆心
角和圆周角.观察弧AC所对的圆周角有几个?
它们的大小有什么关系?你是通过什么方法得到
的?弧AC所对的圆心角和所对的圆周角之间有
什么关系?
[生]弧AC所对的圆周角有无数个.通过测量的
方法得知:弧AC所对的圆周角相等,所对的圆
周角都等于它所对的圆心角的一半.
(教师用几何画板展示变化中的圆周角与圆心角
的关系)
[师]对于有限次的测量得到的结论,必须通过其
论证,怎么证明呢?说说你的想法,并与同伴交
流.
提出这一问题意在引起
学生思考,为本节活动
埋下伏笔。
[生]互相讨论、交流,寻找解题途径.
[师生共析]能否考虑从特殊情况入手试一下.(学生口述,教师播放flash.)
(学生口述,教师播放flash
[师]如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?(学生互相交流、讨论)
[生甲]如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的
和即可证出.(学生口述,教师播放flash.)[生乙]在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.(学生口述,教师播放flash.)
[师]还会有其他情况吗?请思考.
[生]不会有.
[师]经过刚才我们一起探讨,得到了什么结论?
[生]一条弧所对的圆周角等于它所对的圆心角的一半.
[师]这一结论称为圆周角定理.由此我们可以知道,当解决一问题有困难时,可以首先考虑其特殊情形,然后再设法解决一般问题,这是解决问题时常用的策略.今后我们在处理问题时,注意运用.通过这样的启发提问,可提高学生的思维能力,为推理论证圆周角定理,打下了良好的基础。
解决困难问题的时间,首先考虑其特殊情形,然后再设法解决一般问题。
意识地向学生渗透解决问题的策略以及转化、分类、归纳等数学思想方法。
让学生积极主动参与到学习活动中去。