小学奥数题及答案余数问题

合集下载

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。

2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。

这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。

3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。

4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。

5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。

6. 一个合数至少有()个因数。

A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。

所以一个合数至少有3 个因数。

7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。

8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。

小学奥数同余定理单选题100道及答案

小学奥数同余定理单选题100道及答案

小学奥数同余定理单选题100道及答案1. 下列算式中,余数相同的是()A. 24÷5 35÷6B. 39÷5 27÷4C. 48÷7 45÷6答案:B解析:39÷5 = 7......4,27÷4 = 6......3,余数都是4。

2. 一个数除以8 余5,除以9 余6,这个数最小是()A. 69B. 72C. 77答案:C解析:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数是72 - 3 = 69。

3. 11÷4 = 2......3,如果被除数和除数都扩大10 倍,那么余数是()A. 3B. 30C. 0.3答案:B解析:被除数和除数都扩大10 倍,商不变,余数扩大10 倍,3×10 = 30。

4. 有一个数,除以5 余数是2,除以7 余数是3,这个数最小是()A. 22B. 23C. 27答案:B解析:通过列举,可得23 除以5 余数是2,除以7 余数是3。

5. 47 除以一个数,余数是7,这个数最小是()A. 8B. 9C. 10答案:B解析:除数要大于余数,所以这个数最小是9。

6. 一个数除以6 余4,除以8 余6,这个数最小是()A. 22B. 20C. 26答案:A解析:这个数加上2 就能被 6 和8 整除,6 和8 的最小公倍数是24,所以这个数是24 - 2 = 22。

7. 35÷()= 4......3,括号里应填()A. 8B. 7C. 9答案:A解析:(35 - 3)÷4 = 8。

8. 下列算式中,余数最大的是()A. 38÷5B. 47÷8C. 59÷9答案:C解析:38÷5 = 7......3,47÷8 = 5......7,59÷9 = 6......5,5 < 7 < 9。

小学三年级数学奥数题100道完整版附答案

小学三年级数学奥数题100道完整版附答案

小学三年级数学奥数题100道完整版附答案1. 一条路长100 米,从头到尾每隔10 米栽1 棵梧桐树,共栽多少棵树?答案:11 棵。

100÷10 + 1 = 11(棵)2. 12 棵柳树排成一排,在每两棵柳树中间种3 棵桃树,共种多少棵桃树?答案:33 棵。

(12 - 1)×3 = 33(棵)3. 一根200 厘米长的木条,要锯成10 厘米长的小段,需要锯几次?答案:19 次。

200÷10 - 1 = 19(次)4. 蚂蚁爬树枝,每上一节需要10 秒钟,从第一节爬到第13 节需要多少分钟?答案:2 分钟。

(13 - 1)×10 = 120(秒),120 秒= 2 分钟5. 在花圃的周围方式菊花,每隔1 米放1 盆花。

花圃周围共20 米长。

需放多少盆菊花?答案:20 盆。

20÷1 = 20(盆)6. 从一楼走到三楼共要走36 级台阶,如果每上一层楼的台阶数都相同,那么从一楼到六楼共要走多少级台阶?答案:90 级。

36÷(3 - 1)×(6 - 1) = 90(级)7. 一个圆形池塘,它的周长是300 米,每隔5 米栽种一棵柳树,需要树苗多少株?答案:60 株。

300÷5 = 60(株)8. 有一正方形操场,每边都栽种17 棵树,四个角各种1 棵,共种树多少棵?答案:64 棵。

(17 - 1)×4 = 64(棵)9. 有一条2000 米的公路,在路两边每相隔50 米埋设一根路灯杆,从头到尾需要埋设路灯杆多少根?答案:82 根。

(2000÷50 + 1)×2 = 82(根)10. 某大学从校门口的门柱到教学楼墙根,有一条1000 米的甬路,每边相隔8 米栽一棵白杨,可以栽白杨多少棵?答案:248 棵。

(1000÷8 - 1)×2 = 248(棵)11. 小明要到高层建筑的11 层,他走到5 层用了100 秒,照此速度计算,他还需走多少秒?答案:150 秒。

小学六年级奥数题及答案-余数问题

小学六年级奥数题及答案-余数问题

小学六年级奥数题及答案:余数问题
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
以下是小编为大家整理的【小学六年级奥数题及答案:余数问题】,供大家参考!
把1至_这_个自然数依次写下来得到一个多位数_3456789....._,这个多位数除以9余数是多少?
答案与解析:
首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

解题:首先,任意连续9个自然数之和能被9整除,也就是说,一直写到_能被9整除。

所以答案为1
小学六年级奥数题及答案:余数问题.到电脑,方便收藏和打印:。

小学五年级数学奥数题100道附完整答案

小学五年级数学奥数题100道附完整答案

小学五年级数学奥数题100道附完整答案题目1:一个数除以4 余3,除以5 余4,除以6 余5,这个数最小是多少?答案:这个数加上1 就能被4、5、6 整除,4、5、6 的最小公倍数是60,所以这个数最小是59。

题目2:有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米。

现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?答案:每小段的长度是120、180、300 的最大公因数,即60 厘米。

一共可以截成:(120 + 180 + 300) ÷60 = 10 段。

题目3:一间教室长8 米,宽6 米,高4 米。

要粉刷教室的天花板和四周墙壁,除去门窗和黑板面积25.4 平方米,粉刷的面积是多少平方米?答案:天花板面积:8×6 = 48 平方米,四周墙壁面积:2×(8×4 + 6×4) = 112 平方米,总面积:48 + 112 = 160 平方米,粉刷面积:160 - 25.4 = 134.6 平方米。

题目4:一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,缸内水深12 厘米。

把一块石头浸入水中后,水面升到16 厘米,求石块的体积。

答案:升高的水的体积就是石块的体积,40×25×(16 - 12) = 4000 立方厘米。

题目5:甲、乙两数的最大公因数是12,最小公倍数是180,甲数是36,乙数是多少?答案:180×12÷36 = 60,乙数是60。

题目6:有一筐苹果,无论是平均分给8 个人,还是平均分给18 个人,结果都剩下3 个,这筐苹果至少有多少个?答案:8 和18 的最小公倍数是72,72 + 3 = 75 个,这筐苹果至少有75 个。

题目7:一个长方体的棱长总和是80 厘米,长10 厘米,宽7 厘米,高是多少厘米?答案:高:80÷4 - 10 - 7 = 3 厘米。

五年级奥数余数问题

五年级奥数余数问题

五年级奥数余数问题一、题目。

1. 一个数除以3余2,除以5余3,除以7余2,求这个数最小是多少?解析:我们先列出除以3余2的数:2、5、8、11、14、17、20、23、26…再列出除以5余3的数:3、8、13、18、23、28…然后列出除以7余2的数:2、9、16、23、30…可以发现23同时满足这三个条件,所以这个数最小是23。

2. 有一个数,除以4余1,除以5余2,除以6余3,这个数最小是多少?解析:这个数加上3就能被4、5、6整除。

4、5、6的最小公倍数是4 = 2×2,5 = 5,6=2×3,最小公倍数LCM = 2×2×3×5 = 60。

所以这个数最小是60 3=57。

3. 一个数除以5余4,除以8余3,求这个数最小是多少?解析:设这个数为x。

根据除以5余4,可设x = 5a+4(a为整数)。

又因为除以8余3,所以5a + 4=8b+3(b为整数),即5a=8b 1。

通过试值法,当b = 2时,a = 3。

此时x=5×3 + 4=19,19除以8余3,所以这个数最小是19。

4. 一个数除以9余7,除以11余9,这个数最小是多少?解析:这个数加上2就能被9和11整除。

9和11互质,它们的最小公倍数是9×11 = 99。

所以这个数最小是99 2 = 97。

5. 某数除以7余1,除以8余2,除以9余3,求这个数最小是多少?解析:这个数加上6就能被7、8、9整除。

7、8、9的最小公倍数为7×8×9=504。

所以这个数最小是504 6 = 498。

6. 一个数除以3余1,除以5余2,除以7余3,这个数最小是多少?解析:中国剩余定理:先求5×7 = 35,35除以3余2,2×2 = 7,7除以3余1。

再求3×7=21,21除以5余1,1×2 = 2,2除以5余2。

然后求3×5 = 15,15除以7余1,1×3=3,3除以7余3。

小学奥数教程:带余除法(一)全国通用(含答案)

小学奥数教程:带余除法(一)全国通用(含答案)
【答案】11
【巩固】写出全部除109后余数为4的两位数.
【考点】除法公式的应用【难度】2星【题型】解答
【关键词】美国长岛,小学数学竞赛,第五届
2【解析】 .因此,这样的两位数是:15;35;21.
【答案】两位数是:15;35;21
【例 9】甲、乙两数的和是 ,甲数除以乙数商 余 ,求甲、乙两数.
【考点】除法公式的应用【难度】2星【题型】解答
【答案】
【例 20】用1、9、8、8这四个数字能排成几个被11除余8的四位数?
【考点】除法公式的应用【难度】5星【题型】填空
【关键词】华杯赛,初赛,第14题
【解析】用1、9、8、8可排成12个四位数,即1988,1898,1889,9188,9818,9881,8198,8189,8918,8981,8819,8891
除法公式的应用
【例 1】某数被13除,商是9,余数是8,则某数等于。
【考点】除法公式的应用【难度】1星【题型】填空
【关键词】希望杯,四年级,复赛,第2题,5分
【解析】125
【答案】
【例 2】一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
【考点】除法公式的应用【难度】1星【题型】填空
(2)当 时:我们称a不可以被b整除,q称为a除以b的商或不完全商
一个完美的带余除法讲解模型:如图
这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。
【答案】
【例 6】一个两位奇数除1477,余数是49,那么,这个两位奇数是多少?

小学奥数题库《数论》余数问题带余除法1星题(含解析)全国通用版

小学奥数题库《数论》余数问题带余除法1星题(含解析)全国通用版

数论-余数问题-带余除法-1星题课程目标知识提要带余除法•定义一般的,如果a是整数,b是整数(b≠0),若有a÷b=q⋯⋯r,也就是说a=b×q+r,0≦r<b,我们称上面的除法算式为一个带余除法算式。

(1)当r=0时,我们称a可以被b整除,q称为a除以b的商或完全商;(2)当r≠0时,我们称a不可以被b整除,q称为a除以b的商或不完全商。

精选例题带余除法1. 有一个除法算式,被除数和除数的和是136,商是7,则除数是.【答案】17【分析】(1)被除数÷除数=7,因此我们能得到被除数是除数得7倍.(2)如果设除数是1份,那么被除数就是7份,它们的和是136.所以每份量为:136÷8=17.即除数是17.2. 在一个除法算式中,被除数是12,除数小于12,则可能出现的不同的余数之和是.【答案】15【分析】除数小于12且有不同余数,除数可能是11、10、9、8、7.余数分别是1、2、3、4、5.余数之和是1+2+3+4+5=15.3. 已知2008被一些自然数去除,得到的余数都是10.那么这些自然数共有个.【答案】11个【分析】2008−10=1998一定能被这些数整除,且这些数一定大于10,1998=2×3×3×3×37.1998的因数一共有:(1+1)×(3+1)×(1+1)=16个.其中小于10的有:1,2,3,6,9那么大于10的因数有16−5=11个.即这些自然数共有11个.4. 买一支水彩笔需要1元7角,用15元钱最多可以买这样的水彩笔支.【答案】8【分析】1元7角相当17角,15元相当于150角.可列出如下算式:150÷17=8⋯14.故最多可以买这样的水彩笔8支.5. 两数相除,商4余8,被除数、除数两数之和等于73,则被除数是.【答案】60【分析】被除数=4×除数+8,被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为(73−8)÷(4+1)=13,所以,被除数为13×4+8=60.6. 有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是.【答案】1968【分析】设除数为a,被除数为17a+13,即可得到(17a+13)+a+17+13=2113,那么除数=115,被除数=115×17+13=1968.7. 在一个除法算式中,如果商是16,余数是8,那么被除数最小是.【答案】152【分析】根据余数小于除数,得到除数最小为9,那么被除数的最小值为16×9+8=152.8. 在一个除法算式中,如果商是16,余数是8,那么被除数与除数的和最小是.【答案】161【分析】由上题152+9=161.9. (1)34÷4=8⋯⋯2,则[34÷4]=,{34÷4}=;(2)已知a÷125=b⋯⋯10,[a÷125]=6,求{a÷125} = ;(3)已知a÷20=3⋯⋯b,{a÷20}=0.45,求[a÷20] = ,a = .【答案】(1)8,0.5;(2)0.08;(3)3,69【分析】(1)34÷4的整数部分就是商,因此为8,{34÷4}相当于余数除以4,因此为0.5.(2)如果a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b方法1:b=6,a=6×125+10=760,{760÷125}=0.08;方法2:b=6,{a÷125}=10÷125=0.08.(3)如果a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b,所以[a÷20]=3,b=0.45×20=9,a=3×20+9=69.10. 用一个自然数去除另一个自然数,商为5.被除数、除数的和是36,求这两个自然数各是多少?【答案】被除数为30,除数为6.【分析】被除数÷除数=5,所以根据和倍问题可知,除数为36÷(5+1)=6,所以被除数为5×6=30.11. 若a÷b=7⋯⋯9,则a的最小值是多少?【答案】79【分析】根据余数小于除数,得到除数最小为10,那么a的最小值为7×10+9=79.12. (1)25÷6=4⋯⋯1;34÷6=5⋯⋯4,那么(25+34)÷6=( )⋯⋯( ).(2)45÷7=6⋯⋯3;26÷7=3⋯⋯5,那么(45+26)÷7=( )⋯⋯( ).(3)a÷8⋯⋯5;b÷8⋯⋯6,那么(a+b)÷8⋯⋯( ).(4)a÷8⋯⋯5;b÷8⋯⋯6;c÷8⋯⋯7,那么(a+b+c)÷8⋯⋯( ).【答案】(1)(25+34)÷6=(9)⋯⋯(5);(2)(45+26)÷7=(10)⋯⋯(1).(3)(a+b)÷8⋯⋯(3).(4)(a+b+c)÷8⋯⋯(2).【分析】(1)(25+34)÷6=9⋯⋯5;(2)(45+26)÷7=10⋯⋯1.(3)所以余数的和为5+6=11,11÷8=1⋯⋯3,余数为3.(4)余数的和为5+6+7=18,18÷8=2⋯⋯2,余数为2.13. 请在下列括号中填上适当的数.(1)a÷8⋯⋯6;b÷8⋯⋯7,那么(a+b)÷8⋯⋯( ).(2)a÷10⋯⋯5;b÷10⋯⋯6;c÷10⋯⋯7,那么(2a+b+c)÷10⋯⋯( ).【答案】(1)5;(2)3【分析】(1)余数的和为6+7=13,13÷8=1⋯⋯5,余数为5.(2)2a+b+c=a+a+b+c,所以余数的和为5+5+6+7=23,23÷10=2⋯⋯3,余数为3.14. 1013除以一个两位数,余数是12.求出符合条件的所有的两位数.【答案】13,77,91【分析】1013−12=1001,1001=7×11×13,那么符合条件的所有的两位数有11,13,77,91,因为“余数小于除数”,所以舍去11,答案只有13,77,91.15. 1013除以一个两位数,余数是12.求出所有符合条件的两位数.【答案】13,77,91【分析】1013−12=1001,1001=7×11×13,那么符合条件的所有的两位数有11,13,77,91,因为“余数小于除数”,所以舍去11,答案只有13,77,91.16. 甲、乙两数的和是16,甲数除以乙数商是2余1,求甲数和乙数各是多少?【答案】乙=5,甲=11【分析】设乙数为a,即甲为2a+1,可得到(2a+1)+a=16,那么乙=5,甲=11.17. 2025除以一个两位数,余数是75,这个两位数是多少?【答案】78【分析】这个两位数是2025−75=1950的约数,其中比75大的只有78.18. 一个数除以另一个数,商是3,余数是3.如果除数和被除数都扩大10倍,那么被除数、除数、商、余数的和是263,求这2个自然数各是多少?【答案】5、18【分析】设除数为a,被除数为3a+3,即可得到10(3a+3)+10a+3+30=263,那么除数=5,被除数=5×3+3=18.19. 甲、乙两数的差是113,甲数除以乙数商7余5,则甲数和乙数各是多少?【答案】乙=18,甲=131【分析】设乙数为a,即甲为7a+5,可得到(7a+5)−a=113,那么乙=18,甲= 131.20. 两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【答案】324【分析】设被除数和除数分别为x,y,可以得到\[ \begin{cases} x = 4y + 8\hfill \\ x + y + 4 + 8= 415 \hfill \\ \end{cases} \]解方程组得\[ \left\{ \begin{gathered} x = 324 \hfill\\ y = 79 \hfill\\ \end{gathered} \right. \]即被除数为324.21. 78除以一个数得到的商是8,并且除数与余数的差是3,求除数和余数.【答案】除数为9,余数为6.【分析】78÷除数=8⋯⋯(余数−3),81÷除数=9⋯⋯0被除数加上除数与余数的差3的和刚好是除数的9倍,则除数为(78+3)÷9=9,余数为6.22. 用某自然数a去除1992,得到商是46,余数是r,求a和r.【答案】a=43,r=14【分析】由1992是a的46倍还多r,得到1992÷46=43......14,得1992=46×43+ 14,所以a=43,r=14.23. 甲、乙两个数,甲数除以乙数商2余17,乙数的10倍除以甲数商3余45.求甲、乙二数.【答案】乙=24,甲=65【分析】设乙数为a,即甲为2a+17,可得到10a÷(2a+17)=3⋯⋯45,整理为10a= 3(2a+17)+45,那么乙=24,甲=65.24. 一个三位数除以43,商是a余数是b,求a+b的最大值.【答案】64【分析】试除法:999÷43=23⋯⋯10;999−10−1=988;988÷43=22⋯⋯42.余数最大为42,所以a+b的最大值为42+22=64.25. (1)82÷6=13⋯⋯4;50÷6=8⋯⋯2,那么(82−50)÷6=( )⋯⋯( ).(2)74÷6=12⋯⋯2;22÷6=3⋯⋯4,那么(74−22)÷6=( )⋯⋯( ).(3)a÷6余5;b÷6余1,那么(a−b)÷6余几呢?(4)a÷6余3;b÷6余5,那么(a−b)÷6余几呢?【答案】(1)(82−50)÷6=(5)⋯⋯(2).(2)(74−22)÷6=(8)⋯⋯(4).(3)余4.(4)余4.【分析】(1)(82−50)÷6=5⋯⋯2.(2)(74−22)÷6=8⋯⋯4.(3)余数的差是4,所以余数是4.(4)余数不够减时借1当6用来减,3+6=9,9−5=4,所以余数是4.26. 用一个自然数去除另一个自然数,商为8,余数是3.被除数、除数的和是48,求这两个自然数各是多少?【答案】被除数为43,除数为5.【分析】因为被除数减去3后使除数的8倍,所以根据和倍问题可知,除数为(48−3)÷(8+1)=5,所以被除数为5×8+3=43.27. 50除以一个一位数,余数是2.求出符合条件的一位数.【答案】3,4,6,8【分析】50÷除数=商⋯⋯2,50−2=48,48=除数×商,48=1×48=2×24=3×16=4×12=6×8,因为“余数小于除数且除数是一位数“那么符合条件的所有的数有3,4,6,8.28. 一个两位数除310,余数是37,求这样的两位数.【答案】39;91【分析】本题为余数问题基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转化为整除问题.方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数.本题中310−37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要满足比37大,符合条件的两位数有39,91.29. 一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【答案】83【分析】因为一个两位数除以13的商是6,所以这个两位数一定大于78,并且小于13×(6+1)=91;又因为这个两位数除以11余6,而78除以11余1,这个两位数为78+5=83.30. 43除以一个数得到的商是8,并且除数与余数的差是2,求除数和余数.【答案】除数为5,余数为3.【分析】43=8×除数+余数,被除数加上除数与余数的差2的和刚好是除数的9倍,则除数为(43+2)÷(8+1)=5,余数为3.31. 用一个自然数去除另一个自然数,商为7.被除数、除数的和是48,求这两个自然数各是多少?【答案】除数为6,被除数为42.【分析】被除数÷除数=7,所以根据和倍问题可知,除数为48÷(7+1)=6,所以被除数为6×7=42.32. 计算:(1)已知a÷25=b⋯⋯5,[a÷20]=4,求a=;(2)已知a÷10=7⋯⋯b,{a÷10}=0.5,求[a÷10]=,a=.【答案】(1)105;(2)7,75【分析】(1)b =4,a=4×25+5=105(2)a÷b=q⋯⋯r,[a÷b]=q,{a÷b}=r÷b,所以[a÷10]=7,b=0.5×10=5,a=7×10+5=75.33. 46除以一个一位数,余数是1.求出符合条件的一位数.【答案】3,5,9【分析】46÷除数=商⋯⋯1,46−1=45,45÷除数=商⋯⋯0,45=除数×商,45=3×15=5×9,因为“余数小于除数且除数是一位数”那么符合条件的所有的一位数有3,5,9.34. 博士要给小朋友们分糖,一共128块,如果每人分5块,最多可以分给几个小朋友?【答案】25【分析】128÷5=25⋯⋯3,最多分给25个小朋友,还剩3块.35. 128除以一个数得到的商是9,并且除数与余数的差是2,求除数和余数.【答案】除数为13,余数为11.【分析】128÷除数=9⋯⋯(余数−2),130÷除数=10⋯⋯0被除数加上除数与余数的差2的和刚好是除数的10倍,则除数为(128+2)÷10=13,余数为11.36. 有一个整数,39,51,147被它除所得的余数都是3,求这个数.【答案】4;6;12【分析】方法一:39−3=36,147−3=144,(36,144)=12,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12.方法二:由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.51−39=12,147−39=108,(12,108)=12,所以这个数是4,6,12.37. 一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是多少?【答案】46【分析】设除数为b,商和余数都是c,这个算式就可以表示为:47÷b=c⋯⋯c,即b×c+c=47;c×(b+1)=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.38. 已知2012被一些正整数去除,得到的余数为10,则这样的正整数共有多少个?【答案】13个【分析】2012−10=2002一定能被这些数整除,2002=2×7×11×13.因为2002中一共有(1+1)×(1+1)×(1+1)×(1+1)=16个,排除小于10的因数1、2、7,满足条件的正整数共有16−3=13个.39. 188+288+388+…+2088除以9、11的余数各是多少?【答案】8;11.【分析】根据等差数列求和列式:188+288+388+…+2088=22760,所以22760÷9⋯⋯8;22760÷11⋯1.40. 著名的斐波那契数列是这样的:1,1,2,3,5,8,13,21,⋯,这串数列当中第2008个数除以3所得的余数为多少?【答案】0【分析】斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将斐波那契数列转换为被3除所得余数的数列:1,1,2,0,2,2,1,0,1,1,2,0,⋯,第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以斐波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数为0.。

小学奥数数论问题余数问题练习题【五篇】

小学奥数数论问题余数问题练习题【五篇】

小学奥数数论问题余数问题练习题【五篇】分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是因为所得的余数相同,根据性质2,我们能够得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.2.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.3.除以99,余数是______.分析:所求余数与19×100,即与1900除以99所得的余数相同,所以所求余数是19.4.求下列各式的余数:(1)2461×135×6047÷11(2)19992000÷7分析:(1)5;(2)1999÷7的余数是4,19992000 与42000除以7 的余数相同.然后再找规律,发现4 的各次方除以7的余数的排列规律是4,2,1,4,2,1......这么3个一循环,所以由2000÷3 余2 能够得到42000除以7 的余数是2,故19992000÷7的余数是2 .【第二篇】(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数为多少,我们能够根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313—7=306恰为这个数的倍数,我们只需求238和306的公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .【第三篇】有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是因为所得的余数相同,根据性质2,我们能够得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.【第四篇】1.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.2.除以99的余数是______.分析:所求余数与19×100,即与1900除以99所得的余数相同,所以所求余数是19.【第五篇】。

小学奥数 余数性质(一) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  余数性质(一) 精选练习例题 含答案解析(附知识点拨及考点)

1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理 a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2. 当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7知识点拨教学目标5-5-3.余数性质(三)178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

小学四年级奥数题100道及答案(完整版)

小学四年级奥数题100道及答案(完整版)

小学四年级奥数题100道及答案(完整版)1. 一个数除以25,商是18,余数是7,这个数是()A. 457B. 467C. 477D. 487答案:A解析:被除数= 商×除数+ 余数,即18×25 + 7 = 4572. 小明在计算除法时,把除数65 写成了56,结果得到商是13,余数是52,正确的商应该是()A. 12B. 10C. 11D. 9答案:A解析:先求出被除数:56×13 + 52 = 780,780÷65 = 123. 用简便方法计算25×24,正确的是()A. 25×20×4B. 25×20 + 4C. 25×4×6D. 20×4 + 5×4答案:C解析:25×24 = 25×4×64. 两个数相乘,一个因数扩大10 倍,另一个因数缩小10 倍,积()A. 扩大10 倍B. 缩小10 倍C. 不变D. 无法确定答案:C解析:一个因数扩大10 倍,另一个因数缩小10 倍,积不变。

5. 25×(8 + 4)=()A. 25×8×25×4B. 25×8 + 25×4C. 25×8 + 4D. 25×4 + 8答案:B解析:根据乘法分配律,25×(8 + 4)= 25×8 + 25×46. 下列算式中,运用了乘法结合律的是()A. 48 + 62 + 38 = 48 + (62 + 38)B. 34×125×8 = 34×(125×8)C. 117×99 + 117 = 117×(99 + 1)D. 25×24 = 25×4×6答案:B解析:乘法结合律是(a×b)×c = a×(b×c),B 选项34×125×8 = 34×(125×8)运用了乘法结合律。

小学奥数题库《数论》余数问题余数的判定5星题(含解析)全国通用版

小学奥数题库《数论》余数问题余数的判定5星题(含解析)全国通用版

数论-余数问题-余数的判定-5星题课程目标知识提要余数的判定•概念当一个数不能被另一个数整除时,虽然可以用长除法求得余数,但当被除数位数较多时,我们可以找到一个较简单的数,通过这个较简单的数除以除数得到的余数来得原来的数的余数的方法叫做余数的判定。

•判定方法1、末位判定法整数N被2或5除的余数等于这个数的个位数被2或5除的余数;整数N被4或25除的余数等于这个数的末两位数被4或25除的余数;整数N被8或125除的余数等于这个数的末三位数被8或125除的余数;2、数字求和法整数N被3除的余数等于这个数的各位数字之和被3除的余数;;整数N被9除的余数等于这个数的各位数字之和被9除的余数;3、奇偶位求差法整数N被11除的余数等于这个数的奇数位上的数字之和与偶数位上的数字之和的差被11除的余数(如果不够减,适当加11的倍数再减);4、截断作和整数N被99除的余数等于这一个数从个位开始每两位一截,得到的所有两位数(最前面的可以是一位数)之和被99除的余数;5、截断作差整数N被7、11、13除的余数等于这一个整数,从个位开始每三位一截,奇数段之和与偶数段之和的差被7、11或13整除的余数(如果不够减,适当加7、11、13的倍数再减)精选例题余数的判定1. 11+22+33+44+⋯+20052005除以10所得的余数为多少?【答案】3【分析】求结果除以10的余数即求其个位数字.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不同组中对应的个位数字应该是一样的.首先计算11+22+33+44+⋯+2020的个位数字,为1+4+7+6+5+6+3+6+9+0+1+6+3+6+5+6+7+4+9+0=94的个位数字,为4,由于2005个加数共可分成100组另5个数,100组的个位数字和是4×100=400的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005,它们和的个位数字是1+4+7+6+5=23的个位数3,所以原式的个位数字是3,即除以10的余数是3.2. ab21是一个四位数,由四个阿拉伯数字a,b,1,2组成的其他23个四位数的和等于90669,求a和b的值.【答案】a=9,b=3【分析】所有24个四位数的和等于6666(a+b+3),因此,除ab21外,其余23个四位数的和为666(a+b+3)−1000a−10b−21=5666a+6566b+19977.所以5666a+6566b=70692,即2833a+3283b=35346. ①因为3283a+3283b⩾35346,即a+b⩾353463283=1025163283,即a+b⩾11.同理得a+b⩽12.所以11⩽a+b⩽12.因为2833≡1(mod3) 3283≡1(mod3) 35346≡0(mod3)即a+b≡0(mod3).所以a+b=12. ②解由①和②联立的方程组得a=9,b=3.3. 试求不大于100,且使3n+7n+4能被11整除的所有自然数n的和.【答案】1480【分析】通过逐次计算,可以求出3n被11除的余数,依次为:31为3,32为9,33为5,34为4,35为1,⋯,因而3n被11除的余数5个构成一个周期:3,9,5,4,1,3,9,5,4,1,⋯;类似地,可以求出7n被11除的余数10个构成一个周期:7,5,2,3,10,4,6,9,8,1,⋯;于是3n+7n+4被11除的余数也是10个构成一个周期:3,7,0,0,4,0,8,7,5,6,⋯;这就表明,每一个周期中,只有第3、4、6个这三个数满足题意,即n=3,4,6,13,14,16,⋯,93,94,96时3n+7n+4能被11整除,所以,所有满足条件的自然数n的和为:3+4+6+13+14+16+⋯+93+94+96=13+43+⋯+283=1480.4. 在等差数列1,8,15,22,29,36,43,⋯中,如果前n个数乘积的末尾0的个数比前n+1个数乘积的末尾0的个数少3个,那么n最小是多少?【答案】107【分析】末尾0是由因子2和因子5的乘积得到的.数列中因子2的个数足够多,因此第n+1个数应为53的倍数,并且除以7余1.满足条件的最小数为750.而(750−1)÷7+1=108,因此n最小是107.。

(完整版)小学奥数数论问题余数问题练习题.doc

(完整版)小学奥数数论问题余数问题练习题.doc

小学奥数数论问题余数问题练习题【五篇】分析:这个题没有告诉我们 ,这三个数除以这个数的余数分别是多少 ,但是因为所得的余数相同 ,根据性质 2,我们能够得到:这个数一定能整除这三个数中的任意两数的差 ,也就是说它是任意两数差的公约数 .101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有 1,2,7,14,所以这个数可能为 2,7,14.2.已知三个数 127,99 和一个小于 30 的两位数 a 除以一个一位数 b 的余数都是 3,求 a 和 b 的值 .分析: 127-3=124,99-3=96,则 b 是 124 和 96 的公约数 .而(124,96)=4,所以 b=4. 那么 a 的可能取值是 11,15,19,23,27.3.除以 99,余数是 ______.分析:所求余数与 19×100,即与 1900 除以 99 所得的余数相同 ,所以所求余数是 19.4.求下列各式的余数:(1)2461 × 135× 6047 ÷ 11(2)19992000 ÷ 7分析: (1)5;(2)1999÷7的余数是4,19992000与42000除以7的余数相同.然后再找规律 ,发现 4 的各次方除以 7 的余数的排列规律是4,2,1,4,2,1......这么 3 个一循环 ,所以由 2000÷3 余 2 能够得到 42000 除以 7 的余数是 2,故 19992000÷7的余数是 2.【第二篇】(小学数学奥林匹克初赛 )有苹果 ,桔子各一筐 ,苹果有 240 个,桔子有 313 个,把这两筐水果分给一些小朋友 ,已知苹果等分到最后余 2 个不够分 ,桔子分到最后还余 7 个桔子不够再分 ,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说 ,已知一个数除 240 余 2,除 313 余7,求这个数为多少,我们能够根据带余除法的性质把它转化成整除的情况,从而使问题简化 ,因为 240 被这个数除余 2,意味着 240-2=238恰被这个数整除 ,而 313被这个数除余 7,意味着这 313—7=306 恰为这个数的倍数 ,我们只需求 238 和 306 的公约数便可求出小朋友最多有多少个了 .240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .【第三篇】有一个大于 1 的整数 ,除 45,59,101 所得的余数相同 ,求这个数 .分析:这个题没有告诉我们 ,这三个数除以这个数的余数分别是多少 ,但是因为所得的余数相同 , 根据性质 2,我们能够得到:这个数一定能整除这三个数中的任意两数的差 ,也就是说它是任意两数差的公约数 .101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为 2,7,14.【第四篇】1.已知三个数 127,99 和一个小于 30 的两位数 a 除以一个一位数 b 的余数都是 3,求 a 和 b 的值 .分析: 127-3=124,99-3=96,则 b 是 124 和 96 的公约数 .而(124,96)=4,所以 b=4. 那么 a 的可能取值是 11,15,19,23,27.2.除以 99 的余数是 ______.分析:所求余数与 19×100,即与 1900 除以 99 所得的余数相同 ,所以所求余数是 19.【第五篇】199419941994(1994个 1994)除以 15 的余数是 ______.分析:法 1:从简单情况入手找规律,发现 1994÷15余14,19941994 ÷ 15余 4,199419941994 ÷余15 9,1994199419941994 ÷ 15余 14,......,发现余数 3 个一循环,1994 ÷3=664...2,19941994 1994(1994个1994)除以 15 的余数是 4;法 2:我们利用最后一个例题的结论能够发现199419941994能被 3 整除 ,那么19941994199400 0能被 15 整除 ,1994 ÷3=664...2,19941994 1994(1994个1994)除以 15 的余数是4.。

带余数的除法奥数题道 带余数的除法奥数题及答案

带余数的除法奥数题道 带余数的除法奥数题及答案

带余数的除法奥数题道带余数的除法奥数题及答案题目1小明手上有45个苹果,要均分给他的3个朋友。

请问小明每人能分到几个苹果,还有剩余几个苹果?解答将45除以3得到商15,余数为0。

小明每人能分到15个苹果,没有剩余。

题目2小红收到了30本书,想要将它们平均分成4堆。

请问每堆书有几本,还有剩余几本书?解答将30除以4得到商7,余数2。

小红每堆书有7本,还剩下2本。

题目3小华手上有65只纸鹤,他想把它们放在3本相同大小的笔记本中。

请问每本笔记本里有几只纸鹤,还有剩余几只?解答将65除以3得到商21,余数2。

每本笔记本里有21只纸鹤,还剩下2只。

题目4有100个学生参加足球比赛,要将他们平均分到10个队中。

请问每个队有几个学生,还有剩余几个学生?解答将100除以10得到商10,余数0。

每个队有10个学生,没有剩余。

题目5小李有17本漫画书,要将它们分成5堆。

请问每堆有几本书,还有剩余几本?解答将17除以5得到商3,余数2。

每堆有3本书,还剩下2本。

题目6小明买了23根铅笔,要均分给他的4个朋友。

请问每人能分到几根铅笔,还有剩余几根?解答将23除以4得到商5,余数3。

每人能分到5根铅笔,还剩下3根。

题目7小华有98个糖果,他想将它们平均分给他的7个同学。

请问每个同学能分到几个糖果,还有剩余几个糖果?解答将98除以7得到商14,余数0。

每个同学能分到14个糖果,没有剩余。

题目8小红有53块巧克力,她想将它们分成4堆。

请问每堆有几块巧克力,还有剩余几块?解答将53除以4得到商13,余数1。

每堆有13块巧克力,还剩下1块。

题目9小李有63颗石头,他想将它们放在4个箱子中。

请问每个箱子里有几颗石头,还有剩余几颗?解答将63除以4得到商15,余数3。

每个箱子里有15颗石头,还剩下3颗。

题目10有30个学生参加篮球比赛,要将他们平均分到6个队中。

请问每个队有几个学生,还有剩余几个学生?解答将30除以6得到商5,余数0。

小学奥数题库《数论》余数问题中国剩余定理5星题(含解析)全国通用版

小学奥数题库《数论》余数问题中国剩余定理5星题(含解析)全国通用版

数论-余数问题-中国剩余定理-5星题课程目标知识提要中国剩余定理•概述中国剩余定理即我们常说的“物不知数”,是利用同余式组来求解的一类问题。

A、一个数分别除以两个数余数相同的时候,将原数减去这个余数之后可以整除那两个数B、上述情况下的余数虽有不同,但与各自对应的除数的差相同,将原数加上这个差之后便可以整除C、其他情况下,凑出相同余数之后,运用第一种情况的方法.精选例题中国剩余定理1. 一个自然数除以7、8、9后分别余1、2、3,而所得的三个商的和是570,这个数是多少?【答案】1506.【分析】设这个数为x.[7,8,9]=504,504−6=498,则x=498+504n.498+504n−17+498+504n−28+498+504n−39=570 71+72n+62+63n+55+56n=570191n=382n=2x =498+504×2=1506.2. 一个不超过 200 的自然数,如果用四进制表示,那么它的数字之和是 5;如果用六进制表示,那么它的数字之和是 8;如果用八进制表示,那么它的数字之和是 9.如果用十进制表示,那么这个数是多少?【答案】 23【分析】 根据结论:“在 n 进制中,一个自然数与它的数字和模 (n −1) 同余”,所以这个数 {÷3⋯2,÷5⋯3,÷7⋯2, 利用物不知数可以求出符合的答案为 23、128、233、…,符合“不超过 200”的只有 23 和 128,经检验,23=(113)4=(35)6=(27)8,128=(2000)4=(332)6=(200)8,只有 23 符合.3. 有一类三位数,它们除以 2、3、4、5、6 所得到的余数互不相同(可以含 0).这样的三位数中最小的三个是多少?【答案】 118、119、155【分析】 设这个三位数为 N ,先写出所有的情况再分析:{ N ÷2⋯0、1,N ÷3⋯0、1、2,N ÷4⋯0、1、2、3,N ÷5⋯0、1、2、3、4,N ÷6⋯0、1、2、3、4、5.首先,N 除以 4 不可能余 0 或余 1,否则和 N 除以 2 的余数相同;N 除以 6 不可能余 0 或余 1 或余 2,否则和 N 除以 3 的余数相同.所以情况变为{ N ÷2⋯0、1,N ÷3⋯0、1、2,N ÷4⋯2、3,N ÷5⋯0、1、2、3、4,N ÷6⋯3、4、5.若这个数是偶数,很明显 {N ÷2⋯0,N ÷4⋯2,N ÷6⋯4, 所以 { N ÷2⋯0,N ÷3⋯1,N ÷4⋯2,N ÷5⋯3,N ÷6⋯4, 利用物不知数解出通解为 58+60k(k =0,1,2⋯),最小符合题意的解是 118;若这个数是奇数,很明显 {N ÷2⋯1,N ÷4⋯3, 那么 {N ÷2⋯1,N ÷4⋯3,N ÷6⋯5, 因为 N 除以 6 余 5,所以 N 除以 3 余 2,所以 {N ÷2⋯1,N ÷3⋯2,N ÷4⋯3,N ÷6⋯5, 此时 N 除以 5 有 2 种情况,若 { N ÷2⋯1,N ÷3⋯2,N ÷4⋯3,N ÷5⋯0,N ÷6⋯5, 利用物不知数解出通解为 35+60k(k =0,1,2⋯),最小符合题意的解是 155;若 { N ÷2⋯1,N ÷3⋯2,N ÷4⋯3,N ÷5⋯4,N ÷6⋯5, 利用物不知数解出通解为 59+60k(k =0,1,2⋯),最小符合题意的解是 119;这样的三位数中最小的三个是 118、119、155.4. 有连续的三个自然数 a 、a +1、a +2,它们恰好分别是 9、8、7 的倍数,求这三个自然数中最小的数至少是多少?【答案】 495【分析】 法一:由 a +1 是 8 的倍数,得到 a 被 8 除余 7,由 a +2 是 7 的倍数,得到 a 被 7 除余 5,现在相当于一个数 a 除以 9 余 0,除以 8 余 7,除以 7 余 5.运用中国剩余定理求 a (用逐步满足的方法也可以)7 和 8 的公倍数中除以 9 余 1 的最小为 280;7 和 9 的公倍数中除以 8 余 1 的最小是 441;8 和 9 的公倍数中除以 7 余 1 的最小是 288,根据中国剩余定理,280×0+441×7+288×5=4527 符合各个余数条件,但 4527 不是最小的,还需要减去 7、8、9 的公倍数,可知 4527−(7×8×9)×8=495 是满足各个余数条件的最小值,所以 a 至少是 495.法二:仔细观察,可知由于 a 、a +1、a +2 恰好分别是 9、8、7 的倍数,那么 a +9、a +1+8、a +2+7 也分别是 9、8、7 的倍数,即 a +9 是 9、8、7 的公倍数,那么 a +9 的最小值是 9×8×7=504,即 a 至少是 504−9=495.。

小学生奥数余数问题五篇

小学生奥数余数问题五篇

小学生奥数余数问题五篇1.小学生奥数余数问题余数相关知识点:1、除法的一般表达式子是被除数÷除数=商,这个商称为完全商。

2、有余数的除法表达式是被除数÷除数=商……余数(余数3、考虑不完全商的问题,即t≠0时,m=nq+t,则m-t=nq,故m-t是n的倍数,因此不能整除的问题可以转化为能整除的问题。

2.小学生奥数余数问题1、数111(2007个1),被13除余多少分析:根据整除性质知:13能整除111111,而20076后余3,所以答案为7。

2、1013除以一个两位数,余数是12。

求出符合条件的所有的两位数。

分析:3、1013-12=1001,1001=71113,那么符合条件的所有的两位数有13,77,91有的同学可能会粗心的认为11也是。

11小于12,所以不行。

大家做题时要仔细认真。

某个自然数被247除余63,被248除也余63。

那么这个自然数被26除余数是多少?解答:由余数的性质,这个数减去63得到的新数既能被247整除,也能被248整除,而相邻的两个整数互质,所以新数能被247×248整除,显然能被26整除。

于是这个数除以26的余数等于63除以26的余数,为11。

解余数问题时,掌握余数的性质很重要:若a÷b…n,则b|a-n。

若a|b,c|b,且a,c互质,则a×c|b。

3.小学生奥数余数问题1、学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同。

请问学校共有多少个班分析:所求班级数是除以118,67,33余数相同的数。

那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17。

2、有一个大于1的整数,除45,59,101所得的余数相同,求这个数。

分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数题及答案余数问题
小学奥数题及答案余数问题
1.应用题
用一根既细又直的竹竿测量游泳池的水深,把竹竿的一端插入水中(碰到池底)后,没浸湿的部分长120厘米,把竹竿掉过头来,再插入水中(也碰到池底),此时没浸湿的'部分长30厘米,问游泳池有多深?
解答:第二次浸湿的部分就是游泳池的深度,所以游泳池深为:120-30=90(厘米)
【小结】。

第一次浸湿的长度实际上也是游泳池的深度。

2.余数问题
人教版小学五年级奥数题及答案余数问题:一批图书,数量在20到30本之间,平均分给7个同学,结果剩余的图书每比个人分到的书多2本,那么这批图书有多少本?
解答:
【小结】先估算出每个人可能分到几本,再分情况依次考虑。

相关文档
最新文档