复数代数形式的加减运算及其几何意义(侨中优质课比赛课件)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则有( D ) • A.a-c=0且b-d≠0 B. a-c=0且b+d≠0 • C. a+c=0且b-d≠0 D.a+c=0且b+d≠0
探究?复数与复平面内的向量有一一的对应关系。我们讨论过
向量加法的几何意义,你能由此出发讨论复数y 加法的几何意义吗?
设 OZ1 及 OZ2 分别与复数 a + bi
课堂练习
• 2 已知 OA, AB对应复数是 3 2i,2 i, 求向
量OB 对应的复数. 解:OB=OA+AB即对应(-3+2i)+(2+i)=-1+3i
思考? 类比复数加法如何规定复数的减法?
设Z1=a+bi,Z2=c+di (a、b、c、d∈R)是任 意两个复数,那么它们的差:
(a+bi)-(c+di)=?(a-c)+(b-d)i
(2) ( 3 -2i) -(2+i) -(___-_9_i___)=1+6i 4、已知x∈R,y为纯虚数,且(2x -1)+i=y -(3 -y)i
3
则x=__-__2___ y=__4_i____
4分析:依题意设y=ai(a∈R),则原式变为:
(2x -1)+i=(a -3)i +ai2=- a+( a -3)i
由此,得 x=a - c, y=b - d 所以 x+yi=(a - c)+(b - d)i
已知两复数z1=a+bi,z2=c+di (a,b,c,d∈R) 3.复数加、减的几何意义
设OZ1, OZ2分别与复数z1=a+bi,z2=c+di对应.
y
y
Z2(c,d)
Z
Z2(c,d)
百度文库
Z1(a,b)
o
x
2x -1= -a 由复数相等得
a -3=1
3
x=- 2 y=4i
探究
2.复数减法运算的几何意义?
符合 向量
复数z2-z1
y
Z2(c,d)
向量Z1Z2
减法
的三 角形 法则.
o
Z1(a,b)
x
结论:复数的差Z2-Z 1 与连接两个向量终点并指向被 减数的向量对应.
几何意义运用
作图、如图的向量OZ 对应复数z,试作出下
显然
Z1+Z2=Z2+Z1
同理可(得Z1+Z2)(+ZZ1+3=ZZ2)1++Z(Z3=2+ZZ1+3)(Z2+Z3)
点评:实数加法运算的交换律、结合律在复数集C中 依然成立。
课堂练习:1、计算 • (1)(2+4i)+(3-4i)= 5
• (2)(-3-4i)+(2+i)+(1-5i)= -8i • (3)已知Z1=a+bi,Z2=c+di,若Z1+Z2是纯虚数,
列运算的结果对应的向量
y
z
1 z 1 2 z i 3 z (2 i)
1
1
x
o -1
几何意义运用
例3、已知复平面内一平行四边形AOBC顶点A,O,B 对应复数是 -3+2i, 0, 2+i .1、求点C对应的复 数.2、求OC表示的复数 3、AC表示的复数
解:1、复数-3+2i ,2+i,0对应
及复数 c + di对应,则 OZ1,= (a,b)
Z Z2 (c, d )
OZ2 = (c, d )
OZ = OZ1 + OZ2
= (a,b) + (c, d )
O
Z1 (a, b) x
= (a + c,b + d )
∴向量 OZ 就是与复数 (a + c) + (b + d )i 对应的向量.
复数的加法可按照向量的加法来进行,这就 是复数加法的几何意义
对于复数的加法可以推广到多个复数相加的情形。
运算律
探究? 复数的加法满足交换律,结合律吗?
证 复:数设的Z加1=a法1+满b1i足,交Z2=换a2律+b、2i,结Z合3=a律3+,b3i即(a对1,任a2,
a意3,Zb1∈1,Cb,2,Zb23∈∈RC),Z3∈C
则Z1+Z2=(aZ1+1+a2Z)+2=(bZ1+2+b2Z)i1,Z2+Z1=(a2+a1)+(b2+b1)i
1、复数的加法法则:
设Z1=a+bi,Z2=c+di (a、b、c、d∈R)是任意两 个复数,那么它们的和:
(a+bi)+(c+di)= (?a+c)+(b+d)i
即实部与实部 虚部与虚部分别相加
(1)复数的加法运算法则是一种规定。当b=0,d=0 时与实数加法法则保持一致
(2)很明显,两个复数的和仍然是一个 复数 。
两个复数相减就是把实部与实部、虚部与虚 部分别相减。
思考? 如何理解复数的减法?
复数的减法规定是加法的逆运算,即把满足 (c+di) +(x+yi)= a+bi 的复数x+yi 叫做复数a+bi减去复 数c+di的差,记作 (a+bi) - (c+di)
事实上,由复数相等的定义,有: c+x=a, d+y=b
A(3,2),B(2,1),O(0,0),如图.
y
在平行四边形 AOBC中,
OC OA OB
C A
0
OC (3,2) (2,1) (1,3)
∴ 点C对应的复数是 -1+3i
B
x 2、OC对应复数是-1+3i
3、AC=OA-OC=4-i
小结
• 复数的代数形式加减运算 • (a+bi)+(c+di)=(a+c)+(b+d)i即实部与实部相
解:∵z1=x+2i,z2=3-yi,z1+z2=5-6i
∴(3+x)+(2-y)i=5-6i
3+x=5, ∴
2-y=-6.
x=2
∴ y=8
∴z1 - z2 = (2+2i) - (3-8i) = -1+10i
课堂练习 3、计算:(1)(- 3 -4i)+(2+i) -(1 -5i)=__-_2_+_2_i_____
o
Z1(a,b)
x
向量OZ1+OZ2
z1+z2 向量OZ1-OZ2
z1-z2
学 以致用
讲解例题 例1 计算
(5- 6i)+ (- 2- i)- (3+ 4i)
解:
(5- 6i)+ (- 2- i)- (3+ 4i) = (5- 2- 3)+ (- 6- 1- 4)i = - 11i
例2:
设z1= x+2i,z2= 3-yi(x,y∈R),且z1+z2 = 5 - 6i, 求z1-z2
加减,虚部与虚部相加减 • 复数的加减法的几何意义 • 就是向量加减法的几何意义
相关文档
最新文档