高三数学一轮复习每日一练6(解析版)
高考数学一轮复习函数的奇偶性与周期性专题训练(含答案)-word
高考数学一轮复习函数的奇偶性与周期性专题训练(含答案)若T为非零常数,对于定义域内的任一x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,下面是函数的奇偶性与周期性专题训练,请考生及时练习。
一、选择题1.设f(x)为定义在R上的奇函数.当x0时,f(x)=2x+2x+b(b 为常数),则f(-1)等于().A.3 B.1 C.-1 D.-3解析由f(-0)=-f(0),即f(0)=0.则b=-1,f(x)=2x+2x-1,f(-1)=-f(1)=-3.答案 D2.已知定义在R上的奇函数,f(x)满足f(x+2)=-f(x),则f(6)的值为 ().A.-1B.0C.1D.2(构造法)构造函数f(x)=sin x,则有f(x+2)=sin=-sinx=-f(x),所以f(x)=sin x是一个满足条件的函数,所以f(6)=sin 3=0,故选B.答案 B3.定义在R上的函数f(x)满足f(x)=f(x+2),当x[3,5]时,f(x)=2-|x-4|,则下列不等式一定成立的是().A.ffB.f(sin 1)f(sin 2)解析当x[-1,1]时,x+4[3,5],由f(x)=f(x+2)=f(x+4)=2-|x+4-4|=2-|x|,显然当x[-1,0]时,f(x)为增函数;当x[0,1]时,f(x)为减函数,cos=-,sin =,又f=ff,所以ff.答案 A4.已知函数f(x)=则该函数是().A.偶函数,且单调递增B.偶函数,且单调递减C.奇函数,且单调递增D.奇函数,且单调递减解析当x0时,f(-x)=2-x-1=-f(x);当x0时,f(-x)=1-2-(-x)=1-2x=-f(x).当x=0时,f(0)=0,故f(x)为奇函数,且f(x)=1-2-x在[0,+)上为增函数,f(x)=2x-1在(-,0)上为增函数,又x0时1-2-x0,x0时2x-10,故f(x)为R上的增函数.答案 C.已知f(x)是定义在R上的周期为2的周期函数,当x[0,1)时,f(x)=4x-1,则f(-5.5)的值为()A.2B.-1C.-D.1解析 f(-5.5)=f(-5.5+6)=f(0.5)=40.5-1=1.答案 .设函数D(x)=则下列结论错误的是().A.D(x)的值域为{0,1}B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数解析显然D(x)不单调,且D(x)的值域为{0,1},因此选项A、D正确.若x是无理数,-x,x+1是无理数;若x是有理数,-x,x+1也是有理数.D(-x)=D(x),D(x+1)=D(x).则D(x)是偶函数,D(x)为周期函数,B正确,C错误.答案 C二、填空题.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.解析由题意知,函数f(x)=x2-|x+a|为偶函数,则f(1)=f(-1),1-|1+a|=1-|-1+a|,a=0.答案 0.已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)=________.解析因为y=f(x)+x2是奇函数,且x=1时,y=2,所以当x=-1时,y=-2,即f(-1)+(-1)2=-2,得f(-1)=-3,所以g(-1)=f(-1)+2=-1.答案 -1.设奇函数f(x)的定义域为[-5,5],当x[0,5]时,函数y=f(x)的图象如图所示,则使函数值y0的x的取值集合为________.解析由原函数是奇函数,所以y=f(x)在[-5,5]上的图象关于坐标原点对称,由y=f(x)在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y0的x的取值集合为(-2,0)(2,5).答案 (-2,0)(2,5) 10. 设f(x)是偶函数,且当x0时是单调函数,则满足f(2x)=f的所有x之和为________.解析 f(x)是偶函数,f(2x)=f,f(|2x|)=f,又f(x)在(0,+)上为单调函数,|2x|=,即2x=或2x=-,整理得2x2+7x-1=0或2x2+9x+1=0,设方程2x2+7x-1=0的两根为x1,x2,方程2x2+9x+1=0的两根为x3,x4.则(x1+x2)+(x3+x4)=-+=-8.-8三、解答题.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断函数f(x)的奇偶性.解 (1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y=1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-,+)上的奇函数..已知函数f(x)对任意x,yR,都有f(x+y)=f(x)+f(y),且x0时,f(x)0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x1所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.已知函数f(x)是(-,+)上的奇函数,且f(x)的图象关于x=1对称,当x[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)++f(2019)的值.(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x[1,2]时,2-x[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x[1,2].(3)f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.f(0)+f(1)+f(2)++f(2019)=f(2 012)+f(2 013)=f(0)+f(1)=1..已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当01时,f(x)=x,求使f(x)=-在[0,2 014]上的所有x的个数.(1)证明 f(x+2)=-f(x),f(x+4)=-f(x+2)=-[-f(x)]=f(x),f(x)是以4为周期的周期函数.(2)解当01时,f(x)=x,设-10,则01,f(-x)=(-x)=-x.f(x)是奇函数,f(-x)=-f(x),-f(x)=-x,即f(x)=x.故f(x)=x(-11).函数的奇偶性与周期性专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优异的成绩。
专题06 导数 6.3导数与函数的极值、最值 题型归纳讲义-2022届高三数学一轮复习(解析版)
� �
�
当 a≥0 时,f′(x)>0 恒成立,f(x)在(0,+∞)递增;
故选:C.
4.已知函数�(�) =
范围是(
)
�2
A.( − ∞, 4 ]
��
+ 2���� − ��,若 x=2 是函数 f(x)的唯一极值点,则实数 k 的取值
�2
�
B.( − ∞, 2 ]
C.
(0,2]
【解答】解:∵函数 f(x)的定义域是(0,+∞),
∴f′(x)=
��(�−2) 2�
(��−��2)(�−2)
﹣
﹣
解得 a=﹣1.
可得 f′(x)=(2x﹣1)ex 1+(x2﹣x﹣1)ex 1,
﹣
﹣
=(x2+x﹣2)ex 1,函数的极值点为:x=﹣2,x=1,
﹣
当 x<﹣2 或 x>1 时,f′(x)>0 函数是增函数,x∈(﹣2,1)时,函数是减函数,
x=1 时,函数取得极小值:f(1)=(12﹣1﹣1)e1 1=﹣1.
(1)①a≤0 时,f(x)在(0, �)单减,( �, + ∞)单增,极小值点为� = �
高中数学一轮复习讲义
②0<�< �时,(
f x)在(0,a)单增,(�, �)单减,( �, + ∞)单增,极小值点为� = �,
极大值点为 x=a
③� = �时,f(x)在(0,+∞)单增,无极值点.
④�> �时,f(x)在(0, �)单增,( �,�)单减,(a,+∞)单增,极小值点为 x=a,
3
3
3
27
2��
+2c,
3
高三数学一轮复习解析几何(解析版)
数 学H 单元 解析几何H1 直线的倾斜角与斜率、直线的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2.由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c .从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H2 两直线的位置关系与点到直线的距离 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 22.、、[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与 y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.22.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故线段AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即 4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H3 圆的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.17.[2014·湖北卷] 已知圆O :x 2+y 2=1和点A (-2,0),若定点B (b ,0)(b ≠-2)和常数λ满足:对圆O 上任意一点M ,都有|MB |=λ|MA |,则(1)b =________; (2)λ=________.17.(1)-12 (2)12[解析] 设点M (cos θ,sin θ),则由|MB |=λ|MA |得(cos θ-b )2+sin 2θ=λ2[](cos θ+2)2+sin 2θ,即-2b cos θ+b 2+1=4λ2cos θ+5λ2对任意的θ都成立,所以⎩⎪⎨⎪⎧-2b =4λ2,b 2+1=5λ2.又由|MB |=λ|MA |,得λ>0,且b ≠-2,解得⎩⎨⎧b =-12,λ=12. 18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 20.、、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0,其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x +3,得b 2x 2+43x +6-2b 2=0. 又x 1,x 2是方程的根,所以⎩⎨⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3,得|AB |=4 63|x 1-x 2|=2·48-24b 2+8b 4b 2.由点P 到直线l 的距离为32及S △P AB =12×32|AB |=2,得|AB |=4 63,即b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6,从而所求C 的方程为x 26+y 23=1.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.H4 直线与圆、圆与圆的位置关系 5.[2014·浙江卷] 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-85.B [解析] 圆的标准方程为(x +1)2+(y -1)2=2-a ,r 2=2-a ,则圆心(-1,1)到直线x +y +2=0的距离为|-1+1+2|2= 2.由22+(2)2=2-a ,得a =-4, 故选B.6.[2014·安徽卷] 过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3C.⎣⎡⎦⎤0,π6D.⎣⎡⎦⎤0,π36.D [解析] 易知直线l 的斜率存在,所以可设l :y +1=k (x +3),即kx -y +3k -1=0.因为直线l 圆x 2+y 2=1有公共点,所以圆心(0,0)到直线l 的距离|3k -1|1+k 2≤1,即k 2-3k ≤0,解得0≤k ≤3,故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.7.[2014·北京卷] 已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .47.B [解析] 由图可知,圆C 上存在点P 使∠APB =90°,即圆C 与以AB 为直径的圆有公共点,所以32+42-1≤m ≤32+42+1,即4≤m ≤6.11.,[2014·福建卷] 已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4911.C [解析] 作出不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0表示的平面区域Ω(如下图阴影部分所示,含边界),圆C :(x -a )2+(y -b )2=1的圆心坐标为(a ,b ),半径为1.由圆C 与x 轴相切,得b =1.解方程组⎩⎪⎨⎪⎧x +y -7=0,y =1,得⎩⎪⎨⎪⎧x =6,y =1,即直线x +y -7=0与直线y =1的交点坐标为(6,1),设此点为P .又点C ∈Ω,则当点C 与P 重合时,a 取得最大值, 所以,a 2+b 2的最大值为62+12=37,故选C.21.[2014·福建卷] 已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.21.解:方法一:(1)设S (x ,y )为曲线Γ上任意一点.依题意,点S 到点F (0,1)的距离与它到直线y =-1的距离相等, 所以曲线Γ是以点F (0,1)为焦点,直线y =-1为准线的抛物线, 所以曲线Γ的方程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下:由(1)知抛物线Γ的方程为y =14x 2.设P (x 0,y 0)(x 0≠0),则y 0=14x 20,由y ′=12x ,得切线l 的斜率k =y ′|x =x 0=12x 0,所以切线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =0,得A ⎝⎛⎭⎫12x 0,0. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =3,得M ⎝⎛⎭⎫12x 0+6x 0,3. 又N (0,3),所以圆心C ⎝⎛⎭⎫14x 0+3x 0,3, 半径r =12|MN |=⎪⎪⎪⎪14x 0+3x 0, |AB |=|AC |2-r 2 =⎣⎡⎦⎤12x 0-⎝⎛⎭⎫14x 0+3x 02+32-⎝⎛⎭⎫14x 0+3x 02= 6.所以点P 在曲线Γ上运动时,线段AB 的长度不变. 方法二:(1)设S (x ,y )为曲线Γ上任意一点,则|y -(-3)|-(x -0)2+(y -1)2=2.依题意,点S (x ,y )只能在直线y =-3的上方,所以y >-3,所以(x -0)2+(y -1)2=y +1, 化简得,曲线Γ的方程为x 2=4y . (2)同方法一. 6.[2014·湖南卷] 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9 D .-11 6.C [解析] 依题意可得C 1(0,0),C 2(3,4),则|C 1C 2|=33+42=5.又r 1=1,r 2=25-m ,由r 1+r 2=25-m +1=5,解得m =9.9.[2014·江苏卷] 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.9.25 55 [解析] 由题意可得,圆心为(2,-1),r =2,圆心到直线的距离d =|2-2-3|12+22=355,所以弦长为2r 2-d 2=2 4-95=2555 .18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16.43 [解析] 如图所示,根据题意知,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43,即l 1与l 2的夹角的正切值等于43.12.[2014·新课标全国卷Ⅱ] 设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A. [-1,1]B. ⎣⎡⎦⎤-12,12C. [-2,2]D. ⎣⎡⎦⎤-22,22 12.A [解析] 点M (x 0,1)在直线y =1上,而直线y =1与圆x 2+y 2=1相切.据题意可设点N (0,1),如图,则只需∠OMN ≥45°即可,此时有tan ∠OMN =|ON ||MN |≥tan 45°,得0<|MN |≤|ON |=1,即0<|x 0|≤1,当M 位于点(0,1)时,显然在圆上存在点N 满足要求,综上可知-1≤x 0≤1.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.14.[2014·山东卷] 圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.14.(x -2)2+(y -1)2=4 [解析] 因为圆心在直线x -2y =0上,所以可设圆心坐标为(2b ,b ).又圆C 与y 轴的正半轴相切,所以b >0,圆的半径是2b .由勾股定理可得b 2+(3)2=4b 2,解得b =±1.又因为b >0,所以b =1,所以圆C 的圆心坐标为(2,1),半径是2,所以圆C 的标准方程是(x -2)2+(y -1)2=4.14.[2014·重庆卷] 已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.14.0或6 [解析] ∵圆C 的标准方程为(x +1)2+(y -2)2=9,∴圆心为C (-1,2),半径为 3.∵AC ⊥BC ,∴|AB |=3 2.∵圆心到直线的距离d =|-1-2+a |2=|a -3|2,∴|AB |=2r 2-d 2=29-⎝ ⎛⎭⎪⎫|a -3|22=3 2,即(a -3)2=9,∴a =0或a =6. 9.、[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ]9.B [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直, 则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10,即|P A |+|PB |≥|AB |=10. 又|P A |+|PB |=(|P A |+|PB |)2= |P A |2+2|P A ||PB |+|PB |2≤ 2(|P A |2+|PB |2)=2 5,所以|P A |+|PB |∈[10,2 5],故选B.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H5 椭圆及其几何性质21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0), 其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以 |AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 2+4 =x 202+8x 20+4 (0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当x 20=4时等号成立,所以|AB |2≥8. 故线段AB 长度的最小值为2 2.20.、[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.20.、、[2014·湖南卷] 如图1-5所示,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝⎛⎭⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程.(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB | ?证明你的结论.20.解: (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2,从而a 1=1,c 2=1.因为点P ⎝⎛⎭⎫233,1在双曲线x 2-y 2b 21=1上,所以⎝⎛⎭⎫2332-1b 21=1,故b 21=3. 由椭圆的定义知2a 2=⎝⎛⎭⎫2332+(1-1)2+⎝⎛⎭⎫2332+(1+1)2=2 3.于是a 2=3,b 22=a 22-c 22=2.故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1.(2)不存在符合题设条件的直线.(i)若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x =2或x =- 2.当x =2时,易知A (2,3),B (2,-3),所以 |OA →+OB →|=22,|AB →|=2 3.此时,|OA →+OB →|≠|AB →|.当 x =-2时,同理可知,|OA →+OB →|≠|AB →|.(ii)若直线l 不垂直于x 轴,设l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx -m 2-3=0. 当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km3-k 2,x 1x 2=m 2+3k 2-3.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3.由⎩⎪⎨⎪⎧y =kx +m ,y 23+x 22=1得(2k 2+3)x 2+4kmx +2m 2-6=0. 因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0.化简,得2k 2=m 2-3.因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0,于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →,即|OA →+OB →|2≠|OA →-OB →|2. 故|OA →+OB →|≠|AB →|.综合(i),(ii)可知,不存在符合题设条件的直线.17.、[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-517.解: 设椭圆的焦距为2c, 则 F 1(-c, 0), F 2(c, 0).(1)因为B (0, b ), 所以BF 2=b 2+c 2=a .又BF 2=2, 故a = 2. 因为点C ⎝⎛⎭⎫43,13在椭圆上,所以169a 2+19b 2=1,解得b 2=1. 故所求椭圆的方程为x 22+y 2=1.(2)因为B (0, b ), F 2(c, 0)在直线 AB 上,所以直线 AB 的方程为 x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c2,⎩⎪⎨⎪⎧x 2=0,y 2=b ,所以点 A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c 2-a 2)a 2+c 2.又AC 垂直于x 轴, 由椭圆的对称性,可得点 C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a 2-c 2)a 2+c 2.因为直线 F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2,故e 2=15, 因此e =55. 14.[2014·江西卷] 设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过F 2作x轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D .若AD ⊥F 1B ,则椭圆C 的离心率等于________.14.33[解析] 由题意A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a ,F 1(-c ,0),则直线F 1B 的方程为y -0=-b 2a 2c(x +c ). 令x =0,得y =-b 22a,即D ⎝⎛⎭⎫0,-b 22a ,则向量DA =⎝⎛⎭⎫c ,3b 22a ,F 1B →=⎝⎛⎭⎫2c ,-b 2a .因为AD ⊥F 1B ,所以DA →·F 1B →=2c 2-3b 42a2=0,即2ac =3b 2=3(a 2-c 2),整理得(3e -1)(e +3)=0,所以e =33(e >0).故椭圆C 的离心率为33.20.、、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0,其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x +3,得b 2x 2+43x +6-2b 2=0. 又x 1,x 2是方程的根,所以⎩⎨⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3,得|AB |=4 63|x 1-x 2|=2·48-24b 2+8b 4b 2.由点P 到直线l 的距离为32及S △P AB =12×32|AB |=2,得|AB |=4 63,即b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6,从而所求C 的方程为x 26+y 23=1.9.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 9.A [解析] 根据题意,因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.20.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .20.解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b2a ,2b 2=3ac . 将b 2=a 2-c 2代入2b 2=3ac , 解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1. 代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1,解得a =7,b 2=4a =28,故a =7,b =27.21.,,[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.21.解:(1)由题意知,a 2-b 2a =32,可得a 2=4b 2.椭圆C 的方程可简化为x 2+4y 2=a 2. 将y =x 代入可得x =±5a 5. 因此2×25a 5=4105,即a =2,所以b =1,所以椭圆C 的方程为x 24+y 2=1.(2)(i)设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2),则B (-x 1,-y 1). 因为直线AB 的斜率k AB =y 1x 1,且AB ⊥AD ,所以直线AD 的斜率k =-x 1y 1.设直线AD 的方程为y =kx +m , 由题意知k ≠0,m ≠0.由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8mkx +4m 2-4=0, 所以x 1+x 2=-8mk 1+4k 2,因此y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2. 由题意知x 1≠-x 2, 所以k 1=y 1+y 2x 1+x 2=-14k =y 14x 1.所以直线BD 的方程为y +y 1=y 14x 1(x +x 1). 令y =0,得x =3x 1,即M (3x 1,0). 可得k 2=-y 12x 1.所以k 1=-12k 2,即λ=-12.因此,存在常数λ=-12使得结论成立.(ii)直线BD 的方程y +y 1=y 14x 1(x +x 1),令x =0,得y =-34y 1,即N ⎝⎛⎭⎫0,-34y 1. 由(i)知M (3x 1,0),所以△OMN 的面积S =12×3|x 1|×34|y 1|=98|x 1||y 1|. 因为|x 1||y 1|≤x 214+y 21=1,当且仅当|x 1|2=|y 1|=22时,等号成立, 此时S 取得最大值98,所以△OMN 面积的最大值为98.20.、[2014·陕西卷] 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.图1-520.解: (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心(0,0)到直线l 的距离d =2|m |5.由d <1,得|m |<52,(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =-12x +m ,x 24+y 23=1得x 2-mx +m 2-3=0,由根与系数的关系得x 1+x 2=m ,x 1x 2=m 2-3, ∴|AB |=⎣⎡⎦⎤1+⎝⎛⎭⎫-122[]m 2-4(m 2-3)=1524-m 2.由|AB ||CD |=534,得4-m 25-4m 2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33.20.、[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线x =-3上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.20.解:(1)由已知可得,c a =63,c =2,所以a = 6.又由a 2=b 2+c 2,解得b =2,所以椭圆C 的标准方程是x 26+y 22=1.(2)设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m,直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1,消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0.所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.因为四边形OPTQ 是平行四边形,所以OP →=QT →,即(x 1,y 1)=(-3-x 2,m -y 2).所以⎩⎪⎨⎪⎧x 1+x 2=-12m 2+3=-3,y 1+y 2=4mm 2+3=m .解得m =±1.此时,四边形OPTQ 的面积S 四边形OPTQ =2S △OPQ =2×12·|OF |·|y 1-y 2|=2 ⎝⎛⎭⎫4m m 2+32-4·-2m 2+3=2 3. 18.、[2014·天津卷] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.18.解:(1)设椭圆右焦点F 2的坐标为(c ,0).由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2.又b 2=a 2-c 2,则c 2a 2=12,所以椭圆的离心率e =22.(2)由(1)知a 2=2c 2,b 2=c 2,。
高考理科数学一轮复习专题训练:数列(含详细答案解析)
B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。
高考数学一轮复习 第六章 数列 第四节 数列求和教案 理(含解析)苏教版-苏教版高三全册数学教案
第四节 数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n a 1+a n2=na 1+n n -1d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n n +12;②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1nn +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[小题体验]1.等比数列1,2,4,8,…中从第5项到第10项的和为________. 解析:由a 1=1,a 2=2,得q =2,∴S 10=1×1-2101-2=1 023,S 4=1×1-241-2=15,∴S 10-S 4=1 008. 答案:1 0082.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.答案:n 2+1-12n3.已知数列{}a n 的通项公式a n =1n +n +1,则该数列的前________项之和等于9.解析:由题意知,a n =1n +n +1=n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=9,解得n =99.答案:991.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项. [小题纠偏]1.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (3)=________.答案:27(87-1)2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 答案:(n -1)2n +1+23.求和:11×2+12×3+…+1n -1n=________.解析:原式=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =1-1n .答案:1-1n考点一 公式法求和 基础送分型考点——自主练透[题组练透]1.(2019·南师大附中月考)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是________日.解析:易知每日织布数量构成一个等差数列,设此数列为{}a n ,则a 1=5,a n =1,S n =90,所以n 5+12=90,解得n =30.答案:302.(2018·无锡期末)设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则数列{a n }的前4项和为________.解析:设数列{a n }的公比为q (q ≠1).由等比数列的性质可得a 1a 2a 3=a 32=-18,所以a 2=-12.因为a 2,a 4,a 3成等差数列,所以2a 4=a 2+a 3,即2a 2q 2=a 2+a 2q ,化简得2q 2-q -1=0,即(q -1)(2q +1)=0,解得q =-12或q =1(舍去).又因为a 1=a 2q=1,所以S 4=a 11-q 41-q=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:583.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得⎩⎪⎨⎪⎧ a 1+2d =2,3a 1+3×22d =92,化简得⎩⎪⎨⎪⎧a 1+2d =2,a 1+d =32,解得⎩⎪⎨⎪⎧a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 11-q n 1-q =1×1-2n1-2=2n-1.[谨记通法]几类可以使用公式法求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.考点二 分组转化法求和重点保分型考点——师生共研[典例引领](2018·天一中学检测)已知数列{a n }的首项a 1=3,通项a n =2n p +nq (n ∈N *,p ,q 为常数),且a 1,a 4,a 5成等差数列.求:(1)p ,q 的值;(2)数列{a n }前n 项和S n .解:(1)由a 1=3,得2p +q =3,①又由a 4=24p +4q ,a 5=25p +5q ,且a 1+a 5=2a 4, 得3+25p +5q =25p +8q ,② 由①②解得p =1,q =1. (2)由(1),知a n =2n+n .所以S n =(2+22+ (2))+(1+2+…+n )=21-2n1-2+n 1+n2=2n +1-2+n 2+n2.[由题悟法]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[即时应用]1.求数列1+1,1a +4,1a 2+7,1a 3+10,…,1an -1+(3n -2)的前n 项和.解:设数列的通项为a n ,前n 项和为S n ,则a n =1a n -1+(3n -2),∴S n =⎝⎛⎭⎪⎫1+1a +1a2+…+1a n -1+[1+4+7+…+(3n -2)].当a =1时,S n =n +n 1+3n -22=3n 2+n 2;当a ≠1时,S n =1-1a n1-1a+n1+3n -22=a n-1a n -a n -1+n3n -12. 2.(2018·南京四校联考)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . 因为a 3+a 8-(a 2+a 7)=2d =-6, 所以d =-3,所以a 2+a 7=2a 1+7d =-23,解得a 1=-1, 所以数列{a n }的通项公式为a n =-3n +2.(2)因为数列{a n +b n }是首项为1,公比为q 的等比数列, 所以a n +b n =qn -1,即-3n +2+b n =qn -1,所以b n =3n -2+q n -1.所以S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 考点三 错位相减法求和重点保分型考点——师生共研[典例引领](2018·徐州调研)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,n ∈N *.数列{b n }满足nb n +1-(n +1)b n =n (n +1),n ∈N *,且b 1=1.(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n ·b n ,数列{c n }的前n 项和为T n ,对任意的n ∈N *,都有T n ≤nS n -a ,求实数a 的取值范围.解:(1)当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1,所以数列{a n }是首项a 1=1,公比q =2的等比数列, 故数列{a n }的通项公式为a n =2n -1.由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1), 得b n +1n +1-b nn=1, 所以数列⎩⎨⎧⎭⎬⎫b n n 是首项b 1=1,公差d =1的等差数列,所以b n n=n , 故数列{b n }的通项公式为b n =n 2. (2)由(1)得c n =a n ·b n =n ·2n -1,于是T n =1×20+2×2+3×22+…+n ×2n -1, 所以2T n =1×2+2×22+3×23+…+n ×2n,两式相减得-T n =1+2+22+…+2n -1-n ×2n=1-2n1-2-n ×2n,所以T n =(n -1)·2n+1, 由(1)得S n =2a n -1=2n-1, 因为对∀n ∈N *,都有T n ≤nS n -a , 即(n -1)·2n+1≤n (2n-1)-a 恒成立, 所以a ≤2n-n -1恒成立, 记c n =2n -n -1, 所以a ≤(c n )min , 因为c n +1-c n =[2n +1-(n +1)-1]-(2n -n -1)=2n-1>0,从而数列{c n }为递增数列,所以当n =1时,c n 取最小值c 1=0,于是a ≤0, 所以实数a 的取值范围为(-∞,0].[由题悟法]用错位相减法求和的3个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[即时应用](2019·海门中学月考)已知数列{a n }的前n 项和为S n ,S n =n 2+n . (1)求{a n }的通项公式a n ;(2)若a k +1,a 2k ,a 2k +3(k ∈N *)恰好依次为等比数列{b n }的第一、第二、第三项,求数列⎩⎨⎧⎭⎬⎫n b n 的前n 项和T n .解:(1)当n =1时,a 1=S 1=12+1=2.当n ≥2时,a n =S n -S n -1=(n 2+n )-[(n -1)2+(n -1)]=2n . 当n =1时,符合上式, ∴a n =2n (n ∈N *).(2)由题意知a k +1,a 2k ,a 2k +3成等比数列,∴a 22k =a k +1·a 2k +3, 即(2·2k )2=2(k +1)·2(2k +3),解得k =3. ∴b 1=a 4=8,b 2=a 6=12,公比q =128=32,∴b n =8·⎝ ⎛⎭⎪⎫32n -1,∴n b n =18n ·⎝ ⎛⎭⎪⎫23n -1, ∴T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+2×⎝ ⎛⎭⎪⎫231+…+n ×⎝ ⎛⎭⎪⎫23n -1. ① ∴23T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231+2×⎝ ⎛⎭⎪⎫232+…+n -1×⎝ ⎛⎭⎪⎫23n -1+n ×⎝ ⎛⎭⎪⎫23n . ② ①-②,得13T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+⎝ ⎛⎭⎪⎫231+…+⎝ ⎛⎭⎪⎫23n -1-18×n ×⎝ ⎛⎭⎪⎫23n =38-3+n 8⎝ ⎛⎭⎪⎫23n ,则T n =98-9+3n 8⎝ ⎛⎭⎪⎫23n.考点四 裂项相消法求和 题点多变型考点——多角探明[锁定考向]裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.常见的命题角度有: (1)形如a n =1nn +k 型; (2)形如a n =1n +k +n型;(3)形如a n =n +1n 2n +22型.[题点全练]角度一:形如a n =1nn +k型 1.(2019·启东一中检测)在数列{}a n 中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{}b n 的前n 项和T n . 解:(1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1(n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n . 由题意得S n -1·S n ≠0, ∴1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列,∴1S n=1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 角度二:形如a n =1n +k +n型2.已知函数f (x )=x α的图象过点(4,2),令a n =1f n +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018=________.解析:由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.所以a n =1fn +1+f n =1n +1+n=n +1-n ,S 2 018=a 1+a 2+a 3+…+a 2 018=(2-1)+(3-2)+(4-3)+…+( 2 018-2 017)+( 2 019- 2 018)= 2 019-1. 答案: 2 019-1 角度三:形如a n =n +1n 2n +22型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n , 故b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n2-1n +22.T n =116⎣⎢⎡1-132+122-142+132-152+…+1n -12-1n +12+⎦⎥⎤1n2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116⎝ ⎛⎭⎪⎫1+122=564. [通法在握]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. [演练冲关](2018·镇江调研)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1= 12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 一抓基础,多练小题做到眼疾手快1.(2019·镇江调研)已知{}a n 是等差数列,S n 为其前n 项和,若a 3+a 7=8,则S 9=_______.解析:在等差数列{}a n 中,由a 3+a 7=8,得a 1+a 9=8, 所以S 9=a 1+a 9×92=8×92=36.答案:36 2.数列{1+2n -1}的前n 项和为________.解析:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.答案:n +2n-13.数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________. 解析:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100. 答案:1004.(2018·泰州期末)已知数列{}a n 的通项公式为a n =n ·2n -1,前n 项和为S n ,则S n =________.解析:∵a n =n ·2n -1,∴S n =1×1+2×2+3×22+…+n ×2n -1, 2S n =1×2+2×22+3×23+…+n ×2n,两式相减可得-S n =1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n,化简可得S n =(n -1)2n+1. 答案:(n -1)2n+15.已知等比数列{}a n 的公比q >1,且a 5-a 1=30,a 4-a 2=12,则数列⎩⎨⎧⎭⎬⎫a na n -1a n +1-1的前n 项和为________. 解析:因为a 5-a 1=30,a 4-a 2=12, 所以a 1(q 4-1)=30,a 1(q 3-q )=12, 两式相除,化简得2q 2-5q +2=0, 解得q =12或2,因为q >1, 所以q =2,a 1=2. 所以a n =2·2n -1=2n.所以a na n -1a n +1-1=2n2n-12n +1-1=12n -1-12n +1-1, 所以T n =1-13+13-17+…+12n -1-12n +1-1=1-12n +1-1.答案:1-12n +1-16.若数列{a n }满足a n -(-1)na n -1=n (n ≥2),S n 是{a n }的前n 项和,则S 40=________. 解析:当n =2k 时,即a 2k -a 2k -1=2k ,① 当n =2k -1时,即a 2k -1+a 2k -2=2k -1,② 当n =2k +1时,即a 2k +1+a 2k =2k +1,③ ①+②得a 2k +a 2k -2=4k -1, ③-①得a 2k +1+a 2k -1=1,S 40=(a 1+a 3+a 5+...+a 39)+(a 2+a 4+a 6+a 8+...+a 40)=1×10+(7+15+23+ (79)=10+107+792=440. 答案:440二保高考,全练题型做到高考达标1.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n 2+n .答案:n 2+n2.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析:由已知得b 1=a 2=-3,q =-4, 所以b n =(-3)×(-4)n -1,所以|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. 所以|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.答案:4n-13.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________.解析:根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案:74.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案:2n +1-25.(2019·宿迁调研)已知数列{}a n 中,a 1=1,a 2=3,若a n +2+2a n +1+a n =0对任意n ∈N *都成立,则数列{}a n 的前n 项和S n =________.解析:∵a 1=1,a 2=3,a n +2+2a n +1+a n =0, ∴a n +2+a n +1=-(a n +1+a n ),a 2+a 1=4.则数列{}a n +1+a n 是首项为4,公比为-1的等比数列, ∴a n +1+a n =4×(-1)n -1.当n =2k -1时,a 2k +a 2k -1=4×(-1)2k -2=4.∴S n =(a 1+a 2)+(a 3+a 4)+…+(a 2k -1+a 2k )=4k =2n . 当n =2k 时,a 2k +1+a 2k =-4.S n =a 1+(a 2+a 3)+…+(a 2k -2+a 2k -1)=1-4×(k -1)=5-4k =5-4×n +12=3-2n .∴S n =⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数.答案:⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数6.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由a i +1+a i +10×102-a i +k =185,得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<349≤i ≤439<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故此连续10项的和为200.答案:2007.(2019·邵阳模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 分得________钱.解析:由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E 所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 分得23钱.答案:238.已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________. 解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,所以a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,因为a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,所以a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2899.(2018·苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 的取值范围. 解:(1)当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5. 当n ≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1),所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n )-6(S n -1+n -1), 即(a n +1)(a n +1-a n -1)=6(a n +1).又a n >0,所以a n +1-a n -1=6,所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,故a n =⎩⎪⎨⎪⎧3n +a -3,n 为奇数,3n -1,n 为偶数.(2)当n 为奇数时,S n =12(3n +a -2)(n +1)-n ,由S n ≤n (3n +1),得a ≤3n 2+3n +2n +1恒成立,令f (n )=3n 2+3n +2n +1,则f (n +1)-f (n )=3n 2+9n +4n +2n +1>0,所以a ≤f (1)=4.当n 为偶数时,S n =12n (3n +a +1)-n ,由S n ≤n (3n +1)得,a ≤3(n +1)恒成立, 所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].10.(2019·宿迁中学调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解:(1)令n =1,得a 2=21+λ. 令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3, 所以a 3=2λ+4λ+12λ+1.由a 22=a 1a 3,得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=⎝ ⎛⎭⎪⎫n 2+32a n ,①当n ≥2时,S n -1+1=⎝ ⎛⎭⎪⎫n2+1a n -1,② ①-②得,a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是常数列,且为13,所以a n =13(n +2).代入①得S n =⎝ ⎛⎭⎪⎫n 2+32a n -1=n 2+5n 6. 三上台阶,自主选做志在冲刺名校1.(2018·启东检测)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =________尺.解析:依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为1×1-2n1-2=2n-1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n -1+2-12n -1=2n-12n -1+1. 答案:2n-12n -1+12.(2018·苏州高三暑假测试)等差数列{a n }的前n 项和为S n ,且a n -S n =n 2-16n +15(n ∈N *),若对任意n ∈N *,总有S n ≤S k ,则k 的值为________.解析:设等差数列{a n }的公差为d ,则a n -S n =a 1+(n -1)d -⎣⎢⎡⎦⎥⎤na 1+n n -12d =-d 2n 2+⎝ ⎛⎭⎪⎫32d -a 1n +a 1-d =n 2-16n +15,所以⎩⎪⎨⎪⎧-d2=1,32d -a 1=-16,a 1-d =15,解得⎩⎪⎨⎪⎧a 1=13,d =-2,所以S n =13n +n n -12×(-2)=-n 2+14n =-(n -7)2+49,所以(S n )max =S 7,所以S n ≤S 7对任意n ∈N *恒成立,所以k 的值为7.答案:73.(2019·南京一模)平面内的“向量列”{a n },如果对于任意的正整数n ,均有a n +1-a n =d ,则称此“向量列”为“等差向量列”,d 称为“公差向量”;平面内的“向量列”{b n },如果对于任意的正整数n ,均有b n +1=q ·b n (q ≠0),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列”{a n }是“等差向量列”,用a 1和“公差向量”d 表示a 1+a 2+…+a n ; (2)已知{a n }是“等差向量列”,“公差向量”d =(3,0),a 1=(1,1),a n =(x n ,y n ),{b n }是“等比向量列”,“公比”q =2,b 1=(1,3),b n =(m n ,k n ),求a 1·b 1+a 2·b 2+…+a n ·b n .解:(1)∵“向量列”{a n }是“等差向量列”, ∴a 1+a 2…+a n =n a 1+(1+2+…+n -1)d =n a 1+n n -12d.(2)∵a 1=(1,1),d =(3,0),∴a n =(3n -2,1). ∵b 1=(1,3),q =2,∴b n =(2n -1,3·2n -1).∴a n ·b n =(3n -2,1)·(2n -1,3·2n -1)=(3n -2)·2n -1+3·2n -1=(3n +1)·2n -1,设S n =a 1·b 1+a 2·b 2+…+a n ·b n , 则S n ==4·20+7·21+…+(3n +1)·2n -1,2S n =4·2+7·22+…+(3n +1)·2n, 两式相减可得,-S n =4+3(2+22+…+2n -1)-(3n +1)·2n=4+3·21-2n -11-2-(3n +1)·2n =(2-3n )·2n-2,∴a 1·b 1+a 2·b 2+…+a n ·b n =(3n -2)·2n+2.。
高考数学一轮复习全套课时作业6-3等比数列
题组层级快练 6.3等比数列一、单项选择题1.(2021·泰安模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 32=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .24 2.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10等于( )A .1B .-3C .1或-3D .-1或33.(2020·广州模拟)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 2=1,则a 4=( ) A.127 B .27 C.19D .9 4.(2021·益阳市、湘潭市高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( )A .3B .5C .9D .255.(2021·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A.128127B.44 800127C.700127D.17532 7.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a·3n -1+b ,则a b =( )A .-3B .-1C .1D .38.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数为( )A .4B .5C .6D .79.(2021·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 10.等比数列{a n }的前n 项和为S n ,若a 1=a 2+2a 3,S 2是S 1与mS 3的等比中项,则m =( ) A .1 B.97 C.67 D.12二、多项选择题11.已知正项等比数列{a n }满足a 4=4,a 2+a 6=10,则公比q =( ) A.12 B. 2 C .2 D.22 12.已知等比数列{a n }中,满足a 1=1,q =2,则( ) A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1a n 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列 三、填空题与解答题13.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.15.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.16.(2020·课标全国Ⅲ,文)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.17.(2021·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 52,且S 4+S 12=λS 8,则λ=________.18.(2021·四川成都一诊)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .6.3等比数列 参考答案1.答案 D 2.答案 A解析 由a 2a 6=16,得a 42=16⇒a 4=±4.又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1. 3.答案 D解析 因为4S 5=3S 4+S 6,所以3S 5-3S 4=S 6-S 5,即3a 5=a 6,故公比q =3.由等比数列的通项公式得a 4=a 2q 4-2=1×32=9.故选D. 4.答案 D解析 设等比数列{a n }的公比为q ,则a 4a 7=a 5q ·a 5q 2=9q =45,所以q =5,所以a 7-a 9a 5-a 7=a 5q 2-a 7q 2a 5-a 7=q 2=25.故选D. 5.答案 D 6.答案 B解析 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎫1-1271-12=700,解得a 1=44 800127.故选B.7.答案 A 8.答案 B解析 ∵q ≠1⎝⎛⎭⎫14≠78,∴S n =a 1-a n q 1-q ,∴778=14-78q1-q ,解得q =-12,78=14×⎝⎛⎭⎫-12n +2-1,∴n =3.故该数列共5项. 9.答案 C解析 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n+1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C. 10.答案 B解析 设等比数列{a n }的公比为q ,由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,解得q =-1或q =12,当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾.当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1×mS 3,94a 12=m ×74a 12,所以m =97.故选B.11.答案 BD解析 因为a 4=4,a 2+a 6=10,所以a 4q 2+a 4q 2=10,得2q 4-5q 2+2=0,得q 2=2或q 2=12,又q>0,所以q =2或q =22.故选BD. 12.答案 AC解析 等比数列{a n }中,a 1=1,q =2,所以a n =2n -1,S n =2n -1. 于是a 2n=22n -1,1a n =⎝⎛⎭⎫12n -1,log 2a n =n -1,故数列{a 2n }是等比数列,数列⎩⎨⎧⎭⎬⎫1a n 是递减数列,数列{log 2a n }是等差数列.因为S 10=210-1,S 20=220-1,S 30=230-1,S 20S 10≠S 30S 20,所以S 10,S 20,S 30不成等比数列(应是S 10,S 20-S 10,S 30-S 20成等比数列).故选AC. 13.答案 18解析 方法一:设数列{a n }的公比为q ,由a 2a 8=2a 5+3,得a 12q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.方法二:根据等比数列的性质可得a 2a 8=a 52,又a 2a 8=2a 5+3,所以a 52-2a 5-3=0,解得a 5=3或a 5=-1.因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3.因为a 1a 9=a 52,所以a 9=a 52a 1=18.14.答案 -2解析 由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 15.答案 -2 2n -1-12解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.16.答案 (1)a n =3n -1 (2)6解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3,所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1. 故S n =n (n -1)2. 由S m +S m +1=S m +3得m(m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0. 解得m =-1(舍去)或m =6. 17.答案 83解析 ∵数列{a n }是等比数列,a 3a 11=2a 52,∴a 72=2a 52,∴q 4=2. ∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q ,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.18.答案 (1)证明见解析 (2)S n =2n +1-4n +2 解析 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0,∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,上式也满足. ∴S n =2n +1-4n +2.。
新高考2023版高考数学一轮总复习练案36第六章第三讲等比数列及其前n项和
第三讲 等比数列及其前n 项和A 组基础巩固一、单选题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( C )A .3B .4C .5D .6[解析] a n =132=a 1q n -1=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n ,∴n =5,故选C.2.(2021·陕西西安中学六模)已知数列{a n }是各项均为正数的等比数列,S n 是它的前n 项和.若a 2a 6=4,且a 4+2a 7=52,则S 5=( C )A .29B .30C .31D .32[解析] 本题考查等比数列性质及基本量的运算.∵a 2a 6=a 24=4,且a n >0,∴a 4=2.又a 4+2a 7=52,∴a 7=14.设{a n }的公比为q ,则a 7a 4=q 3=18,q =12,∴a n =a 4⎝ ⎛⎭⎪⎫12n -4=25-n ,∴S 5=16+8+4+2+1=31.3.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( B ) A .152B .314C .334D .172[解析] 设数列{a n }的公比为q ,则显然q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 11-q 51-q=4×⎝ ⎛⎭⎪⎫1-1251-12=314.4.(2021·全国甲理)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( B )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件[解析] 当q =1,a 1<0时,等比数列{a n }的前n 项和S n =na 1<0,可知{S n }是单调递减数列,因此甲不是乙的充分条件;若{S n }是递增数列,则当n ≥2时,a n =S n -S n -1>0,即a 1qn -1>0恒成立,而只有当a 1>0,q >0时,a 1q n -1>0恒成立,所以可得q >0,因此甲是乙的必要条件.综上,甲是乙的必要条件但不是充分条件.故选B.5.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则a b=( A )A .-3B .-1C .1D .3[解析] 解法一:a 1=a +b ,当n ≥2时,a n =S n -S n -1=2a ·3n -2,又∵{a n }是等比数列,∴a +b =2a ·31-2,∴a b=-3.故选A.解法二:a 1=a +b ,a 2=2a ,a 3=6a . 又∵{a n }是等比数列, ∴a 2a 1=a 3a 2,∴2a a +b =6a 2a, ∴a =-3b ,∴a b=-3,故选A.6.(2022·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( C )A .16(1-4-n) B .16(1-2-n) C .323(1-4-n)D .323(1-2-n )[解析] 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n +1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n 项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝ ⎛⎭⎪⎫1-14n 1-14=323(1-4-n).故选C.二、多选题7.(2021·辽宁大连八中模拟改编)记等比数列{a n }的前n 项和为S n ,若a 1=2,S 3=6,则S 4=( AC )A .-10B .-8C .8D .10[解析] 设等比数列的公比为q ,因为a 1=2,S 3=6,所以S 3=2+2q +2q 2=6,则q 2+q -2=0,所以q =1或q =-2.当q =1时,S 4=S 3+2=8;当q =-2时,S 4=S 3+a 1q 3=6+2×(-2)3=-10,故选A 、C.8.(2021·山西大同期中改编)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟,羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半,”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应分别偿还a 升,b 升,c 升,1斗为10升,则下列判断正确的是( BD )A .a =507B .c =507C .a ,b ,c 依次成公比为2的等比数列D .a ,b ,c 依次成公比为12的等比数列[解析] 由题意得a ,b ,c 依次成公比为12的等比数列,且c +2c +4c =50,即c =507,故选B 、D.三、填空题9.(2021·四川南充一诊)数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8= 320 . [解析] 由题意知log 2a n +1=log 2(2a n ),∴a n +1=2a n ,∴{a n }是公比为2的等比数列,又a 3=10,∴a 8=a 3·25=320.10.(2021·北京东城区期末)已知{a n }是各项均为正数的等比数列,S n 为其前n 项和.若a 1=6,a 2+2a 3=6,则公比q = 12 ,S 4=454. [解析] 本题考查等比数列的通项公式、前n 项和公式.由题意,数列{a n }是各项均为正数的等比数列,由a 1=6,a 2+2a 3=6,可得a 1q +2a 1q 2=6q +12q 2=6,即2q 2+q -1=0,解得q =12或q =-1(舍去).由等比数列的前n 项和公式,可得S 4=6×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1241-12=454.11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= 32 .[解析] 由题意知S 3=a 1+a 2+a 3=74,a 4+a 5+a 6=S 6-S 3=634-74=14=74·q 3,∴q =2.又a 1+2a 1+4a 1=74,∴a 1=14,∴a 8=14×27=32.12.(2021·长春市高三一检)等比数列{a n }的首项为a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q = -12.[解析] 由S 10S 5=3132,a 1=-1,知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,所以q =-12.四、解答题13.(2021·陕西榆林一模)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [解析] (1)由条件可得a n +1=2n +1na n , 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.14.(2021·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n .[解析] (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =41-2n1-2+n n +12-2n =2n +3+n 2-3n -82.B 组能力提升1.(2021·安徽六安一中调研)已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( C ) A .52或-52 B .-52C .52D .12[解析] 由题意得a 1+a 2=5,b 22=4,又b 2与第一项的符号相同,所以b 2=2.所以a 1+a 2b 2=52.故选C. 2.(多选题)(2021·海南海口模拟)已知正项等比数列{a n }满足a 1=2,a 4=2a 2+a 3.若设其公比为q ,前n 项和为S n ,则下面结论不正确的是( C 、D )A .q =2B .a n =2nC .S 10=2 047D .a n +a n +1>a n +2[解析] 本题考查等比数列基本量的计算.因为a 1=2,a 4=2a 2+a 3,公比为q ,所以2q 3=4q +2q 2,得q 2-q -2=0,解得q =2(负值舍去),故A 正确;a n =2×2n -1=2n,故B 正确;S n =2×2n -12-1=2n +1-2,所以S 10=2 046,故C 错误;a n +a n +1=2n +2×2n=3a n ,而a n +2=4a n >3a n ,故D 错误.故选C 、D.3.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( B )A .128127B .44 800127C .700127D .17532[解析] 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎪⎫1-1271-12=700,解得a 1=44 800127.故选B. 4.(2022·南昌模拟)在等比数列{a n }中,a 1+a n =66,a 2a n -1+a 3a n -2=256,且前n 项和S n =126,则n =( C )A .2B .4C .6D .8[解析] 因为数列{a n }是等比数列,所以a 2a n -1=a 3a n -2=a 1a n ,又因为a 2a n -1+a 3a n -2=256,所以a 1a n =128,又因为a 1+a n =66.所以a 1=2,a n =64或a 1=64,a n =2.因为S n =a 1-a n q1-q,且S n =126,所以若a 1=2,a n =64,则2-64q 1-q =126,得q =2.此时a n =2×2n -1=2n=64,n=6;若a 1=64,a n =2,则64-2q 1-q =126,得q =12,此时a n =64×⎝ ⎛⎭⎪⎫12n -1=2,得n =6.综上知,n =6.5.设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . [解析] (1)设{a n }的公比为q ,则a n =a 1qn -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3.所以{a n }的通项公式为a n =3n -1.(2)由(1)知log 3a n =n -1. 故S n =n n -12.由S m +S m +1=S m +3得m (m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0.解得m =-1(舍去)或m =6.。
(集合逻辑不等式指对数函数)2022年高三数学一轮复习易错题精典题滚动训练(解析版)
试卷04(集合、逻辑、不等式、指对数、函数)数 学本卷满分150分,考试时间120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知非空集合A 、B 满足以下两个条件:(1){}1,2,3,4,5AB =,A B =∅;(2)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素.则有序集合对(),A B 的个数为( ) A .4 B .6 C .8 D .16【答案】C 【分析】对集合A 中的元素个数进行分类讨论,列举出集合A ,由此可求得结果. 【详解】由题意可知,集合A 不能是空集,也不可能为{}1,2,3,4,5. 若集合A 只有一个元素,则集合A 为{}4;若集合A 有两个元素,则集合A 为{}1,3、{}3,4、{}3,5; 若集合A 有三个元素,则集合A 为{}1,2,4、{}1,2,5、{}2,4,5; 若集合A 有四个元素,则集合A 为{}1,2,3,5. 综上所述,有序集合对(),A B 的个数为8. 故选:C. 【点睛】关键点点睛:解本题的关键在于对集合A 中的元素个数进行分类讨论,由此确定集合A ,由此得解. 2.等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【详解】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B . 【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程. 3.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数.例如:[]5,16-=-,[]3π=.已知函数()21xf x x =+,则函数()y f x ⎡⎤=⎣⎦的值域为( )A .{}1-B .{}1,0-C .{}1D .{}0,1【答案】B 【分析】 由()21xf x x =+为奇函数,可先分析函数0x >时值域,即可得函数在R 上值域,利用高斯函数的意义求解即可. 【详解】因为x ∈R ,()()f x f x -=-, 所以()f x 是R 上的奇函数. 当0x >时,()210122x x f x x x <=≤=+, 所以当x ∈R 时,()11,22f x ⎡⎤∈-⎢⎥⎣⎦,从而()y f x ⎡⎤=⎣⎦的值域为{}1,0-. 故选:B4.已知函数()f x 是定义在R 上的奇函数,当0x >时,()2f x x x =+,则不等式()()ln 1f x f <-的解集为( ) A .()0,e B .1,e ⎛⎫-∞ ⎪⎝⎭C .(10,e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】C 【分析】根据奇偶性求分段函数的解析式,然后作出函数图象,根据单调性解不等式即可. 【详解】因为当0x >时,()2f x x x =+,且函数()f x 是定义在R 上的奇函数,所以0x <时,()()()()22f x f x x x x x ⎡⎤=--=--+-=-+⎣⎦, 所以()22,0,0x x x f x x x x ⎧-+<=⎨+>⎩,作出函数图象:所以函数()f x 是()+-∞∞,上的单调递增,又因为不等式()()ln 1f x f <-,所以ln 10x x <-⎧⎨>⎩,即10x e <<,故选:C.5.设二次函数()2f x x ax b =++,若存在实数a ,对任意1,22x ⎡∈⎤⎢⎥⎣⎦,使得不等式()f x x <成立,则实数b 的取值范围是( ) A .1,23⎛⎫- ⎪⎝⎭B .11,34⎛⎫- ⎪⎝⎭C .19,44⎛⎫⎪⎝⎭D .19,34⎛⎫- ⎪⎝⎭【答案】D 【分析】转化条件为11b x a x -<++<对于任意1,22x ⎡⎤∈⎢⎥⎣⎦恒成立,进而可得()1,,22b g x x x x ⎡⎤=+⎢⎣∈⎥⎦的最大值与最小值的差小于2,结合对勾函数的性质即可得解. 【详解】由题意,对于任意1,22x ⎡⎤∈⎢⎥⎣⎦,都有()f x x <成立,所以1b x a x ++<即11b x a x -<++<对于任意1,22x ⎡⎤∈⎢⎥⎣⎦恒成立, 所以只需()1,,22b g x x x x ⎡⎤=+⎢⎣∈⎥⎦的最大值与最小值的差小于2即可, 当4b ≥时,()g x 在1,22⎡⎤⎢⎥⎣⎦上单调递减,则()()1113222122222g g b b b ⎛⎫-=+--=-<⎪⎝⎭,解得73b <,不合题意; 当14b ≤时,()g x 在1,22⎡⎤⎢⎥⎣⎦上单调递增, 则()()1321222g g b ⎛⎫-=--<⎪⎝⎭,所以1,341b ⎛⎤⎥⎝-⎦∈;当144b <<时,()g x 在12⎡⎢⎣上单调递减,在⎤⎦上单调递增,则()2222112222b g g g g b ⎧-=+-<⎪⎪⎨⎛⎫⎪-=+-< ⎪⎪⎝⎭⎩,所以19,44b ⎛⎫∈ ⎪⎝⎭,综上,19,34b ⎛⎫∈- ⎪⎝⎭. 故选:D.6.已知函数()1x f x e x =+-,若()1,0a ∈-,则()f a 、()2f a 、()2f a 的大小关系为( )A .()()()22f a f a f a >> B .()()()22f a f a f a >>C .()()()22fa f a f a >> D .()()()22fa f a f a >>【答案】D 【分析】依题意可得()f x 在R 上是增函数,且(0)0f =,因此(2)()0f a f a <<,又2()0f a >,进而可得结果.【详解】显然()f x 在R 上是增函数,且(0)0f =,当(1,0)a ∈-时,20a a <<,所以(2)()0f a f a <<,又2()0f a >,从而2()()(2)f a f a f a >>.故选:D.7.已知定义域为R 的偶函数y =f (x )﹣3x 在[0,+∞)单调递增,若f (m )+3≤f (1﹣m )+6m ,则实数m 的取值范围是( ) A .(﹣∞,2] B .[2,+∞)C .[12,+∞) D .(﹣∞,12] 【答案】D 【分析】设()()3g x f x x =-,由题意可知函数()g x 为偶函数,并且在[0,+∞)单调递增,由()3(1)6f m f m m +≤-+,得()(1)g m g m ≤-,从而得1m m ≤-,进而可求出实数m 的取值范围【详解】解:设()()3g x f x x =-,由题意可知函数()g x 为偶函数,并且在[0,+∞)单调递增, 由()3(1)6f m f m m +≤-+,得()3(1)3(1)f m m f m m -≤---,即()(1)g m g m ≤-,所以()(1)g m g m ≤-, 因为()g x 在[0,+∞)单调递增,所以1m m ≤-,两边平方得22(1)m m ≤-,解得12m ≤, 所以实数m 的取值范围是(﹣∞,12], 故选:D8.已知函数()f x 的定义域为R ,满足()()121f x f x +=-,且当(]1,1x ∈-时,()12x f x -=,则()2020f =( )A .20192B .20182C .10102D .10092【答案】D 【分析】根据条件(1)2(1)f x f x +=-,得(2)2()f x f x +=,对于(2020)f ,通过迭代变形,得1010(2020)2(0)f f =,再计算出(0)f 即可.【详解】由(1)2(1)f x f x +=-,得(2)2()f x f x +=,于是2(2020)(202022)2(20202)2(202022)f f f f =-+=-=-⨯ 3101010102(202023)2(202021010)2(0)f f f =-⨯==-⨯=.又当(1,1]x ∈-时,1()2x f x -=,所以1(0)2f -=,所以1010101011009(2020)2(0)222f f -==⨯=.故选:D. 【点睛】关键点睛:解决本题的关键是通过(1)2(1)f x f x +=-寻找(2020)f 与(0)f 的关系.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分. 9.使)(2log 232x -<成立的一个充分不必要条件是( )A .32x >B .32x <或3x > C .23x << D .732x <<【答案】CD 【分析】先解不等式)(2log 232x -<求出x 的范围,利用集合法判断充分不必要条件. 【详解】由)(22log 232log 4x -<=,解得3722x <<, 则使“)(2log 232x -<成立的一个充分不必要条件”所对应的集合为37|22x x ⎧⎫<<⎨⎬⎩⎭的真子集. 因为{}37|222|3x x x x ⎧⎫<<⎨⎬⎩⎭<<⊆,7373|222|x x x x ⎧⎫<<<<⎨⎬⎩⎭⎧⎫⊆⎨⎬⎩⎭, 故选CD.10.已知实数a ,b ,c ,则下列命题为真命题的是( ) A .若0a b >>,则11a b> B .若0,0,21a b a b >>+=,则21a b+的最小值为8 C .若0a b >>,1ab =,则12a b a b<+ D .若0a b >>,则sin sin a b >【答案】ABC 【分析】作差法可判断A ;由基本不等式1的代换可判断B ;由已知可得11122,222a ab a a b a +=>=<⋅,从而可判断C ;举出反例可判断D . 【详解】 选项A 中110b a a b ab --=>,则A 正确;B ,214(2)48b a a b a b a b ⎛⎫++=++≥ ⎪⎝⎭, 当且仅当4b a a b =,即11,24a b ==时,等号成立,则B 正确; 选项C 中,因为1,0ab a b =>>,所以10>>>a b ,则11122,222a a b a a b a +=>=<⋅,所以12a b a b<+,则C 正确;若,2a b ππ==,满足0a b >>,而sin sin a b <,D 不正确,故选:ABC . 【点睛】 方法点睛:判断不等式是否成立常用方法:1、举反例可说明其不成立;2、利用基本不等式可判断;3、作差、作商法;4、利用函数的单调性;5、放缩法.11.定义在(1,1)-上的函数()f x 満足()()1x y f x f y f xy ⎛⎫--= ⎪-⎝⎭,且当(1,0)x ∈-时,()0f x <,则有( ) A .()f x 为奇函数 B .()f x 为增函数 C .115236f f f ⎛⎫⎛⎫⎛⎫+>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .存在非零实数a ,b ,使得1()()2f a f b f ⎛⎫+= ⎪⎝⎭【答案】ABD 【分析】令x y =,得到(0)0f =,再令0x =得()()f y f y =--,从而得出()f x 为奇函数可判断选项A; 设11x y -<<<,则101x yxy--<<-,所以01x y f xy ⎛⎫-< ⎪-⎝⎭,可得出单调性,从而可判断选项B ;由115237f f f ⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由单调性可判断选项C ;由1()()12a b f a f b f f ab +⎛⎫⎛⎫+== ⎪ ⎪+⎝⎭⎝⎭,由单调性可得112a b ab +=+,从而可判断选项D. 【详解】由()()1x y f x f y f xy ⎛⎫--= ⎪-⎝⎭,令x y =得00(0)(0)(0)10f f f f -⎛⎫-== ⎪-⎝⎭,得(0)0f =. 令0x =得0(0)()()10y f f y f f y -⎛⎫-==-⎪-⎝⎭,即()()f y f y =-- 所以()f x 为奇函数,故选项A 正确. 设11x y -<<<,则101x y xy --<<-,所以01x y f xy ⎛⎫-< ⎪-⎝⎭由条件可得()()01x y f x f y f xy ⎛⎫--=<⎪-⎝⎭,即()()f x f y < 所以()f x 为()1,1-上的增函数,故选项B 正确.1111115231123237123f f f f f f ⎡⎤+⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥+=--== ⎪ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥-⨯- ⎪⎢⎥⎝⎭⎣⎦由()f x 为()1,1-上的增函数,则5576f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭, 所以115236f f f ⎛⎫⎛⎫⎛⎫+<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选项C 不正确. 1()()()()12a b f a f b f a f b f f ab +⎛⎫⎛⎫+=--== ⎪ ⎪+⎝⎭⎝⎭由()f x 为()1,1-上的增函数,则112a b ab +=+,即221a b ab +=+ 也即()2210b a b -+-=设()()221ha b a b =-+-,由(),1,1a b ∈-,则20b ->()()1310h b -=-<,()110h b =+>所以()h a 在()1,1-有解.例如取14a =,则27b =, 所以存在非零实数a ,b ,使得1()()2f a f b f ⎛⎫+= ⎪⎝⎭,故选项D 正确. 故选:ABD12.已知函数()y f x =是定义在R 上的奇函数,对x R ∀∈都有(1)(1)f x f x -=+成立,当(0,1]x ∈且12x x ≠时,有2121()()0f x f x x x -<-,则下列说法正确的是( )A .(1)0f =B .()f x 在[]22-,上有5个零点 C .()20200f = D .直线1x =是函数()y f x =图象的一条对称轴【答案】ABC 【分析】根据条件判断出函数的周期和单调性,从而对选项一一分析即可. 【详解】对x R ∀∈都有(1)(1)f x f x -=+成立,则()y f x =是以2为周期的周期函数.当(0,1]x ∈且12x x ≠时,有2121()()0f x f x x x -<-,则()y f x =在(0,1]上单调递减.由函数()f x 是定义在R 上的奇函数得(1)(1)=--f f ①,又()f x 是以2为周期的周期函数, 所以(1)(1+2)(1)f f f -=-=①, 由①①可得(1)0f =,所以A 正确.由(1)0f =,得(1)0f -=,()f x 为奇函数,则(0)0f =, 又()f x 是以2为周期的周期函数,则(2)(2)0f f -==.又()y f x =在(0,1]上单调递减且(1)0f =,则当(0,1)x ∈时()0f x >. 由()f x 为奇函数,得当(1,0)x ∈-时()0f x <. 由()f x 是以2为周期的周期函数,得当(2,1)x ∈--时,()0f x >,(1,2)x ∈时()0f x <,所以()f x 在[]22-,上有()()()()()22011f f f f f -===-=有5个零点,故B 正确; 由()f x 是以2为周期的周期函数得()()202000f f ==,故C 正确; 由上可知,当(0,1)x ∈时()0f x >,(1,2)x ∈时()0f x <, 则()f x 的图象不可能关于直线1x =对称,故D 不正确. 故选:ABC . 【点睛】关键点点睛:要把条件转化为函数的周期性,单调性,借助奇函数性质来解决问题. 三、填空题:本题共4小题,每小题5分,共20分.13.设m ,a R ∈,()()211f x x a x =+-+,2()24mg x mx ax =++,若“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件,则实数m 的取值范围是___________. 【答案】[6,)+∞ 【分析】先求出()0f x >和()0>g x 恒成立时a 的范围,然后根据充分条件的定义求解.【详解】()0f x >在R 上恒成立,则2(1)40a ∆=--<,解得13a -<<,()0>g x 在R 上恒成立,首先0m ≤都不可能恒成立,因此22040m a m >⎧⎨∆=-<⎩,解得22m ma -<<, ①“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件,①12320mmm ⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得6m ≥. 故答案为:[6,)+∞. 【点睛】思路点睛:本题考查一元二次不等式恒成立问题,考查由充分条件求参数范围,一元二次不等式恒成立问题,注意讨论最高次项系数(若最高次项系数为0,则不等式不是二次不等式),充分条件与必要条件问题可以利用集合的包含关系进行求解.14.若,a b 是方程242(lg )lg 10x x -+=的两个实根,则 lg()(log log )a b ab b a +的值为______. 【答案】12 【分析】原方程可化为22()410lgx lgx -+=,设t lgx =,则原方程可化为22410t t -+=,利用换元法令1t lga =,2t lgb =,再根据对数的运算法则,即可得答案;【详解】原方程可化为22()410lgx lgx -+=,设t lgx =,则原方程可化为22410t t -+=.设方程22410t t -+=的两根为1t ,2t ,则122t t +=,1212t t =. 由已知a ,b 是原方程的两个根.可令1t lga =,2t lgb =,则2lga lgb +=,12lga lgb ⋅=, ()()·a b lg ab log b log a ∴+ lg lg (lg lg )lg lg ⎛⎫=++ ⎪⎝⎭b a a b a b22(lg lg )(lg )(lg )lg lg ⎡⎤++⎣⎦=a b b a a b2(lg lg )2lg lg (lg lg )lg lg b a a ba b a b+-=+⋅ 2122221212-⨯=⨯=.故答案为:12. 【点睛】本题考查对数方程的求解及对数运算法则求值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.15.已知,a b 为正实数,若2ab =,则2a b +的最小值为_________;若25ab a b =-+,则2a b +的最小值为________. 【答案】4【分析】第一个空,根据基本不等式,即可求解2a b +的最小值;第二个空:因为25ab a b =-+,得到251a b a +=+,化简253222(1)11a ab a a a a ++=+=++++,结合基本不等式,即可求解. 【详解】由题意,正实数,a b ,满足2ab =,则24a b +≥=,当且仅当2a b =时,即1,2a b ==时,等号成立; 所以2a b +的最小值为4; 因为25ab a b =-+,可得251a b a +=+,所以253222(1)11a a b a a a a ++=+=++≥=++ 当且仅当32(1)1a a +=+,即2a b == 所以2a b +的最小值为 故答案为:4; 【点睛】根据常数代换法利用基本不等式求解最值的基本解题策略:1、根据已知条件或其变形确定定值(常数);2、把确定的定值(常数)变形为1;3、把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;4、利用基本不等式求解最值. 16.(改编题)若函数()231xf x a =++ 是定义域在R 上的奇函数,则实数a 的值为_______;当()231x f x a =++为定义域在R 上的奇函数时,若不等式()1mf x >在()0,∞+有解,则实数m 取值范围为____________. 【答案】-1 m <-1 【分析】利用函数()00f =求出a 的值检验即可;求出函数()f x 的值域,分析可知0m <,分离m ,利用()min 1f x m>求出m 的范围. 【详解】解:因为函数()231x f x a =++ 是定义域在R 上的奇函数,所以有()010f a =+=,解得:1a =-.检验:当1a =-时,()()231211311331x x x xf x f x ---=-+==-=-+++,()f x 为奇函数,所以1a =-. 因为()()211,031x f x =-∈-+,()1mf x >在()0,∞+上有解,则0m <时,()1f x m <,有()min 1f x m>,即11m>-,所以1m <-. 故答案为:1-;1m <-.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题10分)已知集合{}2|320A x x x =-+=,{}22|2(1)(5)0B x x a x a =-++-=. (1)若{}2A B ⋂=,求实数a 的值; (2)若AB B =,求实数a 的取值范围.【答案】(1)1a =-或5a =;(2)3a <-. 【分析】(1)由2B ∈解方程求出a 的值,再检验1a =-或5a =时{}2A B ⋂=是否成立,从而得出实数a 的值; (2)由AB B =得出B A ⊆,结合子集的定义得出B 可能为∅,{}1,{}2,{}1,2,分别讨论这四种情况,得出实数a 的取值范围. 【详解】(1)①{}2A B ⋂=,①2B ∈,即2222(1)250a a -+⋅+-=,解得1a =-或5a =.当1a =-时,{}{}2|402,2B x x =-==-,{}1,2A =,满足{}2A B ⋂=当5a =时,{}{}2|122002,10B x x x =-+==,满足{}2A B ⋂=①所求实数a 的值是1a =-或5a =. (2)①AB B =,①B A ⊆,即B 可能为∅,{}1,{}2,{}1,2当B =∅时,224(1)4(5)0a a ∆=+--<,解得3a <-当集合B 中只有一个元素时,224(1)4(5)0a a ∆=+--=,解得3a =-,此时{}{}2|4402B x x x =++==-,即集合B 不可能为{}1或{}2当{}1,2B =时,由根与系数的关系可知22(1)352a a +=⎧⎨-=⎩方程组无解,则B 不可能为{}1,2 ①所求实数a 的取值范围是3a <-. 【点睛】关键点睛:解决问题二的关键在于由交集运算AB B =,推理得出B A ⊆,在判断B 不可能为{}1,2时,主要是根据根与系数的关系,列出方程组,由方程组无解进行判断.18.(本小题12分)已知命题:p x R ∀∈,()()221140a x a x -+-+>,:q x R ∃∈,()22110x a x -++< (1)若“2321t a t --≤≤-”是p 成立的充分条件,求实数t 的取值范围; (2)若p q ∧为假,p q ∨为真,求实数a .【答案】(1)1,15⎛⎫-∞- ⎪⎝⎭;(2)3171,,12152⎛⎫⎡⎫--⋃ ⎪⎪⎢⎝⎭⎣⎭【分析】(1)当命题,p q 为真时,求得a 的取值范围,“2321t a t --≤≤-”是p 成立的充分条件即[][)1723,21,1,15t t ⎛⎫---⊆-∞-⋃+∞ ⎪⎝⎭,计算求解即可;(2)p q ∧为假,p q ∨为真,即即,p q 一真一假,分情况讨论即可得出结果. 【详解】(1)命题p 为真时,1a =或()()2221014140a a a ⎧->⎪⎨∆=--⨯-⨯<⎪⎩,解得:1a =或1a >或1715a <-,综上:p 为真,a 的取值范围为[)17,1,15⎛⎫-∞-⋃+∞ ⎪⎝⎭; 命题q 为真时,()2=2140a ∆+->,解得a 的取值范围为31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭;若“2321t a t --≤≤-”是p 成立的充分条件,则[][)1723,21,1,15t t ⎛⎫---⊆-∞-⋃+∞ ⎪⎝⎭, ①2321t t -->-时,15t <-,符合题意. ①2321172115t t t --≤-⎧⎪⎨-<-⎪⎩时,即15115t t ⎧≥-⎪⎪⎨⎪<-⎪⎩,11515t -≤<-. ①2321231t t t --≤-⎧⎨--≥⎩时,151t t ⎧≥-⎪⎨⎪<-⎩,无解.综上:t 的取值范围为:1,15⎛⎫-∞-⎪⎝⎭. (2)若p q ∧为假,p q ∨为真,即,p q 一真一假:①p 真q 假:171153122a a a ⎧<-≥⎪⎪⎨⎪-<<⎪⎩或,即317215a -<<-①p 假q 真:171153122a a a ⎧-≤<⎪⎪⎨⎪≤-≥⎪⎩或,即112a ≤<.综上:实数a 的取值范围:3171,,12152⎛⎫⎡⎫--⋃ ⎪⎪⎢⎝⎭⎣⎭. 【点睛】方法点睛:根据命题的真假求參数的取值范围的方法 (1)求出当命题,p q 为真命题时所含參数的取值范围;(2)判断命题,p q 的真假性;(3)根据命题的真假情况,利用集合的交集和补集的运算,求解參数的取值范围.19.(本小题12分)(1)解这个关于x 的不等式2(1)0x a x a -++≥.(2)若不等式22253x x a a -+≥-对任意实数x 恒成立,求实数a 的取值范围. 【答案】(1)答案见解析;(2)[]1,4-. 【分析】(1)按实数a 与1的大小关系分类讨论求解即得;(2)x ∈R 时,求出225y x x =-+的最小值得关系a 的不等式,求解即可作答. 【详解】(1)原不等式可化为()(1)0x a x --≥, 1a >时,解不等式得1x ≤或x a ≥, 1a =时,不等式恒成立,即x ∈R ,1a <时,解不等式得x a ≤或1≥x ,综上:1a >时解集为{1xx ≤∣或}x a ≥,1a =时解集为R ,1a <时解集为{x x a ≤或}1x ≥; (2)因x ∈R 时,2225(1)44x x x -+=-+≥,当且仅当1x =时取“=”,又不等式22253x x a a -+≥-对任意实数x 恒成立,即有243a a ≥-,解得14a -≤≤, 所以实数a 的取值范围[]1,4-.20.(本小题12分)已知35log 2,log 3a b ==,试用a ,b 分别表示下列各式: (1)2log 5; (2)lg 2; (3)20log 45. 【答案】(1)1ab ;(2)1+ab ab ;(3)1212++b ab【分析】(1)根据换底公式进行换底即可得到答案; (2)根据换底公式和对数的运算性质即可得到答案; (3)根据换底公式和对数的运算性质即可得到答案. 【详解】解:(1)535233log 5115log 31log 5log 2log 2og b a ab====; (2)33335333335log 2log 2log 2log 2lg 2log 51log 10log (25)log 2log 51log 2log 3a abab a b ======⨯++++;(3)()33333320333333log 45log (59)log 5log 9log 5log (33)log 45log 20log 45log 4log 5log (22)log 5⨯++⨯====⨯+⨯+5333553335log 512log 32log 52log 3log 312log 512log 2log 51222log 2log 3b b aba b ++++====++++. 【点睛】本题主要考查换底公式和对数的运算性质,考查学生的计算能力和公式的应用能力,属于基础题.21.(本小题12分)已知函数()f x 是R 上的偶函数,函数()g x 是R 上的奇函数,且()(1)g x f x =+, (1)证明:()f x 为周期函数;(2)当10x -≤<时,()ln(1)g x x =--,求(2022)f 的值. 【答案】(1)见解析(2)ln 2 【分析】(1)由奇偶性性质得出(1)()g x f x +=-,(1)(2)g x f x +=+,进而得出()(2)f x f x -=+,(4)()f x f x +=,从而证明()f x 为周期函数;(2)由数()f x 是周期为4的周期函数,结合()(1)g x f x =+求出(2022)f 的值. 【详解】 (1)()(1)g x f x =+,(1)(2)g x f x ∴+=+,(1)()g x f x --=-函数()f x 是R 上的偶函数,函数()g x 是R 上的奇函数,(1)()g x f x ∴+=- 即()(2)f x f x -=+(4)(2)()f x f x f x ∴+=-+=即函数()f x 是周期为4的周期函数 (2)函数()f x 是周期为4的周期函数∴(2022)(50542)(2)(1)(1)ln 2f f f g g =⨯+===--=22.(本小题12分)已知定义域为R 的单调减函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()0f 的值; (2)求()f x 的解析式;(3)若任意t ∈R ,不等式()()22220f t t f t k -+-<恒 成立,求实数k 的取值范围.【答案】(1)()00f =;(2)()2,030,0,2,0.3xx x x f x x xx -⎧->⎪⎪==⎨⎪⎪+<⎩;(3)1,3⎛⎫-∞- ⎪⎝⎭.【分析】(1)利用函数奇函数的性质求()0f 的值;(2)利用函数是奇函数,求0x <的解析式,即得函数的解析式;(3)利用函数是奇函数,变形为()()2222f t t f k t -<-,再利用函数的单调性,解抽象不等式,利用不等式恒成立,求参数的取值范围. 【详解】解:(1)因为定义域为R 的函数()f x 是奇函数, 所以()00f =.(2)因为当0x <时,0x ->,所以()23xx f x ---=-, 又因为函数()f x 是奇函数,所以()()f x f x -=-,所以()23x xf x -=+, 综上,()2,030,0,2,0.3xx x x f x x xx -⎧->⎪⎪==⎨⎪⎪+<⎩ (3)由()()22220f t t f t k -+-<,得()()2222f t t f t k -<--, 因为()f x 是奇函数,所以()()2222f t t f k t-<-,又()f x 在R 上是减函数,所以2222t t k t ->-, 即2320t t k -->对任意t ∈R 恒成立, 令2320t t k --=,则4120k ∆=+<, 由∆<0,解得13k <-, 故实数k 的取值范围为1,3⎛⎫-∞- ⎪⎝⎭.。
2018版高三数学文一轮复习能力大提升 第六章数列 含答
第六章 数 列考点1 数列的概念及简单表示法1.(2014·新课标全国Ⅱ,16)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.1.解析 将a 8=2代入a n +1=11-a n,可求得a 7=12;再将a 7=12代入a n +1=11-a n ,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2. 由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案 122.(2014·江西,17)已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列. 2. (1)解 由S n =3n 2-n2,得a 1=S 1=1,当n ≥2时,a n =S n -S n -1=3n -2, 所以数列{a n }的通项公式为:a n =3n -2.(2)证明 要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m , 即(3n -2)2=1·(3m -2),即m =3n 2-4n +2, 而此时m ∈N *,且m >n .所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.3.(2014·湖南,16)已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.3.解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n , 则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.考点2 等差数列及其前n 项和1.(2015·新课标全国Ⅰ,7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( ) A.172B.192C.10D.12 1.解析 由S 8=4S 4知,a 5+a 6+a 7+a 8=3(a 1+a 2+a 3+a 4), 又d =1,∴a 1=12,a 10=12+9×1=192.答案 B2.(2015·新课标全国Ⅱ,5)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A.5 B.7 C.9 D.112.解析 ∵{a n }为等差数列,∴a 1+a 5=2a 3, ∴a 1+a 3+a 5=3a 3=3,得a 3=1, ∴S 5=5(a 1+a 5)2=5a 3=5.故选A.答案 A3.(2014·天津,5)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ) A.2 B.-2 C.12D.-123.解析 由S 1=a 1,S 2=2a 1-1,S 4=4a 1-6成等比数列可得(2a 1-1)2=a 1(4a 1-6), 解得a 1=-12.答案 D4.(2014·新课标全国Ⅱ,5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A.n (n +1) B.n (n -1)C2)1(+n n D 2)1(-n n 4.解析 因为a 2,a 4,a 8成等比数列,所以a 24=a 2·a 8, 所以(a 1+6)2=(a 1+2)·(a 1+14),解得a 1=2. 所以S n =na 1+n (n -1)2d =n (n +1).故选A.答案 A5.(2014·重庆,2)在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A.5 B.8 C.10 D.145.解析 由等差数列的性质得a 1+a 7=a 3+a 5, 因为a 1=2,a 3+a 5=10,所以a 7=8,选B. 答案 B6.(2015·安徽,13)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.6.解析 由已知数列{a n }是以1为首项,以12为公差的等差数列.∴S 9=9×1+9×82×12=9+18=27.答案 277.(2015·陕西,13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________7.解析 由题意设首项为a 1, 则a 1+2 015=2×1 010=2 020, ∴a 1=5. 答案 58.(2014·江西,13)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.8.解析 由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案⎝⎛⎭⎫-1,-789.(2016·新课标全国Ⅱ,17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0, [2.6]=2.9.解(1)设数列{a n }的公差为d ,由题意有2a 1+5d =4,a 1+5d =3, 解得a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎡⎦⎤2n +35.当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.(2014·大纲全国,17)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.10.(1)证明由a n +2=2a n +1-a n +2得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. (2)解由(1)得b n =1+2(n -1),即a n +1-a n =2n -1. 于是111()(21)nnk k k k aa k +==-=-∑∑,所以a n +1-a 1=n 2,即a n +1=n 2+a 1. 又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.11.(2014·浙江,19)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36. (1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 11.解(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)·(k +1), 所以(2m +k -1)(k +1)=65.由m ,k ∈N *知2m +k -1>k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,所以⎩⎪⎨⎪⎧m =5,k =4.12.(2014·重庆,16)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0.求{b n }的通项公式及其前n 项和T n .12.解(1)因为{a n }是首项a 1=1,公差d =2的等差数列, 所以a n =a 1+(n -1)d =2n -1. 故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q =23(4n-1).考点3 等比数列及其前n 项和1.(2015·新课标全国Ⅱ,9)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A.2B.1C.12D.181.解析 由{a n }为等比数列,得a 3a 5=a 24, 所以a 24=4(a 4-1),解得a 4=2.设等比数列{a n }的公比为q ,则a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.选C.答案 C2.(2014·大纲全国,8)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A.31 B.32 C.63 D.642.解析 方法一 设等比数列{a n }的首项为a 1,公比为q . 若q =1,则有S n =na 1,显然不符合题意,故q ≠1.由已知可得⎩⎪⎨⎪⎧S 2=a 1(1-q 2)1-q=3,S 4=a 1(1-q 4)1-q =15,两式相除得1+q 2=5,解得q 2=4.故q =2或q =-2.若q =2,代入解得a 1=1,此时S 6=a 1(1-q 6)1-q =1×(1-26)1-2=63.若q =-2,代入解得a 1=-3,此时S 6=a 1(1-q 6)1-q =(-3)×[1-(-2)6]1-(-2)=63.故选C.方法二 因为数列{a n }为等比数列,若q =1,则有S n =na 1,显然不符合题意,故q ≠1. 设其前n 项和为S n =Aq n -A .由题意可得⎩⎪⎨⎪⎧S 2=A ×q 2-A =3S 4=A ×q 4-A =15,两式相除得1+q 2=5, 解得q 2=4,代入解得A =1. 故S n =q n -1.所以S 6=q 6-1=(q 2)3-1=43-1=63.故选C. 方法三 设等比数列的公比为q .则S 2=a 1+a 2=3,S 4=a 1+a 2+a 3+a 4=(1+q 2)(a 1+a 2)=(1+q 2)×3=15, 解得q 2=4.故S 6=a 1+a 2+a 3+a 4+a 5+a 6=(1+q 2+q 4)(a 1+a 2)=(1+4+42)×3=63.故选C. 答案 C3.(2015·新课标全国Ⅰ,13)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.3.解析 由a n +1=2a n 知,数列{a n }是以a 1=2为首项,q =2为公比的等比数列, 由S n =2(1-2n )1-2=126,解得n =6.答案 64.(2015·广东,13)若三个正数a ,b ,c 成等比数列,其中a =5+26,c =5-26,则b =________. 4.解析 ∵三个正数a ,b ,c 成等比数列, ∴b 2=ac =(5+26)(5-26)=1. ∵b 为正数,∴b =1. 答案 15.(2014·广东,13)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.5.解析 由等比数列的性质可知a 1a 5=a 2a 4=a 23, 于是由a 1a 5=4得a 3=2,故a 1a 2a 3a 4a 5=32,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 232=5. 答案 56.(2016·新课标全国Ⅲ,17)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式. 6.解(1)由题意得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.7.(2016·北京,15)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和. 7.解(1)设数列{a n }的公差为d ,{b n }的公比为q ,由⎩⎪⎨⎪⎧b 2=b 1q =3,b 3=b 1q 2=9得⎩⎪⎨⎪⎧b 1=1,q =3. ∴{b n }的通项公式b n =b 1q n -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴{a n }的通项公式a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…). (2)设数列{c n }的前n 项和为S n . ∵c n =a n +b n =2n -1+3n -1,∴S n =c 1+c 2+c 3+…+c n=2×1-1+30+2×2-1+31+2×3-1+32+…+2n -1+3n -1=2(1+2+…+n )-n +30×(1-3n )1-3=2×(n +1)n 2-n +3n -12=n 2+3n -12.即数列{c n }的前n 项和为n 2+3n -12.8.(2015·四川,16)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求T n .8.解(1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2),从而a 2=2a 1,a 3=2a 2=4a 1,又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2n . (2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n 1-12=1-12n .9.(2014·北京,15)已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.9.解(1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1,b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…),数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n 1-2=2n -1,所以数列{b n }的前n 项和为32n (n +1)+2n -1.10.(2014·福建,17)在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .10.解(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3.所以a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2.考点4 数列的综合应用1.(2015·江苏,11)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.1.2011解析 ∵a 1=1,a n +1-a n =n +1, ∴a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,将以上n -1个式子相加得a n -a 1=2+3+…+n =(2+n )(n -1)2,即a n =n (n +1)2,令b n =1a n ,故b n =2n (n +1)=2⎣⎡⎦⎤1n -1n +1,故S 10=b 1+b 2+…+b 10=2⎣⎡⎦⎤1-12+12-13+…+110-111=2011.2.(2015·浙江,10)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________. 2.解析 ∵a 2,a 3,a 7成等比数列,∴a 23=a 2a 7,即(a 1+2d )2=(a 1+d )(a 1+6d ),∴a 1=-23d ,∵2a 1+a 2=1,∴2a 1+a 1+d =1,即3a 1+d =1, ∴a 1=23,d =-1.答案 23-13.(2016·新课标全国Ⅰ,17)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a nb n +1+b n +1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.3.解(1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2.所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n -1. (2)由(1)和a n b n +1+b n +1=nb n 得b n +1=b n3,所以{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1-⎝⎛⎭⎫13n1-13=32-12×3n -1. 4.(2016·浙江,17)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.4.解(1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3. 又当n ≥2时,a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n . 所以数列{a n }的通项公式为a n =3n -1,n ∈N *. (2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1,当n ≥3时,因为3n -1>n +2, 所以b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,所以T n =⎩⎪⎨⎪⎧2, n =1,3n -n 2-5n +112,n ≥2,n ∈N *. 5.(2016·山东,19)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n.求数列{c n }的前n 项和T n .5.解(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式. 所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得b 1=4,d =3. 所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1.. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2=-3n ·2n +2. 所以T n =-3n ·2n +2.6.(2016·四川,19)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1, 其中q >0,n ∈N *.(1)若a 2,a 3,a 2+a 3成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n=1的离心率为e n ,且e 2=2,求e 21+e 22+…+e 2n . 6.解 (1)由已知,S n +1=qS n +1,S n +2=qS n +1+1, 两式相减得到a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得到a 2=qa 1,故a n +1=qa n 对所有n ≥1都成立. 所以数列{a n }是首项为1,公比为q 的等比数列,a n =q n -1. 由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+a 2+a 3, 所以a 3=2a 2,q =2, 所以a n =2n -1(n ∈N *).(2)由(1)可知,a n =q n -1,所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q 2(n -1). 由e 2=1+q 2=2解得q =3,所以e 21+e 22+…+e 2n=(1+1)+(1+q 2)+…+[1+q 2(n -1)]=n +[1+q 2+…+q 2(n-1)]=n +q 2n -1q 2-1=n +12(3n -1).7.(2015·北京,16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等? 7.解(1)设等差数列{a n }的公差为d , 因为a 4-a 3=2,所以d =2. 又因为a 1+a 2=10, 所以2a 1+d =10,故a 1=4.所以a n =4+2(n -1)=2n +2(n =1,2,…). (2)设等比数列{b n }的公比为q , 因为b 2=a 3=8,b 3=a 7=16, 所以q =2,b 1=4. 所以b 6=4×26-1=128. 由128=2n +2,得n =63, 所以b n 与数列{a n }的第63项相等.8.(2015·重庆,18)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 8.解(1)设{a n }的公差为d ,则由已知条件得a 1+2d =2,3a 1+3×22d =92,化简得a 1+2d =2,a 1+d =32,解得a 1=1,d =12,故通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n-1.9.(2015·广东,19)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式.9.(1)解当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝⎛⎭⎫1+32+54+a 4+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1,解得:a 4=78. (2)证明因为4S n +2+5S n =8S n +1+S n -1(n ≥2),所以4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2),即4a n +2+a n =4a n +1(n ≥2), 因为4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,因为a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.(3)解由(2)知;数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12公比为的等比数列,所以a n +1-12a n =⎝⎛⎭⎫12n -1,即a n +1⎝⎛⎭⎫12n +1-a n ⎝⎛⎭⎫12n =4, 所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n ⎝⎛⎭⎫12n 是以a 112=2为首项,4为公差的等差数列,所以a n⎝⎛⎭⎫12n =2+(n -1)×4=4n -2,即a n =(4n -2)×⎝⎛⎭⎫12n=(2n -1)×⎝⎛⎭⎫12n -1,所以数列{a n }的通项公式是a n =(2n -1)×⎝⎛⎭⎫12n -1.10.(2015·湖北,19)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q , 已知b 1=a 1,b 2=2,q =d ,S 10=100. (1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .10.解(1)由题意有⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1.11.(2015·安徽,18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .11.解(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.(2)S n =a 1(1-q n )1-q =2n -1,又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以T n =b 1+b 2+…+b n =⎝⎛⎭⎫1S 1-1S 2+⎝⎛⎭⎫1S 2-1S 3+…+⎝⎛⎭⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.12.(2015·福建,17)在等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值. 12.解(1)设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d =4,(a 1+3d )+(a 1+6d )=15,解得⎩⎪⎨⎪⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n +n , 所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2(1-210)1-2+(1+10)×102=(211-2)+55 =211+53=2 101.13.(2015·天津,18)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1, b 2+b 3=2a 3,a 5-3b 2=7. (1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.13.解(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,又因为q >0,解得q =2,所以d =2.所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *.(2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n , 则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n , 两式相减得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)×2n =-(2n -3)×2n -3,所以S n =(2n -3)·2n +3,n ∈N *.14.(2015·山东,19)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n2n +1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 14.解(1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13,所以a 1a 2=3.令n =2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.解得a 1=1,d =2,所以a n =2n -1. (2)由(1)知b n =2n ·22n -1=n ·4n , 所以T n =1·41+2·42+…+n ·4n , 所以4T n =1·42+2·43+…+n ·4n +1, 两式相减得,-3T n =41+42+…+4n-n ·4n +1=4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43.所以T n =3n -19×4n +1+49=4+(3n -1)4n +19.15.(2015·浙江,17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n +1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . 15.解(1)由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知:当n =1时,b 1=b 2-1,故b 2=2.当n ≥2时,1n b n =b n +1-b n ,整理得b n +1n +1=b n n ,所以b n =n (n ∈N *).(2)由(1)知a n b n =n ·2n .因此T n =2+2·22+3·23+…+n ·2n , 2T n =22+2·23+3·24+…+n ·2n +1, 所以T n -2T n =2+22+23+…+2n -n ·2n +1. 故T n =(n -1)2n +1+2(n ∈N *).16.(2015·湖南,19)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S n .16.(1)证明由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3, 因而对任意n ≥2,n ∈N *,有a n +1=3S n -1-S n +3. 两式相减得,a n +2-a n +1=3a n -a n +1,即a n +2=3a n ,n ≥2. 又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n ∈N *,a n +2=3a n . (2)解由(1)知,a n ≠0,所以a n +2a n=3,所以数列{a 2n -1}是首项a 1=1,公比为3等比数列; 数列{a 2n }是首项a 2=2,公比为3的等比数列, 所以a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=3(3n -1)2.所以S 2n -1=S 2n -a 2n =3(3n -1)2-2×3n -1=32(5×3n -2-1).综上所述,S n=⎩⎨⎧32(5×3n -32-1),当n 是奇数,32(3n2-1),当n 是偶数.17.(2014·安徽,18)数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *. (1)证明:数列{a nn}是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n . 17.(1)证明由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1.所以{a n n }是以a 11=1为首项,1为公差的等差数列.(2)解由(1)得a nn =1+(n -1)·1=n ,所以a n =n 2,b n =n ·3n .S n =1·31+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+…+(n -1)·3n +n ·3n +1.②①-②得,-2S n =31+32+…+3n -n ·3n +1 =3·(1-3n )1-3-n ·3n +1=(1-2n )·3n +1-32.所以S n =(2n -1)·3n +1+34.18.(2014·新课标全国Ⅰ,17)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列{a n2n }的前n 项和.18.解(1)方程x 2-5x +6=0的两根为2,3,由题意得a 2=2,a 4=3. 设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12, a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设数列{a n2n }的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2. 两式相减得12S n =34+⎝⎛⎭⎫123+…+12n +1-n +22n +2=34+14⎝⎛⎭⎫1-12n -1-n +22n +2. 所以S n =2-n +42n +1.19.(2014·山东,19)在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式;(2)设b n =(1)2n n a +,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .19.解(1)由题意知(a 1+d )2=a 1(a 1+3d ),即(a 1+2)2=a 1(a 1+6),解得a 1=2. 所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ×(n +1). 因为b n +1-b n =2(n +1),所以可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n ) =4+8+12+…+2n =n2(4+2n )2=n (n +2)2;当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.20.(2014·广东,19)设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有1a 1 a 1+1 +1a 2 a 2+1 +…+1a n a n +1 <13.20(1)解由题意知,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *. 令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0,可得S 21+S 1-6=0,解得S 1=-3或S 1=2,即a 1=-3或a 1=2, 又a n 为正数,所以a 1=2.(2)解由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *可得(S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n =-3,又数列{a n }的各项均为正数,所以S n =n 2+n ,S n -1=(n -1)2+(n -1), 所以当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n . 又a 1=2=2×1,所以a n =2n .(3)证明当n =1时,1a 1(a 1+1)=12×3=16<13成立;当n ≥ 2时,1a n (a n +1)=12n (2n +1)<1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<16+12⎣⎡⎦⎤⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =16+12⎝⎛⎭⎫13-12n +1<16+16=13. 所以对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.。
高三数学一轮复习每日一练7(解析版)
每日一练7 1.若函数()1222-=--a ax x x f 的定义域为R ,则实数a 的取值范围 。
[]0,1-2.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( A ) A .1 B .2 C .3 D .43.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( A ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位 4.已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( )A .9B .8 C. 7 D .65.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( )A .2B .3C .4D .56.已知函数c bx x ax x f -+=44ln )((x>0)在x = 1处取得极值c --3,其中a,b,c 为常数。
(1)试确定a,b 的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式22)(c x f -≥恒成立,求c 的取值范围。
解:(I )由题意知(1)3f c =--,因此3b c c -=--,从而3b =-.又对()f x 求导得()34341ln 4'bx xax x ax x f +⋅+=3(4ln 4)x a x a b =++. 由题意(1)0f '=,因此40a b +=,解得12a =.(II )由(I )知3()48ln f x x x '=(0x >),令()0f x '=,解得1x =.当01x <<时,()0f x '<,此时()f x 为减函数;当1x >时,()0f x '>,此时()f x 为增函数.因此()f x 的单调递减区间为(01),,而()f x 的单调递增区间为(1)+,∞. (III )由(II )知,()f x 在1x =处取得极小值(1)3f c =--,此极小值也是最小值,要使2()2f x c -≥(0x >)恒成立,只需232c c ---≥.即2230c c --≥,从而(23)(1)0c c -+≥, 解得32c ≥或1c -≤.所以c 的取值范围为3(1]2⎡⎫-∞-+∞⎪⎢⎣⎭,,.。
2023年高考数学一轮复习第六章数列3等比数列练习含解析
等比数列考试要求 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.了解等比数列与指数函数的关系.知识梳理1.等比数列的有关概念(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的性质(1)通项公式的推广:a n =a m ·qn -m(m ,n ∈N *).(2)对任意的正整数m ,n ,p ,q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k .(3)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列(m 为偶数且q =-1除外). (4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k. (5)若⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1,则等比数列{a n }递增.若⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1,则等比数列{a n }递减.常用结论1.若数列{a n },{b n }(项数相同)是等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 也是等比数列. 2.等比数列{a n }的通项公式可以写成a n =cq n,这里c ≠0,q ≠0. 3.等比数列{a n }的前n 项和S n 可以写成S n =Aq n-A (A ≠0,q ≠1,0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)等比数列的公比q 是一个常数,它可以是任意实数.( × ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( × )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a 1-a n1-a.( × )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × ) 教材改编题1.已知{a n }是等比数列,a 2=2,a 4=12,则公比q 等于( )A .-12B .-2C .2D .±12答案 D解析 设等比数列的公比为q , ∵{a n }是等比数列,a 2=2,a 4=12,∴a 4=a 2q 2,∴q 2=a 4a 2=14,∴q =±12.2.在各项均为正数的等比数列{a n }中,a 1a 11+2a 6a 8+a 3a 13=25,则a 6+a 8=______. 答案 5解析 ∵{a n }是等比数列, 且a 1a 11+2a 6a 8+a 3a 13=25, ∴a 26+2a 6a 8+a 28=(a 6+a 8)2=25. 又∵a n >0,∴a 6+a 8=5.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为________. 答案 1,3,9或9,3,1解析 设这三个数为a q,a ,aq ,则⎩⎪⎨⎪⎧a +aq +aq =13,a ·aq ·aq =27,解得⎩⎪⎨⎪⎧a =3,q =13或⎩⎪⎨⎪⎧a =3,q =3,∴这三个数为1,3,9或9,3,1.题型一 等比数列基本量的运算例1 (1)(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S na n等于( ) A .2n-1 B .2-21-nC .2-2n -1D .21-n-1答案 B解析 方法一 设等比数列{a n }的公比为q , 则q =a 6-a 4a 5-a 3=2412=2. 由a 5-a 3=a 1q 4-a 1q 2=12a 1=12,得a 1=1. 所以a n =a 1qn -1=2n -1,S n =a 11-q n 1-q =2n-1,所以S n a n =2n -12n -1=2-21-n.方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12,①a 4q 2-a 4=24,②②①得a 4a 3=q =2. 将q =2代入①,解得a 3=4. 所以a 1=a 3q2=1,下同方法一.(2)(2019·全国Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.答案1213解析 设等比数列{a n }的公比为q , 因为a 24=a 6,所以(a 1q 3)2=a 1q 5, 所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 11-q 51-q=13×1-351-3=1213. 教师备选1.已知数列{a n }为等比数列,a 2=6,6a 1+a 3=30,则a 4=________. 答案 54或24解析 由⎩⎪⎨⎪⎧ a 1·q =6,6a 1+a 1·q 2=30,解得⎩⎪⎨⎪⎧q =3,a 1=2或⎩⎪⎨⎪⎧q =2,a 1=3,a 4=a 1·q 3=2×33=54或a 4=3×23=3×8=24.2.已知数列{a n }为等比数列,其前n 项和为S n ,若a 2a 6=-2a 7,S 3=-6,则a 6等于( ) A .-2或32 B .-2或64 C .2或-32 D .2或-64答案 B解析 ∵数列{a n }为等比数列,a 2a 6=-2a 7=a 1a 7,解得a 1=-2,设数列的公比为q ,S 3=-6=-2-2q -2q 2, 解得q =-2或q =1,当q =-2时,则a 6=(-2)6=64, 当q =1时,则a 6=-2.思维升华 (1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q 1-q.跟踪训练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( )A .2B .3C .4D .5 答案 C解析 a 1=2,a m +n =a m a n , 令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,q =2为公比的等比数列, ∴a n =2×2n -1=2n.又∵a k +1+a k +2+…+a k +10=215-25, ∴2k +11-2101-2=215-25,即2k +1(210-1)=25(210-1),∴2k +1=25,∴k +1=5,∴k =4.(2)(2020·新高考全国Ⅱ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. ①求{a n }的通项公式; ②求a 1a 2-a 2a 3+…+(-1)n -1a n a n +1.解 ①设{a n }的公比为q (q >1).由题设得⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32(舍去).所以{a n }的通项公式为a n =2n,n ∈N *. ②由于(-1)n -1a n a n +1=(-1)n -1×2n ×2n +1=(-1)n -122n +1,故a 1a 2-a 2a 3+…+(-1)n -1a n a n +1=23-25+27-29+…+(-1)n -1·22n +1=23[1--22n]1--22=85-(-1)n 22n +35. 题型二 等比数列的判定与证明例2 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. 解 (1)由条件可得a n +1=2n +1na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列, 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a nn=2n -1,所以a n =n ·2n -1.教师备选已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n . (1)证明:数列{a n +a n +1}为等比数列; (2)若a 1=12,a 2=32,求{a n }的通项公式.(1)证明 a n +2=2a n +1+3a n , 所以a n +2+a n +1=3(a n +1+a n ), 因为{a n }中各项均为正数, 所以a n +1+a n >0,所以a n +2+a n +1a n +1+a n=3,所以数列{a n +a n +1}是公比为3的等比数列. (2)解 由题意知a n +a n +1=(a 1+a 2)3n -1=2×3n -1,因为a n +2=2a n +1+3a n ,所以a n +2-3a n +1=-(a n +1-3a n ),a 2=3a 1, 所以a 2-3a 1=0,所以a n +1-3a n =0, 故a n +1=3a n , 所以4a n =2×3n -1,a n =12×3n -1.思维升华 等比数列的三种常用判定方法 (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则{a n }是等比数列. (3)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.跟踪训练2 S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0.(1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明理由.解 (1)易知q ≠1,由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 11-q31-q=13,q >0,解得a 1=1,q =3, ∴a n =3n -1,S n =1-3n 1-3=3n-12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列, ∵S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13, ∴(λ+4)2=(λ+1)(λ+13), 解得λ=12,此时S n +12=12×3n,则S n +1+12S n +12=12×3n +112×3n=3,故存在常数λ=12,使得数列⎩⎨⎧⎭⎬⎫S n +12是以32为首项,3为公比的等比数列.题型三 等比数列的性质例3 (1)若等比数列{a n }中的a 5,a 2019是方程x 2-4x +3=0的两个根,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2023等于( ) A.20243 B .1011 C.20232D .1012答案 C解析 由题意得a 5a 2019=3, 根据等比数列性质知,a 1a 2023=a 2a 2022=…=a 1011a 1013=a 1012a 1012=3,于是a 1012=123,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2023 =log 3(a 1a 2a 3…a 2023)11011232023=l 3·og 3.2⎛⎫= ⎪⎝⎭(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于( )A .40B .60C .32D .50 答案 B解析 数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列, 即4,8,S 9-S 6,S 12-S 9是等比数列, ∴S 12=4+8+16+32=60. 教师备选1.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=__________. 答案 73解析 设等比数列{a n }的公比为q ,易知q ≠-1,由等比数列前n 项和的性质可知S 3,S 6-S 3,S 9-S 6仍成等比数列,∴S 6-S 3S 3=S 9-S 6S 6-S 3, 又由已知得S 6=3S 3, ∴S 9-S 6=4S 3, ∴S 9=7S 3,∴S 9S 6=73. 2.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________. 答案 2解析 由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2. 思维升华 (1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2022·安康模拟)等比数列{a n }的前n 项和为S n ,若S 10=1,S 30=7,则S 40等于( )A .5B .10C .15D .-20 答案 C解析 易知等比数列{a n }的前n 项和S n 满足S 10,S 20-S 10,S 30-S 20,S 40-S 30,…成等比数列.设{a n }的公比为q ,则S 20-S 10S 10=q 10>0,故S 10,S 20-S 10,S 30-S 20,S 40-S 30,…均大于0. 故(S 20-S 10)2=S 10·(S 30-S 20),即(S 20-1)2=1·(7-S 20)⇒S 220-S 20-6=0. 因为S 20>0,所以S 20=3.又(S 30-S 20)2=(S 20-S 10)(S 40-S 30), 所以(7-3)2=(3-1)(S 40-7),故S 40=15.(2)在等比数列{a n }中,a n >0,a 1+a 2+a 3+…+a 8=4,a 1a 2·…·a 8=16,则1a 1+1a 2+…+1a 8的值为( ) A .2 B .4 C .8 D .16答案 A解析 ∵a 1a 2…a 8=16, ∴a 1a 8=a 2a 7=a 3a 6=a 4a 5=2,∴1a 1+1a 2+…+1a 8=⎝ ⎛⎭⎪⎫1a 1+1a 8+⎝ ⎛⎭⎪⎫1a 2+1a 7+⎝ ⎛⎭⎪⎫1a 3+1a 6+⎝ ⎛⎭⎪⎫1a 4+1a 5=12(a 1+a 8)+12(a 2+a 7)+12(a 3+a 6)+12(a 4+a 5) =12(a 1+a 2+…+a 8)=2. 课时精练1.(2022·合肥市第六中学模拟)若等比数列{a n }满足a 1+a 2=1,a 4+a 5=8,则a 7等于( ) A.643B .-643C.323 D .-323答案 A解析 设等比数列{a n }的公比为q , 则a 4+a 5a 1+a 2=q 3=8, 所以q =2,又a 1+a 2=a 1(1+q )=1, 所以a 1=13,所以a 7=a 1×q 6=13×26=643.2.已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A .2B .4C.92D .6答案 B解析 根据等比数列的性质得a 3a 5=a 24, ∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2. 又∵a 1=1,a 1a 7=a 24=4,∴a 7=4.3.(2022·开封模拟)等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( )A.13B .-13C.19D .-19 答案 B解析 由等比数列前n 项和的性质知,S n =32n -1+r =13×9n +r ,∴r =-13.4.(2022·天津北辰区模拟)我国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第四天走的路程为( ) A .6里 B .12里 C .24里 D .48里答案 C解析 由题意可知,该人所走路程形成等比数列{a n },其中q =12,因为S 6=a 1⎝⎛⎭⎪⎫1-1261-12=378,解得a 1=192,所以a 4=a 1·q 3=192×18=24.5.(多选)设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{a n a n +1}是公比为q 2的等比数列 B .数列{a n +a n +1}是公比为q 的等比数列 C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q的等比数列答案 AD 解析 对于A ,由a n a n +1a n -1a n=q 2(n ≥2)知数列{a n a n +1}是公比为q 2的等比数列; 对于B ,当q =-1时,数列{a n +a n +1}的项中有0,不是等比数列; 对于C ,当q =1时,数列{a n -a n +1}的项中有0,不是等比数列;对于D ,1a n +11a n=a n a n +1=1q, 所以数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列.6.(多选)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=2S n (n ∈N *),则有( ) A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2答案 ABD解析 由题意,数列{a n }的前n 项和满足a n +1=2S n (n ∈N *), 当n ≥2时,a n =2S n -1,两式相减,可得a n +1-a n =2(S n -S n -1)=2a n , 可得a n +1=3a n ,即a n +1a n=3(n ≥2), 又a 1=1,则a 2=2S 1=2a 1=2,所以a 2a 1=2, 所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2.当n ≥2时,S n =a n +12=2·3n -12=3n -1,又S 1=a 1=1,适合上式, 所以数列{a n }的前n 项和为S n =3n -1,又S n +1S n =3n3n -1=3, 所以数列{S n }为首项为1,公比为3的等比数列,综上可得选项ABD 是正确的.7.(2022·嘉兴联考)已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则a 1=________. 答案 1解析 由于S 3=7,S 6=63知公比q ≠1, 又S 6=S 3+q 3S 3, 得63=7+7q 3. ∴q 3=8,q =2.由S 3=a 11-q 31-q =a 11-81-2=7,得a 1=1.8.已知{a n }是等比数列,且a 3a 5a 7a 9a 11=243,则a 7=________;若公比q =13,则a 4=________.答案 3 81解析 由{a n }是等比数列, 得a 3a 5a 7a 9a 11=a 57=243, 故a 7=3,a 4=a 7q3=81.9.(2022·徐州模拟)已知等差数列{a n }的公差为2,其前n 项和S n =pn 2+2n ,n ∈N *. (1)求实数p 的值及数列{a n }的通项公式;(2)在等比数列{b n }中,b 3=a 1,b 4=a 2+4,若{b n }的前n 项和为T n ,求证:数列⎩⎨⎧⎭⎬⎫T n +16为等比数列. (1)解 S n =na 1+n n -12d =na 1+n (n -1)=n 2+(a 1-1)n , 又S n =pn 2+2n ,n ∈N *, 所以p =1,a 1-1=2,即a 1=3, 所以a n =3+2(n -1)=2n +1.(2)证明 因为b 3=a 1=3,b 4=a 2+4=9, 所以q =3, 所以b n =b 3·q n -3=3n -2,所以b 1=13,所以T n =131-3n1-3=3n-16,所以T n +16=3n 6,又T 1+16=12,所以T n +16T n -1+16=3n 63n -16=3(n ≥2),所以数列⎩⎨⎧⎭⎬⎫T n +16是以12为首项,3为公比的等比数列.10.(2022·威海模拟)记数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +1.设b n =a n +1-2a n .(1)求证:数列{b n }为等比数列;(2)设c n =|b n -100|,T n 为数列{c n }的前n 项和.求T 10. (1)证明 由S n +1=4a n +1, 得S n =4a n -1+1(n ≥2,n ∈N *), 两式相减得a n +1=4a n -4a n -1(n ≥2), 所以a n +1-2a n =2(a n -2a n -1), 所以b n b n -1=a n +1-2a na n -2a n -1=2a n -2a n -1a n -2a n -1=2(n ≥2),又a 1=1,S 2=4a 1+1, 故a 2=4,a 2-2a 1=2=b 1≠0,所以数列{b n }为首项与公比均为2的等比数列. (2)解 由(1)可得b n =2·2n -1=2n,所以c n =|2n-100|=⎩⎪⎨⎪⎧100-2n,n ≤6,2n-100,n >6,所以T 10=600-(21+22+…+26)+27+28+29+210-400 =200-21-261-2+27+28+29+210=200+2+28+29+210=1 994.11.(多选)(2022·滨州模拟)已知S n 是数列{a n }的前n 项和,且a 1=a 2=1,a n =a n -1+2a n -2(n ≥3),则下列结论正确的是( )A .数列{a n +1+a n }为等比数列B .数列{a n +1-2a n }为等比数列C .a n =2n +1+-1n3D .S 20=23(410-1)答案 ABD解析 因为a n =a n -1+2a n -2(n ≥3), 所以a n +a n -1=2a n -1+2a n -2=2(a n -1+a n -2), 又a 1+a 2=2≠0,所以{a n +a n +1}是等比数列,A 正确;同理a n -2a n -1=a n -1+2a n -2-2a n -1=-a n -1+2a n -2=-(a n -1-2a n -2),而a 2-2a 1=-1, 所以{a n +1-2a n }是等比数列,B 正确; 若a n =2n +1+-1n3,则a 2=23+-123=3,但a 2=1≠3,C 错误;由A 知{a n +a n -1}是等比数列,且公比为2,因此数列a 1+a 2,a 3+a 4,a 5+a 6,…仍然是等比数列,公比为4, 所以S 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=21-4101-4=23(410-1),D 正确. 12.(多选)(2022·黄冈模拟)设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并且满足条件a 1>1,a 7·a 8>1,a 7-1a 8-1<0.则下列结论正确的是( ) A .0<q <1B .a 7·a 9>1C .S n 的最大值为S 9D .T n 的最大值为T 7答案 AD解析 ∵a 1>1,a 7·a 8>1,a 7-1a 8-1<0, ∴a 7>1,0<a 8<1, ∴0<q <1,故A 正确;a 7a 9=a 28<1,故B 错误;∵a 1>1,0<q <1,∴数列为各项为正的递减数列, ∴S n 无最大值,故C 错误; 又a 7>1,0<a 8<1,∴T 7是数列{T n }中的最大项,故D 正确.13.(2022·衡阳八中模拟)设T n 为正项等比数列{a n }(公比q ≠1)前n 项的积,若T 2015=T 2021,则log 3a 2019log 3a 2021=________.答案 15解析 由题意得,T 2015=T 2021=T 2015·a 2016a 2017a 2018a 2019a 2020a 2021, 所以a 2016a 2017a 2018a 2019a 2020a 2021=1, 根据等比数列的性质,可得a 2016a 2021=a 2017a 2020=a 2018a 2019=1, 设等比数列的公比为q ,所以a 2016a 2021=a 20212q 5=1⇒a 2021=52,qa 2018a 2019=a 20192q=1⇒a 2019=12,q所以log 3a 2019log 3a 2021=123523log 1.5log q q14.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,……,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.答案132解析 由题意,得正方形的边长构成以22为首项,22为公比的等比数列,现已知共含有1023个正方形,则有1+2+…+2n -1=1023,所以n =10,所以最小正方形的边长为⎝⎛⎭⎪⎫2210=132.15.(多选)在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列关于“等差比数列”的判断正确的是( ) A .k 不可能为0B .等差数列一定是“等差比数列”C .等比数列一定是“等差比数列”D .“等差比数列”中可以有无数项为0 答案 AD解析 对于A ,k 不可能为0,正确;对于B ,当a n =1时,{a n }为等差数列,但不是“等差比数列”,错误;对于C ,当等比数列的公比q =1时,a n +1-a n =0,分式无意义,所以{a n }不是“等差比数列”,错误;对于D ,数列0,1,0,1,0,1,…,0,1是“等差比数列”,且有无数项为0,正确. 16.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n 项和为2n -1·3n+12.(1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,∀n ∈N *,S n ≤m 恒成立,求实数m 的最小值.解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列, 所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0, 所以q =3或q =-1,又q >1,所以q =3, 所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =2n -1·3n+12,所以a 1b 1+a 2b 2+…+a n -1b n -1=2n -3·3n -1+12(n ≥2),两式相减,得a n b n =2n ·3n -1(n ≥2),因为a n =2·3n -1,所以b n =n (n ≥2),当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式),所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列,所以S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=34⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n <34.因为∀n ∈N *,S n ≤m 恒成立, 所以m ≥34,即实数m 的最小值为34.。
高考数学一轮复习专题06 非线性回归方程(原卷版)
概率与统计 专题六:非线性回归方程一、知识储备当经验回归方程并非形如y bx a =+(,a b R ∈)时,称之为非线性经验回归方程,当两个变量不呈线性相关关系时,依据样本点的分布选择合适的曲线方程来模拟,常见的非线性经验回归方程的转换方式总结如下:建立非线性经验回归模型的基本步骤1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换(一般题目都有明显的暗示如何换元,换元成什么变量),将非线性经验回归模型转化为线性经验回归模型(特别注意:使用线性回归方程的公式,注意代入变换后的变量);4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 . 二、例题讲解1.(2022·全国高三专题练习(文))人类已经进入大数据时代.目前,数据量级已经从TB (1TB =1024GB )级别跃升到PB (1PB =1024TB ),EB (1EB =1024PB )乃至ZB (1ZB =1024EB )级别.国际数据公司(IDC )研究结果表明,2008年全球产生的数据量为0.49ZB ,2009年数据量为0.8ZB ,2010年增长到1.2ZB ,2011年数据量更是高达1.82ZB .下表是国际数据公司(IDC )研究的全球近6年每年产生的数据量(单位:ZB )及相关统计量的值:表中ln i i z y =,6116i i z z ==∑. (1)根据上表数据信息判断,方程21c xy c e =⋅(e 是自然对数的底数)更适宜作为该公司统计的年数据量y 关于年份序号x 的回归方程类型,试求此回归方程(2c 精确到0.01).(2)有人预计2022年全世界产生的数据规模将超过2011年的50倍.根据(1)中的回归方程,说明这种判断是否准确,并说明理由.参考数据: 4.5695.58e ≈, 4.5897.51e ≈,回归方程y a bx =+中,斜率最小二乘法公式为()()()1122211n niii ii i nniij i x x y y x y nxyb x x xnx====---==--∑∑∑∑,a y bx =-.2.(2022·全国高三专题练习(文))有一种速度叫中国速度,有一种骄傲叫中国高铁.中国高铁经过十几年的发展,取得了举世瞩目的成就,使我国完成了从较落后向先进铁路国的跨越式转变.中国的高铁技术不但越来越成熟,而且还走向国外,帮助不少国家修建了高铁.高铁可以说是中国一张行走的名片.截至到2021年,中国高铁运营里程已经达到3.9万公里.下表是2013年至2021年中国高铁每年的运营里程统计表,它反映了中国高铁近几年的飞速发展:根据以上数据,回答下面问题.(1)甲同学用曲线y bx a =+来拟合,并算得相关系数10.97r =,乙同学用曲线dxy ce =来拟合,并算得转化为线性回归方程所对应的相关系数10.99r =,试问哪一个更适合作为y 关于x 的回归方程类型,并说明理由;(2)根据(1)的判断结果及表中数据,求y 关于y 的回归方程(系数精确到0.01).参考公式:用最小二乘法求线性回归方程的系数公式:121()()ˆˆ,()niii nii x x y y ba y bxx x ==--==--∑∑;参考数据:882112.48,()()15.50,()42.00,i i i i i y x x y y x x ===--=-=∑∑令()()()8820.1411ln ,0.84, 6.50, 1.01, 1.15.i i i i i w y w x x w w w w e ====--=-==∑∑三、实战练习1.(2022·山东菏泽·高三二模)“十四五”是我国全面建成小康社会、实现第一个百年奋斗目标之后,乘势而上开启全面建设社会主现代化国家新征程、向第二个百年奋斗目标进军的第一个五年,实施时间为2022年到2025年.某企业为响应国家号召,汇聚科研力量,加强科技创新,准备加大研发资金投入,为了解年研发资金投入额x (单位:亿元)对年盈利额y (单位:亿元)的影响,通过对“十二五”和“十三五”规划发展10年期间年研发资金投入额i x 和年盈利额i y ()1,2,,10i =数据进行分析,建立了两个函数模型:2y x αβ=+;e x t y λ+=,其中α,β ,λ,t 均为常数,e 为自然对数的底数令2,ln i ii i u x v y ==()1,2,,10i =,经计算得如下数据:26x =,215y =,680u =, 5.36v =,()2101100i i x x=-=∑,()102122500ii u u =-=∑,()()101260i ii u uy y =--=∑,()21014ii y y =-=∑,()21014i i v v=-=∑,()()10118i i i x x v v =--=∑,问:(1)请从相关系数的角度,分析哪一个模型拟合度更好?(2)根据(1)的选择及表中数据,建立,y 关于x 的回归方程(系数精确到0.01)(3)若希望2022年盈利额y 为500亿元,请预测2022年的研发资金投入额x 为多少亿元?(结果精确到0.01)附:①相关系数r()()niix x yy --∑回归直线y bx a =+中:121()()()niii nii x x yy b x x ==--=-∑∑,a y bx =-参考数据:ln 20.693=,ln5 1.609=.2.(2022·重庆高三三模)近几年,快递业的迅速发展导致行业内竞争日趋激烈.某快递网点需了解一天中收发一件快递的平均成本y (单位:元)与当天揽收的快递件数x (单位:千件)之间的关系,对该网点近5天的每日揽件量i x (单位:千件)与当日收发一件快递的平均成本i y (单位;元)(i =1,2,3,4,5)数据进行了初步处理,得到下面的散点图及一些统计量的值.表中i i w x =,5115i i w w ==∑. (1)根据散点图判断,y a bx =+与dy c x=+哪一个适宜作为y 关于x 的回归方程类型?并根据判断结果及表中数据求出y 关于x 的回归方程;(2)各快递业为提高快递揽收量并实现总利润的增长,除了提升服务质量、提高时效保障外,价格优惠也是重要策略之一.已知该网点每天揽收快递的件数x (单位:千件)与单件快递的平均价格t (单位;元)之间的关系是()252512x t t =-≤≤,收发一件快递的利润等于单件的平均价格减去平均成本,根据(1)中建立的回归方程解决以下问题:①预测该网点某天揽收2000件快递可获得的总利润;②单件快递的平均价格t 为何值时,该网点一天内收发快递所获利润的预报值最大?附:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121nii i nii uu v vuuβ==--=-∑∑,v u αβ=-.3.(2022·安徽蚌埠二中高三模拟预测(文))自从新型冠状病毒爆发以来,美国疫情持续升级,以下是美国2021年4月9日-12月14日每隔25天统计1次共计11次累计确诊人数(万).(1)将4月9日作为第1次统计,若将统计时间序号作为变量x ,每次累计确诊人数作为变量x ,得到函数关系()0,0bxy aea b =>>,对上表的数据作初步处理,得到部分数据已作近似处理的一些统计量的值6x =,603.09y =,1111ln 5.9811i i y ==∑,()()11115835.70i i i x y x y =--=∑,()1121110i i x x=-=∑,()1121ln ln 11.90i i y y=-=∑,()()111ln ln 35.10iii x x y y =--=∑, 4.0657.97e≈, 4.0758.56e ≈, 4.0859.15e ≈,根据相关数据,确定该函数关系式(参数a ,b 的取值精确到0.01);(2)为了了解患新冠肺炎与年龄的关系,已知某地曾患新冠肺炎的老年、中年、青年的人数分别为45人,30人,15人,按分层抽样的方法随机抽取6人进行问卷调查,再从6人中随机抽取2人进行调查结果对比,求这2人中至少有一人是老年人的概率.参考公式:线性回归方程y bx a =+中,()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-;4.(2022·贵州(理))某二手车交易市场对2021年某品牌二手车的交易进行了统计,得到如图所示的频率分布直方图和散点图.用x 表示该车的使用时间(单位:年),y 表示其相应的平均交易价格(单位:万元).(Ⅰ)已知2021年在此交易市场成交的该品牌二手车为100辆,求使用时间在[]12,20的车辆数; (Ⅱ)由散点图分析后,可用bx a y e +=作为此交易市场上该种车辆的平均交易价格y 关于其使用时间x 的回归方程.表中ln z y=,1110i i z z ==∑.根据上述相关数据,求y 关于x 的回归方程.附:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为:1221ˆni i i nii u vnuv unu β==-=-∑∑,ˆˆv u αβ=-.5.(2022·河南洛阳市·高三二模(理))某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()g y 与尺寸()mm x 之间近似满足关系式b y c x =⋅(b 、c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间(),0.302,0.38897e e ⎛⎫≈ ⎪内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的期望; (2)根据测得数据作了初步处理,得相关统计量的值如表:(i )根据所给统计量,求y 关于x 的回归方程;(ii )已知优等品的收益z (单位:千元)与x 、y 的关系为20.32z y x =-,则当优等品的尺寸x 为何值时,收益z 的预报值最大? 附:对于样本()(),1,2,,n i i v u i =,其回归直线u b v a =⋅+的斜率和截距的最小二乘估计公式分别为:()()()1122211ˆn niii i i i nniii i v v u u v unvu bv v vnv====---==--∑∑∑∑,a u bv =-, 2.7182e ≈.6.(2022·全国(文))2021年新型冠状病毒肺炎疫情席卷金球,我国在全力保障口罩、防护服等医疗物资供给基础上,重点开展医疗救治急需的呼吸机、心电监护仪等医疗设备的组织生产和及时供应,统筹协调医用物资生产企业高速生产,支援世界各国抗击肺炎疫情.我市某医疗器械公司转型升级,从9月1日开始投入呼吸机生产,该公司9月1目~9月9日连续9天的呼吸机日生产量为i y (单位:百台..,1,2,,9i =),数据作了初步处理;得到如图所示的散点图.注:图中日期代码1~9分别对应9月1日~9月9日;表中iy i z e =,1919i i z z ==∑(1)从9个样本点中任意选取2个,在2个样本点的生产量都不高于300台的条件下,求2个样本点都高于200台的概率;(2)由散点图分析,样本点都集中在曲线ln()y bt a =+的附近,求y 关于t 的方程ln()y bt a =+,并估计该公司从生产之日起,需要多少天呼吸机日生产量可超过500台.参考公式:回归直线方程是ˆˆv βμα=+;1122211()()()()innii i ii i n nii i v v v n vn μμμμβμμμμ====---==--∑∑∑∑, ˆˆv αβμ=-, 参考数据:5148.4e ≈.7.(2022·全国高三专题练习)某公司为了了解年研发资金投人量x (单位:亿元)对年销售额y (单位:亿元)的影响.对公司近12年的年研发资金投入量i x 和年销售额i y 的数据,进行了对比分析,建立了两个函数模型:①2y x αβ=+,②2x t y e +=,其中α、β、λ、t 均为常数,e 为自然对数的底数.并得到一些统计量的值.令2i i u x =,ln (1,2,,12)i i y i ν==,经计算得如下数据:(1)请从相关系数的角度,分析哪一个模型拟合程度更好? (2)①根据(1)的选择及表中数据,建立y 关于x 的回归方程;②若下一年销售额y 需达到90亿元,预测下一年的研发资金投入量x 是多少亿元?附:相关系数:()()ni i x x y y r --=∑ˆˆˆya bx =+中公式分别为:121()()ˆ()niii nii x x yy b x x ==--=-∑∑,ˆˆay bx =-; 参考数据:308477=⨯9.4868,4499890e ≈.8.(2022·四川达州·高三二模(理))在能源和环保的压力下,新能源汽车将成为未来汽车的发展方向.我国大力发展新能源汽车的生产和销售.某市近6年的新能源汽车保有量数据如下表(1)从这6年中任意选取两年,求这两年中仅有1年的新能源汽车保有量大于4万辆的概率;(2)用函数模型(0)dx y ce c =>对两个变量x ,y 的关系进行拟合,根据表中数据求出y 关于x 的回归方程(条数精确到0.01).参考数据: 3.5x =, 4.1y =,62191i i x ==∑;设61ln , 1.16,31.89i i i i i t y t x t ====∑.参考公式:回归直线ˆˆv a u β=+的斜率和截距的最小二乘估计公式分别为:0.351221ˆˆˆ,,0.7047ni i ni i i u v nuvav u e unu ββ-==-==-≈-∑∑.9.(2022·陕西高三二模(理))为了迎接十四运,提高智慧城市水平,西安公交公司近期推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表下所示:根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内,y a bx =+与x y c d =⋅(,c d 均为大于零的常数),哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,建立y 与x 的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下表:西安公交六公司车队为缓解周边居民出行压力,以90万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为0.66万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有16的概率享受7折优惠,有13的概率享受8折优惠,有12的概率享受9折优惠.预计该车队每辆车每个月有2万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,请你估计这批车辆需要几年(结果取整数年)才能盈利?参考数据:其中其中lg i i v y =,7117i i v v ==∑,参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计公式分别为:1221ˆni i i nii u v nu vunu β==-⋅=-∑∑,ˆˆv u αβ=-.10.(2022·吉林高三模拟预测(文))全球化时代,中国企业靠什么在激烈的竞争中成为世界一流企业呢?由人民日报社指导,《中国经济周刊》主办的第十八届中国经济论坛在人民日报社举行,就中国企业如何提升全球行业竞争力进行了研讨.数据显示,某企业近年加大了科技研发资金的投入,其科技投入x (百万元)与收益y (百万元)的数据统计如下:根据数据特点,甲认为样本点分布在指数型曲线2bx a y +=的周围,据此他对数据进行了一些初步处理.如下表:其中2log i i z y =,7117i i z z ==∑.(1)请根据表中数据,建立y 关于x 的回归方程(系数ˆb精确到0.1); (2)①乙认为样本点分布在直线y mx n =+的周围,并计算得回归方程为ˆ8.253yx =+,以及该回归模型的决定系数(即相关指数)20.893R =乙,试比较甲乙两人所建立的模型,谁的拟合效果更好?②由①所得的结论,计算该企业欲使收益达到1亿元,科技投入的费用至少要多少百万元?(精确到0.1) 附:对于一组数据()()()1122,,,,,,n n u v u v u v ⋯,其回归直线方程ˆˆˆvu βα=+的斜率和截距的最小二乘法估计分别为()()()1122211ˆn ni i i i i i nniii i u u v v u v n u u un μνβμ====---==--∑∑∑∑,ˆˆανβμ=-,决定系数:()()22121ˆ1ni i nii v vR v v ==-=--∑∑.参考数据:2log 5 2.3≈.11.(2022·江西(文))每年的4月23日是联合国教科文组织确定的“世界读书日”,又称“世界图书和版权日”.从进入大数据时代以来,人们阅读方式发生了改变,数字媒体阅读方式因为便携,容量大等优点越来越被大众接受,下表是国际数据公司(IDC )研究的全球近6年每年数字媒体阅读产生的数据量(单位:ZB )及相关统计量的值:表中ln i i z y =,6116i i z z ==∑.(1)根据上表数据信息判断,方程21e c xy c =⋅(e 是自然对数的底数)更适宜作为该公司统计的年数据量y关于年份序号x 的回归方程类型,试求此回归方程;(2)根据(1)中的回归方程,预计2024年全世界数字媒体阅读产生的数据量是2022年的多少倍?并说明理由.(参考数据:e 2.718≈ 1.648≈,结果精确到0.1)参考数据:回归方程ˆˆˆy a bx =+中,斜率最小二乘法公式为()()()121ˆni i i nij x x y y bxx ==--=-∑∑1221ni ii nii x ynxyxnx ==-=-∑∑,ˆˆa y bx =-.12.(2022·山东济宁一中高三开学考试)某公司对某产品作市场调研,获得了该产品的定价x (单位:万元/吨)和一天销售量y (单位:吨)的一组数据,制作了如下的数据统计表,并作出了散点图.表中1z x=0.45≈ 2.19. (1)根据散点图判断,ya bx =+与1y c k x -=+⋅哪一个更适合作为y 关于x 的回归方程;(给出判断即可,不必说明理由)(2)根据(1)的判断结果,试建立y 关于x 的回归方程;(3)若生产1吨该产品的成本为0.20万元,依据(2)的回归方程,预计定价为多少时,该产品一天的利润最大,并求此时的月利润.(每月按30天计算,计算结果保留两位小数)(参考公式:回归方程y bx a =+,其中()()()1122211n niii ii i nniii i x x y y x y nxyb x x xnx====---==--∑∑∑∑,a y bx =-)。
高三数学一轮复习 函数与导数(解析版)
数 学B 单元 函数与导数B1 函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 14.516 [解析] 由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x |2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 21.、、[2014·江西卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.(1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.21.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )= ⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169.又8169<119,所以当n ∈S 时,p (n )的最大值为119. 3.[2014·山东卷] 函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)3.C [解析] 若函数f (x )有意义,则log 2x -1>0,∴log 2x >1,∴x >2.B2 反函数5.[2014·全国卷] 函数y =ln(3x +1)(x >-1)的反函数是( ) A .y =(1-e x )3(x >-1) B .y =(e x -1)3(x >-1) C .y =(1-e x )3(x ∈R ) D .y =(e x -1)3(x ∈R )5.D [解析] 因为y =ln(3x +1),所以x =(e y -1)3.因为x >-1,所以y ∈R ,所以函数y =ln(3x +1)(x >-1)的反函数是y =(e x -1)3(x ∈R ).B3 函数的单调性与最值 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x |2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对.19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.15.、、[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确21.、[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.B4 函数的奇偶性与周期性 4.[2014·重庆卷] 下列函数为偶函数的是( ) A .f (x )=x -1 B .f (x )=x 2+xC .f (x )=2x -2-xD .f (x )=2x +2-x4.D [解析] A 中,f (-x )=-x -1,f (x )为非奇非偶函数;B 中,f (-x )=(-x )2-x =x 2-x ,f (x )为非奇非偶函数;C 中,f (-x )=2-x -2x =-(2x -2-x )=-f (x ),f (x )为奇函数;D 中,f (-x )=2-x +2x =f (x ),f (x )为偶函数.故选D.14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 14.516 [解析] 由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 5.[2014·广东卷] 下列函数为奇函数的是( ) A .2x -12x B .x 3sin xC .2cos x +1D .x 2+2x5.A [解析] 对于A 选项,令f (x )=2x -12x =2x -2-x ,其定义域是R ,f (-x )=2-x -2x=-f (x ),所以A 正确;对于B 选项,根据奇函数乘奇函数是偶函数,所以x 3sin x 是偶函数;C 显然也是偶函数;对于D 选项,根据奇偶性的定义,该函数显然是非奇非偶函数.9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x . 求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解. 当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对. 15.[2014·湖南卷] 若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.15.-32[解析] 由偶函数的定义可得f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,∴2ax =-ln e 3x =-3x ,∴a =-32.19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立. 令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.12.[2014·全国卷] 奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .112.D [解析] 因为f (x +2)为偶函数,所以其对称轴为直线x =0,所以函数f (x )的图像的对称轴为直线x =2.又因为函数f (x )是奇函数,其定义域为R ,所以f (0)=0,所以f (8)=f (-4)=-f (4)=-f (0)=0,故f (8)+f (9)=0+f (-5)=-f (5)=-f (-1)=f (1)=1.15.[2014·新课标全国卷Ⅱ] 偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________.15.3 [解析] 因为函数图像关于直线x =2对称,所以f (3)=f (1),又函数为偶函数,所以f (-1)=f (1),故f (-1)=3.5.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数5.C [解析] 因为f (x )是奇函数,g (x )是偶函数,所以有f (-x )=-f (x ),g (-x )=g (x ),于是f (-x )·g (-x )=-f (x )g (x ),即f (x )g (x )为奇函数,A 错;|f (-x )|g (-x )=|f (x )|g (x ),即|f (x )|g (x )为偶函数,B 错;f (-x )|g (-x )|=-f (x )|g (x )|,即f (x )|g (x )|为奇函数,C 正确; |f (-x )g (-x )|=|f (x )g (x )|,即f (x )g (x )为偶函数,所以D 也错. 13.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 13.1 [解析] 由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1.B5 二次函数 10.[2014·江苏卷] 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.10.⎝⎛⎭⎫-22,0 [解析] 因为f (x )=x 2+mx -1是开口向上的二次函数,所以函数的最大值只能在区间端点处取到,所以对于任意x ∈[m ,m +1],都有f (x )<0,只需⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,解得⎩⎨⎧-22<m <22,-32<m <0,即m ∈⎝⎛⎭⎫-22,0.14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2⎝⎛⎭⎫sin x -122+32,所以当sin x =12时函数y =cos 2x +2sin x 取得最大值,最大值为32.B6 指数与指数函数 5.[2014·安徽卷] 设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b5.B [解析] 因为2>a =log 37>1,b =21.1>2,c =0.83.1<1,所以c <a <b . 8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b3.D [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] [解析] 当x <1时,由e x -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8.5.,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .x 3>y 3 B .sin x >sin yC .ln(x 2+1)>ln(y 2+1)D.1x 2+1>1y 2+15.A [解析] 因为a x <a y (0<a <1),所以x >y ,所以x 3>y 3恒成立.故选A. 7.[2014·陕西卷] 下列函数中,满足“f (x +y )= f (x )f (y )”的单调递增函数是( )A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝⎛⎭⎫12x7.B [解析] 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝⎛⎭⎫12x为单调递减函数,所以排除选项D. 12.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.12.10 [解析] 4a =2,即22a =2,可得a =12,所以lg x =12,所以x =1012=10.7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A .d =acB .a =cdC .c =adD .d =a +c7.B [解析] 因为5d =10,所以d =log 510,所以cd =lg b ·log 510=log 5b =a ,故选B.9.、[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ]9.B [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直, 则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10,即|P A |+|PB |≥|AB |=10. 又|P A |+|PB |=(|P A |+|PB |)2= |P A |2+2|P A ||PB |+|PB |2≤ 2(|P A |2+|PB |2)=2 5,所以|P A |+|PB |∈[10,2 5],故选B.4.[2014·天津卷] 设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a4.C [解析] ∵a =log 2π>1,b =log 12π<0,c =1π2<1,∴b <c <a .B7 对数与对数函数 12.[2014·天津卷] 函数f (x )=lg x 2的单调递减区间是________.12.(-∞,0) [解析] 函数f (x )=lg x 2的单调递减区间需满足x 2>0且y =x 2单调递减,故x ∈(-∞,0).11.[2014·安徽卷] ⎝⎛⎭⎫1681-34+log 354+log 345=________.11.278 [解析] 原式=⎣⎡⎦⎤⎝⎛⎭⎫234-34 +log 3⎝⎛⎭⎫54×45=⎝⎛⎭⎫23-3=278. 8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-28.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b3.D [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <16.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c7.B [解析] 因为5d =10,所以d =log 510,所以cd =lg b ·log 510=log 5b =a ,故选B.9.、[2014·重庆卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 39.D [解析] 由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,则4a +3b=1,所以a +b =(a+b )⎝⎛⎭⎫4a +3b =7+4b a +3a b ≥7+2 4b a ·3a b =7+4 3,当且仅当4b a =3a b ,即a =4+2 3,b =2 3+3时等号成立,故其最小值是7+4 3.B8 幂函数与函数的图像 8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-28.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.15.[2014·湖北卷] 如图1-4所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.15.⎝⎛⎭⎫0,16 [解析] “∀x ∈R ,f (x )>f (x -1)”等价于“函数y =f (x )的图像恒在函数y =f (x -1)的图像的上方”,函数y =f (x -1)的图像是由函数y =f (x )的图像向右平移一个单位得到的,如图所示.因为a >0,由图知6a <1,所以a 的取值范围为⎝⎛⎭⎫0,16.13.、[2014·江苏卷] x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.13.⎝⎛⎭⎫0,12 [解析] 先画出y =x 2-2x +12在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈⎝⎛⎭⎫0,12.15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e -,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] [解析] 当x <1时,由e x -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8.6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <16.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.B9 函数与方程6.[2014·北京卷] 已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )的零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)6.C [解析] 方法一:对于函数f (x )=6x -log 2x ,因为f (2)=2>0,f (4)=-0.5<0,根据零点的存在性定理知选C.方法二:在同一坐标系中作出函数h (x )=6x 与g (x )=log 2x 的大致图像,如图所示,可得f (x )的零点所在的区间为(2,4).7.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >97.C [解析] 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,而0<f (-1)≤3,故0<-6+c ≤3,∴6<c ≤9,故选C.10.[2014·重庆卷] 已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 10.A [解析] 作出函数f (x )的图像,如图所示.函数g (x )=f (x )-mx -m 的零点为方程f (x )-mx -m =0的根,即为函数y =f (x )与函数y =m (x +1)图像的交点.而函数y =m (x +1)的图像恒过定点P (-1,0),由图易知有两交点的边界有四条,其中k PO =0,k P A =12,k PB =-2,第四条为过P 点的曲线y =1x +1-3的切线PC .将y =m (x +1)(m ≠0)代入y =1x +1-3,得mx 2+(2m +3)x +m +2=0,则由Δ=(2m +3)2-4m (m +2)=4m +9=0,得m =-94,即k PC=-94,所以由图可知满足条件的实数m 的取值范围是⎝⎛⎭⎫-94,-2∪⎝⎛⎭⎫0,12.15.[2014·福建卷] 函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.15.2 [解析] 当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍)或x =-2,即在区间(-∞,0)上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x , 令2x -6+ln x =0,得ln x =6-2x .作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图像,则两函数图像只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点. 综上可知,函数f (x )的零点的个数是2. 9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x . 求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解. 当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 13.、[2014·江苏卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.13.⎝⎛⎭⎫0,12 [解析] 先画出y =x 2-2x +12在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈⎝⎛⎭⎫0,12.4.[2014·江西卷] 已知函数f (x )=⎩⎪⎨⎪⎧a ·2,x ≥0,2-x ,x <0(a ∈R ).若f [f (-1)]=1,则a =( )A.14B.12C .1D .2 4.A [解析] 因为f (-1)=21=2,f (2)=a ·22=4a =1,所以a =14.15.[2014·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2, x >0.若f (f (a ))=2,则a =________.15.2 [解析] 令t =f (a ),若f (t )=2,则t 2+2t +2=2 满足条件,此时t =0或t =-2,所以f (a )=0或f (a )=-2,只有-a 2=-2满足条件,故a = 2.21.[2014·全国卷] 函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.21.解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ).(i)若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1时成立.故此时f (x )在R 上是增函数.(ii)由于a ≠0,故当a <1时,f ′(x )=0有两个根;x 1=-1+1-a a ,x 2=-1-1-a a.若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎡⎭⎫-54,0∪(0,+∞). 14.[2014·天津卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0.若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.14.(1,2) [解析] 在同一坐标系内分别作出y =f (x )与y =a |x |的图像,如图所示,当y =a |x |与y =f (x )的图像相切时,联立⎩⎪⎨⎪⎧-ax =-x 2-5x -4,a >0,整理得x 2+(5-a )x +4=0,则Δ=(5-a )2-4×1×4=0,解得a =1或a =9(舍去),∴当y =a |x |与y =f (x )的图像有四个交点时,有1<a <2.B10 函数模型及其应用 8.[2014·北京卷] 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟8.B [解析] 由题意得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解之得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2,∴p =-0.2t 2+1.5t -2=-0.2(t -3.75)2+0.8125,即当t =3.75时,p 有最大值.10.[2014·陕西卷] 如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x10.A [解析] 由题意可知,该三次函数的图像过原点,则其常数项为0,不妨设其解析式为y =f (x )=ax 3+bx 2+cx ,则f ′(x )=3ax 2+2bx +c ,∴f ′(0)=-1,f ′(2)=3,可得c =-1,3a +b =1.又y =ax 3+bx 2+cx 过点(2,0),∴4a +2b =1,∴a =12,b =-12,c =-1,∴y =f (x )=12x 3-12x 2-x .B11 导数及其运算21.、、[2014·陕西卷] 设函数f (x )=ln x +mx ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.21.解:(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -e x 2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增. ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0),设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图所示),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a <1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +mx -x (x >0),∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立, ∴m ≥14⎝⎛⎭⎫对m =14,h ′(x )=0仅在x =12时成立, ∴m 的取值范围是⎣⎡⎭⎫14,+∞.20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 20.、[2014·北京卷] 已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)20.解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0, 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1). (3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. 22.、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 22.解:方法一:(1)由f (x )=e x -ax , 得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:对任意给定的正数c ,取x 0=1c ,由(2)知,当x >0时,x 2<e x .所以当x >x 0时,e x >x 2>1cx ,即x <c e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c (k >0),要使不等式x <c e x 成立,只要e x >kx 成立.而要使e x >kx 成立,则只需要x >ln(kx ), 即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x 0=0, 当x ∈(x 0,+∞)时,恒有x <c e x .②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x ,所以当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2), 易知k >ln k ,k >ln 2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c ,当x ∈(x 0,+∞)时,恒有x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法三:(1)同方法一. (2)同方法一.(3)证明:①若c ≥1,取x 0=0, 由(2)的证明过程知,e x >2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x , 即x <c e x .②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1. 令h ′(x )=0得x =ln 1c.当x >ln 1c 时,h ′(x )>0,h (x )单调递增.取x 0=2ln 2c,则h (x 0)=c e2ln 2c -2ln 2c=2⎝⎛⎭⎫2c -ln 2c , 易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增,所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0, 即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 11.、[2014·广东卷] 曲线y =-5e x +3在点(0,-2)处的切线方程为________.11.5x +y +2=0 [解析] ∵y ′=-5e x ,∴所求切线斜是k =-5e 0=-5,∴切线方程是y -(-2)=-5(x -0),即5x +y +2=0.11.[2014·江苏卷] 在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.11.-3 [解析] 易知y ′=2ax -bx 2.根据题意有⎩⎨⎧-5=4a +b2,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2, 故a +b =-3.23.、[2014·江苏卷] 已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=22都成立.23.解: (1)由已知,得f 1(x )=f ′0(x )=⎝⎛⎭⎫sin x x ′=cos x x -sin xx2,于是f 2(x )=f 1′(x )=⎝⎛⎭⎫cos x x ′-⎝⎛⎭⎫sin x x 2′= -sin x x -2cos x x 2+2sin xx3, 所以f 1⎝⎛⎭⎫π2=-4π2,f 2⎝⎛⎭⎫π2=-2π+16π3.故2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2=-1.(2)证明:由已知得,xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf 0′(x )=cos x , 即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎭⎫x +π2.类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π), 3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎫x +3π2,4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎫x +k π2.因为[kf k -1(x )+xf k (x )]′=kf k -1′(x )+f k (x )+xf k ′(x )=(k +1)f k (x )+xf k +1(x ),⎣⎡⎦⎤sin ⎝⎛⎭⎫x +k π2′=cos ⎝⎛⎭⎫x +k π2·⎝⎛⎭⎫x +k π2′=sin ⎣⎡⎦⎤x +(k +1)π2,所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎡⎦⎤x +(k +1)π2, 因此当n =k +1时,等式也成立.综合(i)(ii)可知,等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立.令x =π4,可得nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+n π2(n ∈N *),所以⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=(n ∈N *).21.、[2014·全国新课标卷Ⅰ] 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0. (1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围. 21.解:(1)f ′(x )=ax +(1-a )x -b .由题设知f ′(1)=0,解得b =1, (2)f (x )的定义域为(0,+∞),。
核按钮(新课标)高考数学一轮复习 第六章 数列 6.3 等比数列习题 理
§6.3 等比数列1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的 等于同一 ,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,通常用字母q 表示(q ≠0).2.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的 ,且G 2= 或G = .3.等比数列的通项公式(1)若{a n }是等比数列,则通项a n = 或a n = .当n -m 为大于1的奇数时,q 用a n ,a m 表示为q = ;当n -m 为正偶数时,q = .(2)a n =a 1q n -1可变形为a n =Aq n,其中A = ;点(n ,a n )是曲线 上一群孤立的点.4.等比数列的前n 项和公式等比数列{a n }中,S n =⎩⎨⎧ ,q =1,=,q ≠1.求和公式的推导方法是: ,为解题的方便,有时可将求和公式变形为S n =Bq n-B (q ≠1),其中B = 且q ≠0,q ≠1.5.等比数列的判定方法(1)定义法:a n +1=a n q 且a 1≠0(q 是不为0的常数,n ∈N *)⇔{a n }是等比数列. (2)通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. (3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. (4)前n 项和公式法:S n =a 1q -1q n -a 1q -1=Bq n-B ⎝ ⎛⎭⎪⎫B =a 1q -1是常数,且q ≠0,q ≠1⇒{a n }是等比数列.6.等比数列的性质(1)在等比数列中,若p +q =m +n ,则a p ·a q =a m ·a n ; 若2m =p +q ,则a 2m =a p ·a q (p ,q ,m ,n ∈N *).(2)若{a n },{b n }均为等比数列,且公比分别为q 1,q 2,则数列⎩⎨⎧⎭⎬⎫1a n ,{p ·a n }(p ≠0),{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍为等比数列且公比分别为 , , , . (3)在等比数列中,按序等距离取出若干项,也构成一个等比数列,即a n ,a n +m ,a n +2m ,…仍为等比数列,公比为 .(4)公比不为-1的等比数列前n 项和为S n (S n ≠0),则S n ,S 2n -S n ,S 3n -S 2n ,…构成等比数列,且公比为 .(5)对于一个确定的等比数列,在通项公式a n =a 1qn -1中,a n 是n 的函数,这个函数由正比例函数a n =a 1q·u 和指数函数u =q n (n ∈N *)复合而成.①当a 1>0, 或a 1<0, 时,等比数列{a n }是递增数列; ②当a 1>0, 或a 1<0, 时,等比数列{a n }是递减数列; ③当 时,它是一个常数列; ④当 时,它是一个摆动数列.自查自纠1.比 常数 公比 2.等比中项 ab ±ab3.(1)a 1q n -1a m q n -mn -m a n a m ±n -m a na m(2)a 1q y =⎝ ⎛⎭⎪⎫a 1q q x4.na 1 a 1(1-q n )1-q a 1-a n q 1-q 乘公比,错位相减 a 1q -16.(2)1q 1 q 1 q 1q 2 q 1q 2(3)q m (4)q n(5)①q >1 0<q <1 ②0<q <1q >1 ③q =1 ④q <0(2014·重庆)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列解:由等比数列的性质,得a 9a 6=a 6a 3=q 3≠0,因此,a 3,a 6,a 9一定成等比数列.故选D . (2015·全国新课标Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84解:设等比数列{a n }的公比为q ,则a 1+a 3+a 5=a 1+a 1q 2+a 1q 4=3(1+q 2+q 4)=21,得q 4+q 2-6=0,解得q 2=2,∴a 3+a 5+a 7=(a 1+a 3+a 5)q 2=21q 2=42.故选B .(2015·东北联考)已知数列{a n }满足2a n +1+a n =0,a 2=1,则数列{a n }的前10项和S 10为( )A.43(210-1) B.43(210+1) C.43(2-10-1)D.43(2-10+1)解:∵2a n +1+an =0,∴a n +1a n =-12.又a 2=1,∴a 1=-2,∴数列{a n }是-2为首项,-12为公比的等比数列,∴S 10=a 1(1-q 10)1-q =-2(1-2-10)1+12=43(2-10-1).故选C .(2015·湖南)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解:由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,也即3a 2=a 3,得公比q =3,∴a n =a 1qn -1=3n -1.故填3n -1.(2013·北京)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.解:由题意⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2+a 1q 4=40, 解得⎩⎪⎨⎪⎧q =2,a 1=2. 故S n =2(1-2n)1-2=2n +1-2.故填2;2n +1-2.类型一 等比数列的判定与证明设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:由a 1=1及S n +1=4a n +2, 有a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3. 又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2(n ≥2), ② ①-②,得a n +1=4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1).∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是以3为首项,2为公比的等比数列. (2)由(1)知b n =a n +1-2a n =3·2n -1, ∴a n +12n +1-a n 2n =34, 故⎩⎨⎧⎭⎬⎫a n 2n 是以12为首项,34为公差的等差数列.∴a n 2n =12+(n -1)·34=3n -14, 得a n =(3n -1)·2n -2.【点拨】(1)证明数列{b n }是等比数列,常用方法:①定义法;②等比中项法.(2)证明数列不是等比数列,可举一个反例或用反证法.(2013·陕西) 设{}a n 是公比为q 的等比数列.(1)推导{}a n 的前n 项和公式;(2)设q ≠1, 证明数列{a n +1}不是等比数列. 解:(1) 设{}a n 的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,()1-q S n =a 1-a 1q n.∴S n =a 1()1-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1, q =1,a 1()1-q n 1-q, q ≠1.(2) 证明(反证法):假设数列{a n +1}是等比数列,则对任意的k ∈N +,()a k +1+12=()a k +1()a k +2+1,a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k+2a 1q k +1=a 1q k -1a 1q k +1+a 1q k -1+a 1q k +1+1,∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0. ∴q =1,与已知矛盾. ∴数列{a n +1}不是等比数列.类型二 等比数列基本量的计算(1)在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为________.解:根据已知条件得⎩⎪⎨⎪⎧a 1q 2=7,a 1+a 1q +a 1q 2=21, ∴1+q +q 2q2=3,整理得2q 2-q -1=0, 解得q =1或q =-12.故填1或-12.(2)(2015·唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=________. 解:设{a n }的公比为q ,∵⎩⎪⎨⎪⎧a 1+a 3=52, ①a 2+a 4=(a 1+a 3)q =54, ②②÷①得q =12,∴a 1=2,∴a n =2×⎝ ⎛⎭⎪⎫12n -1=42n ,∴S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n ,∴S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n=2n -1.故填2n-1.(3)设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足b n =1a n,求数列{b n }前n 项和T n .解:(Ⅰ)当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1),即6a n =9(a n -a n -1),∴a n =3a n -1.∴数列{a n }是以13为首项,3为公比的等比数列,其通项公式为a n =13×3n -1=3n -2.(Ⅱ)∵b n =1a n =⎝ ⎛⎭⎪⎫13n -2,b 1=1a 1=3,∴{b n }是以3为首项,13为公比的等比数列,∴T n =3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=92⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .【点拨】在等比数列五个基本量a 1,q ,n ,a n ,S n 中,已知其中三个量,可以将已知条件结合等比数列的性质或通项公式、前n 项和公式转化为关于基本量的方程(组)来求得余下的两个量,计算有时要整体代换,根据前n 项和公式列方程还要注意对q 是否为1进行讨论.(1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172(2)在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________. 解:(1)设等比数列{a n }的公比为q (q >0),由题意得⎩⎪⎨⎪⎧a 2a 4=a 23=1,a 1+a 2+a 3=7, 故a 3=1,1q 2+1q +1=7,解得q =12,q =-13(舍去). ∴a 1=4,q =12.∴S 5=a 1(1-q 5)1-q =4⎝ ⎛⎭⎪⎫1-1251-12=314.故选B .(2)设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1q 3-a 1q =6,a 1q 4-a 1=15, 两式相除,得q 1+q 2=25,即2q 2-5q +2=0,解得q =2或q =12.∴⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=-16,q =12. 故a 3=4或a 3=-4.故填4或-4.类型三 等比数列的性质(1)设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3=________. (2)在等比数列{a n }中,若a 1a 2a 3a 4=1,a 13a 14a 15a 16=8,则a 41a 42a 43a 44=________. (3)设数列{a n },{b n }都是正项等比数列,S n ,T n 分别为数列{lg a n }与{lg b n }的前n 项和,且S n T n =n2n +1,则log b 5a 5=________.解:(1)由等比数列的性质:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6),不妨令S 3=2,则S 6=1,代入解得S 9=32,S 9∶S 3=3∶4.故填3∶4.(2)解法一:设等比数列{a n }的公比为q ,a 1a 2a 3a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41·q 6=1,① a 13a 14a 15a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,②②÷①:a 41·q 54a 41·q6=q 48=8,q 16=2,∴a 41a 42a 43a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)·(q 16)10=210=1 024.解法二:由性质可知,依次4项的积为等比数列,设公比为p , 设T 1=a 1·a 2·a 3·a 4=1,T 4=a 13·a 14·a 15·a 16=8,∴T 4=T 1·p 3=1·p 3=8,p =2.∴T 11=a 41·a 42·a 43·a 44=T 1·p 10=210=1 024. 故填1 024.(3)由题意知S 9T 9=lg (a 1·a 2·…·a 9)lg (b 1·b 2·…·b 9)=lg a 95lg b 95=lg a 5lg b 5=log b 5a 5=919.故填919.【点拨】(1)等比数列有很多子数列仍是等比数列,本题是性质“在等比数列中,若S n≠0,则S n ,S 2n -S n ,S 3n -S 2n 成等比数列”的应用,特别注意其前提条件是S n ≠0.(2)等比数列中,依次m 项积仍为等比数列,但公比发生改变.(3)利用性质“当m +n =p +q (m ,n ,p ,q ∈N *)时,有a m ·a n =a p ·a q ”转化条件.在数1和100之间插入n 个实数,使得这n +2个数构成递增的等比数列,将这n +2个数的乘积记作T n ,再令a n =lg T n ,n ≥1,求数列{a n }的通项公式.解法一:设t 1,t 2,…,t n +2构成等比数列,其中t 1=1,t n +2=100,则T n =t 1·t 2·…·t n +1·t n +2,① T n =t n +2·t n +1·…·t 2·t 1,②①×②并利用t i t n +3-i =t 1t n +2=102(1≤i ≤n +2),得T 2n =(t 1t n +2)·(t 2t n +1)·…·(t n +1t 2)·(t n +2t 1)=102(n +2),∴a n =lg T n =n +2(n ≥1). 解法二:依题意,可设这n +2个数依次为1,a ,a 2,…,a n ,100;∴T n =100a1+2+…+n,a n =lg T n =n (n +1)2lg a +2,又∵a n +1=100,∴a n =n +2(n ≥1).1.注意等比数列每一项均不为0,q 也不为0.2.等比数列中,已知五个元素a 1,a n ,n ,q ,S n 中的任意三个,便可求出其余两个.可类比上节等差数列“名师点睛”栏1进行探究.3.准确理解等比数列的定义及各公式的等价形式,灵活运用等比数列的性质. 4.在含字母参数的等比数列求和时,应分q =1与q ≠1两种情况进行讨论. 5.学习等比数列,要善于将其与等差数列进行类比,如等差数列中与“和”有关的性质可类比等比数列中与“积”有关的性质,还可对二者的思维形式、方法与技巧进行类比.6.等比数列通项公式的求法有: (1)观察法.(2)公式法:①a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2); ②等比数列{a n }的通项公式.(3)构造法:①a n +1=pa n +q; ②a n +1=pa n +q n; ③a n +1=pa n +f (n ); ④a n +2=pa n +1+qa n .1.已知等比数列{a n }的公比q =2,且2a 4,a 6,48成等差数列,则{a n }的前8项和为( ) A .127 B .255 C .511D .1 023解:∵2a 4,a 6,48成等差数列,∴2a 6=2a 4+48,∴2a 1q 5=2a 1q 3+48,又∵q =2,∴a 1=1,∴S 8=1×(1-28)1-2=255.故选B .2.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A .13B .12C .11D .10解:设该等比数列为{a n },其前n 项的积为T n , 则由已知得a 1·a 2·a 3=3,a n -2·a n -1·a n =9, (a 1·a n )3=3×9=33,∴a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n ,T n =a n ·a n -1·…·a 2·a 1, ∴T 2n =(a 1·a n )n ,即7292=312=3n,∴n =12.故选B .3.设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于( )A .150B .120C .150或-200D .400解:依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30;又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,故S 40-S 30=80.S 40=150.故选A .4.若正项数列{a n }满足lg a n +1=1+lg a n ,且a 2 001+a 2 002+a 2 003+…+a 2 010=2 017,则a 2 011+a 2 012+a 2 013+…+a 2 020的值为( )A .2.017×1013B .2.017×1014C .2.018×1013D .2.018×1014解:由条件知lg a n +1-lg a n =lga n +1a n =1,即a n +1a n=10,所以{a n }是公比为10的等比数列.∵(a 2 001+a 2 002+…+a 2 010)·q 10=a 2 011+a 2 012+…+a 2 020,∴a 2 011+a 2 012+…+a 2 020=2.017×1013.故选A .5.若数列{a n }是正项递减等比数列,T n 表示其前n 项的积,且T 8=T 12,则当T n 取最大值时,n 的值等于( )A .9B .10C .11D .12解:∵T 8=T 12,∴a 9a 10a 11a 12=1,又a 9a 12=a 10a 11=1,且数列{a n }是正项递减数列,∴a 9>a 10>1>a 11>a 12,因此T 10取最大值.故选B .6.将正偶数集合{2,4,6,…}从小到大按第n 组有2n个偶数进行分组如下: 第一组 第二组 第三组 …{2,4} {6,8,10,12} {14,16,18,20,22,24,26,28} … 则2 016位于( ) A .第7组 B .第8组C .第9组D .第10组解:前n 组共有2+4+8+ (2)=2×(1-2n)1-2=2n +1-2个数.由a n =2n =2 016知,n =1 008,∴2 016为第1 008个偶数,∵29=512,210=1 024,故前8组共有510个数,前9组共有1 022个数,即2 016在第9组.故选C .7.在等比数列{a n }中,a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解:∵q 3=a 4a 1=-8,∴q =-2.|a 1|+|a 2|+…+|a n |=12(1-2n )1-2=2n -1-12.故填-2;2n -1-12.8.(2015·兰州联考)已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________.解:∵b 1=a 2a 1=a 2,b 2=a 3a 2,∴a 3=b 2a 2=b 1b 2,∵b 3=a 4a 3,∴a 4=b 1b 2b 3,…,a n =b 1b 2b 3·…·b n-1,∴a 21=b 1b 2b 3·…·b 20=(b 10b 11)10=210=1 024.故填1 024. 9.等比数列{c n }满足c n +1+c n =10·4n -1(n ∈N *),数列{a n }的前n 项和为S n ,且a n =log 2c n ,求a n ,S n .解:设数列{c n }的公比为q ,由题意知,c 1+c 2=10,c 2+c 3=40, 即⎩⎪⎨⎪⎧c 1+c 1q =10,c 1q +c 1q 2=40,解得⎩⎪⎨⎪⎧c 1=2,q =4.∴c n =2·4n -1=22n -1,∴a n =log 222n -1=2n -1,S n =n (a 1+a n )2=n [1+(2n -1)]2=n 2.10.已知数列{a n }中,a 1=1,S n 是数列{a n }的前n 项和,且对任意n ∈N *,有a n +1=kS n+1(k 为常数).(1)当k =2时,求a 2,a 3的值;(2)试判断数列{a n }是否为等比数列?请说明理由. 解:(1)当k =2时,a n +1=2S n +1,令n =1得a 2=2S 1+1,又a 1=S 1=1,得a 2=3; 令n =2得a 3=2S 2+1=2(a 1+a 2)+1=9, ∴a 3=9. ∴a 2=3,a 3=9.(2)由a n +1=kS n +1,得a n =kS n -1+1(n ≥2), 两式相减,得a n +1-a n =ka n (n ≥2), 即a n +1=(k +1)a n (n ≥2), 且a 2a 1=k +11=k +1,故a n +1=(k +1)a n . 故当k =-1时,a n =⎩⎪⎨⎪⎧1, n =1,0, n ≥2.此时,{a n }不是等比数列; 当k ≠-1时,a n +1a n=k +1≠0,此时,{a n }是以1为首项,k +1为公比的等比数列. 综上,当k =-1时,{a n }不是等比数列; 当k ≠-1时,{a n }是等比数列.11.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n }中的b 3,b 4,b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:⎩⎨⎧⎭⎬⎫S n +54是等比数列.解:(1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d ,10,18+d .依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去). 故{b n }的第3项为5,由于第4项为10,所以公比为2. 其通项公式为b n =b 3·qn -3=5·2n -3.(2)证明:b 1=54,数列{b n }的前n 项和S n =54(1-2n )1-2=5·2n -2-54,即S n +54=5·2n -2.所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,2为公比的等比数列.(2013·湖北)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m≥1?若存在,求m 的最小值;若不存在,说明理由.解:(1)由等比数列性质,a 1a 2a 3=a 32=125,故a 2=5. 设数列{a n }的公比为q ,则由|a 2-a 3|=10有|5-5q |=10. ∴q -1=±2,得q =-1或q =3. ∴数列{a n }的通项公式为a n =5×3n -2或a n =5×(-1)n -2.(2)若a n =5×3n -2,则1a n =15×13n -2=35·⎝ ⎛⎭⎪⎫13n -1,故⎩⎨⎧⎭⎬⎫1a n 是首项为35,公比为13的等比数列.从而1a 1+1a 2+…+1a m =35⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13m 1-13=910[1-⎝ ⎛⎭⎪⎫13m ]<910<1.若a n =5×(-1)n,则 1a n =15×(-1)n =-15×(-1)n -1, 故⎩⎨⎧⎭⎬⎫1a n 是首项为-15,公比为-1的等比数列.当m 为偶数,即m =2k (k ∈N *)时,1a 1+1a 2+…+1a m=0<1.当m 为奇数,即m =2k -1(k ∈N *)时, 1a 1+1a 2+…+1a m =-15<1. 综上可知,对任何正整数m ,总有1a 1+1a 2+…+1a m<1.故不存在正整数m ,使得1a 1+1a 2+…+1a m≥1成立.。
2024届高三数学一轮复习-三角函数与解三角形 第1练 任意角和弧度制及三角函数的概念(解析版)
第1练任意角和弧度制及三角函数的概念一、单选题B.A.8π33.(2023·福建福州·福建省福州第一中学校考模拟预测)为解决皮尺长度不够的问题,实验小组利用自行车来测量A,B上与点A接触的地方标记为点直),直到前轮与点B接触.经观测,当前轮与点B接触时,标记点度为0.45m.已知前轮的半径为A.20.10m B.19.94m4.(2023秋·甘肃天水·高二天水市第一中学校考开学考试)种结构样式,多见于亭阁式建筑、园林建筑.如图所示的带有攒尖的建筑屋顶可近似看作一个圆锥,其底面积为9π,侧面展开图是圆心角为A.122π5.(2023·河北衡水·河北衡水中学校考模拟预测)A.32-6.(2023·全国·高一专题练习)已知角重合.若角α终边上一点A.32-7.(2023春·广东深圳·高二深圳外国语学校校考期末)在平面直角坐标系中,已知点为角α终边上一点,若二、多选题9.(2023春·江西九江·高一校考期中)如图,在平面直角坐标系中,以原点O 为圆心的圆与x 轴正半轴交于点()1,0A .已知点()11,B x y 在圆O 上,点T 的坐标是()00,sin x x ,则下列说法中正确的是()A.若AOB α∠=,则 ACB α=B.若C.10sin y x =,则 0ACB x =D.若10.(2023春·湖北恩施·高一校联考期中)如图所示,以x 轴非负半轴为始边作锐角α,β,αβ-,它们的终边分别与单位圆相交于点P ,则下列说法正确的是()A. AP的长度为αβ-B.扇形11OA P 的面积为αβ-C.当1A 与P 重合时,12sin AP β=D.当3πα=时,四边形11OAA P 面积的最大值为11.(2023·全国·高三专题练习)如图,A ,B 是在单位圆上运动的两个质点.初始时刻,质点A 在(1,0)处,质点B 在第一象限,且AOB ∠=向运动,质点B 同时以rad /s 12π的角速度按逆时针方向运动,则(A.经过1s 后,扇形AOB B.经过2s 后,劣弧 AB 的长为C.经过6s 后,质点B 的坐标为D.经过22s 3后,质点A ,12.(2023秋·浙江杭州·高三浙江省杭州第二中学校考阶段练习)已知点点P 为圆C :2268x y x y +--+A.PAB 面积的最小值为C.∠PAB 的最大值为5π1213.(2023春·浙江衢州·高一校考阶段练习)0<φ<π)的图像与x 轴相邻两个交点之间的最小距离为与x 轴的所有交点的横坐标之和为A.123f π⎛⎫=- ⎪⎝⎭B.f (x )在区间,66ππ⎛⎫- ⎪⎝⎭内单调递增C.f (x )的图像关于点512π⎛- ⎝D.f (x )的图像关于直线x =14.(2023·全国·高二专题练习)在平面直角坐标系中,角与x 轴的非负半轴重合,终边经过点A.2±B.±1三、填空题16.(2023春·河南濮阳·高一濮阳一高校考阶段练习)已知圆锥侧面展开图的圆心角为底面周长为2π,则这个圆锥的体积为17.(2023·全国·高三专题练习)已知单位长度,再向下平移两个单位长度,得到为.18.(2023·安徽安庆·安庆市第二中学校考模拟预测)已知函数四、解答题(1)求扇形AOB的周长;(2)当点C在什么位置时,矩形参考答案:则有113l l r l R -==,所以1l =所以圆台的侧面积为(πR r +故选:C.3.D【分析】由题意,前轮转动了【详解】解:由题意,前轮转动了所以A ,B 两点之间的距离约为故选:D.4.D【分析】根据底面圆面积可求底面圆半径,从而可求底面圆周长,即可求扇形半径,再根据3如图所示:则圆锥的高h =则圆锥的体积2133V π=⨯⨯故选:D 5.C【分析】利用诱导公式,逆用正弦和角公式计算出答案.【详解】cos198cos132︒︒+cos18sin 42cos 42sin18=︒︒+︒故选:C 6.A【分析】计算得到1,2P ⎛- ⎝【详解】2π2πcos ,sin 33P ⎛对于A,PAB 面积的最小值为点12PAB M S AB y =⋅⋅= 对于B,连接,A C 交圆于22(31)42-=++-AC RC 对于C,当AP 运动到与圆Q ,2sin 4∠==QC CAQ AC ∠∠∠∴=+PAB CAQ CAN。
高三数学一轮复习互斥事件专题练习(带答案)
高三数学一轮复习互斥事件专题练习(带答案)事件A和B的交集为空,A与B就是互斥事件,也叫互不相容事件。
下面是整理的高三数学一轮复习互斥事件专题练习,请考生及时进行练习。
一、选择题1.如果事件A与B是互斥事件,则()A.A+B是必然事件B.与一定互斥C.与一定不互斥D.+是必然事件[答案] D[解析] 特例检验:在掷一粒骰子的试验中,上面出现点数1与上面出现点数2分别记作A与B,则A与B是互斥而不对立的事件,A+B不是必然事件,与也不互斥,A、B选项错误,+是必然事件,还可举例验证C不正确.2.从1,2,3,,9这9个数中任取两数,其中:恰有一个是偶数和恰有一个是奇数;至少有一个是奇数和两个都是奇数;至少有一个是奇数和两个都是偶数;至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A. B.C. D.[答案] C[解析] 可根据互斥和对立事件的定义分析事件,中至少有一个是奇数即两个奇数或一奇一偶,而从1~9中任取两数共有3个事件:两个奇数一奇一偶两个偶数,故至少有一个是奇数与两个偶数是对立事件.3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品任意抽查一件抽得正品的概率为()A.0.99B.0.98C.0.97D.0.96[答案] D[解析] 设抽得正品为事件A,则P(A)=1-0.03-0.01=0.96.4.抽查10件产品,设至少抽到2件次品为事件A,则为()A.至多2件次品B.至多2件正品C.至少2件正品D.至多1件次品[答案] D[解析] 至少2件次品与至多1件次品不能同时发生,且必有一个发生.5.从某班学生中任意找出一人,如果该同学的身高低于160 cm的概率为0.2,该同学的身高在[160,175] cm的概率为0.5,那么该同学的身高超过175 cm的概率为()A.0.2B.0.3C.0.7D.0.8[答案] B[解析] 设身高低于160 cm为事件M,身高在[160,175] cm为事件N,身高超过175 cm为事件Q,则事件M、N、Q两两互斥,且M+N与Q是对立事件,则该同学的身高超过175 cm 的概率为P(Q)=1-P(M+N)=1-P(M)-P(N)=1-0.2-0.5=0.3. 6.如果事件A与B是互斥事件,且事件A+B的概率是0.8,事件A的概率是事件B的概率的3倍,则事件A的概率为() A.0.2 B.0.4C.0.6D.0.8[答案] C[解析] 由题意知P(A+B)=P(A)+P(B)=0.8,P(A)=3P(B),解组成的方程组知P(A)=0.6.二、填空题7.某人进行打靶练习,共射击10次,其中有2次击中10环,有3次击中9环,有4次击中8环,有1次未中靶.假设此人射击一次,则他中靶的概率大约是________.[答案] 0.9[解析] P=++==0.9.8.掷一粒骰子的试验,事件A表示小于5的偶数点出现,事件B表示小于5的点数出现,则事件A+发生的概率为________.[答案][解析] 表示大于或等于5的点数出现.A与互斥,P(A+)=P(A)+P()=+=.三、解答题9.一个箱子内有9张票,其号数分别为1、2、、9.从中任取2张,其号数至少有一个为奇数的概率是多少?[分析] 从9张票中任取2张,要弄清楚取法种数为98=36,号数至少有一个为奇数的对立事件是号数全是偶数,用对立事件的性质求解非常简单.[解析] 从9张票中任取2张,有(1,2),(1,3),,(1,9);(2,3),(2,4),,(2,9);(3,4),(3,5),,(3,9);(7,8),(7,9);(8,9),共计36种取法.记号数至少有一个为奇数为事件B,号数全是偶数为事件C,则事件C为从号数为2,4,6,8的四张票中任取2张有(2,4),(2,6),(2,8),(4,6),(4,8),(6,8)共6种取法.P(C)==,由对立事件的性质得P(B)=1-P(C)=1-=.高三数学一轮复习互斥事件专题练习及答案的全部内容就是这些,更多精彩内容请考生持续关注。
(完整版)高三数学一轮复习专题复习《函数的单调性与最值》
函数的单调性与最值(45分钟 100分)、选择题(每小题5分,共40分)1.(2013 •沈阳模拟)下列函数在(0,+ a )上是增函数的是( )A. y=l n( x-2)C.y=x-x 1y=- ■、 € (- a ,0].1) ________________________ 2【解析】 选 C.函数y=ln (x-2) 在(2,+ a )上为增函数,y=- 在[0,+ a )上为减函 数,y=x-x -1 =x- 在[0,+ a )上为减函数,故C 正确.2.(2014 -衢州模拟 )下列函数中,值域为(-a ,0)的是( )2 A.y=-x 1B.y=3x_1C.y= ' 【解析】D.y=- ' 'y=-x 2的值域为(- a ,0]; {1 1 X <T的值域为y<3X 3y=3x-1 即 y € (- a ,0); y= 的值域为(-a ,0) U (0,+ a );3.(2014 •珠海模拟)若函数y=ax 与y=-':在(0, ":在(0,+ a 选B.函数 1=0,+ a)上都是减函数,则y=ax +bx在(0,+ a)上是A.增函数 B.减函数b【解析】选B.因为y=ax 与、=-、在(0,+ g )上都是减函数,所以a<0,b<0,b所以y=ax 2+bx 的对称轴x=— ]<0,所以y=ax 2+bx 在(0,+ g )上为减函数.4.已知奇函数f(x)对任意的正实数 x i ,x 2(x i 丰X 2),恒有(x i -X 2)(f(x i )-f(x 2))>0,则一定正确的是()A.f(4)>f(-6)B.f(-4)<f(-6)C.f(-4)>f(-6)D.f(4)<f(-6)【解析】选 C.由(x i -x 2)(f(x i )-f(x 2))>0 知 f(x)在(0,+ g )上递增,的值域是() A.{0,1}B.{0,-1}C.{-1,1}D.{1,1}【思路点拨】 先求f(x)的值域,再据[x ]的规定求[f(x)]的值域.2X所以 y=[f(x)] € {0,-1}. 表示不超过x 的最大整数,则函数y=[f(x)]6.(2013 •天津模拟)设函数f(x)= r 2 x - 4x + 6f x > 0, t x + 6f x < 0f 则不等式 f(x)>f(1) 的解集是所以 f(4)<f(6) ? f(-4)>f(-6).又[X ]表示不超过x 的最大整数A.(-3,1) U (3,+ g)B. (-3,1) U (2,+ g)2【解析】选 A.当 x > 0 时,f(x)>f(1)=3, 即 x -4x+6>3,解得 O W x<1 或 x>3;当 x<0 时,f(x)>f(1)=3, 即 x+6>3,解得-3<x<0.故 f(x)>f(1) 的解集是(-3,1) U (3,+8).7. (2014 •厦门模拟)定义在R 上的函数f(x)在区间(-8 ,2)上是增函数,且f(x+2)的图象关于 x=0对称,则() A.f(-1)<f(3)B.f(0)>f(3)C.f(-1)=f(3)D.f(0)=f(3)【思路点拨】由已知得到f(x)的对称性,进而作出图象大致形状,数形结合求解• 【解析】选A.因为f(x+2)的图象关于x=0对称,所以f(x)的图象关于x=2对称,又f(x)在区间(-8,2)上是增函数,则其在(2,+ 8)上为减函数,作出其图象大致形状如图所示 ^=2【加固训练】 已知f(x)是定义在(0,+)上的单调递增函数,且满足f(3x-2)<f(1), 则实数x的取值范围是( A.(- 8,1)C. D.(1,+ 8)【解析】选B.因为 f(x) ;3x-2>0, 所以(敦一 2 < 1? 是定义在(0,+ 8 )上的单调递增函数2 x > -,,且满足 f(3x-2)<f(1), ? x €所以实数x 的取值范围是 V由图象知,f(-1)<f(3), 故选A.8.(能力挑战题)(2013 •金华模拟)设函数 g(x)=x 2-2(x € R),fg(x) + x + 4,x < g(x),f (x )= I - >g (X)・则 f(x)的值域是()r g '■ 4^°A.J U (1,+ g )B. [0,+ g ) 討)C. Lf【思路点拨】 明确自变量的取值范围,先求每一部分的函数值范围,再取并集求值域2x + x + 2, x <-> 2F 2 L x -x-2, - 1 < x < 2,、填空题(每小题5 分,共20分)9. (2014 •台州模拟)如果函数f(x)=ax 2-3x+4在区间(-g ,6)上单调递减,则实数a 的取值范围【解析】 选 D.由 x<g(x)=x 2-2 得 x 2-x-2>0,则x<-1或x>2.因此由 x > g(x)=x 2-2 得-1 < x < 2. 由以上可得f(x)的值域是 U (2,+ g ).D. 于是f(x)= 且 f(-1)=f(2)=0,所以-(2)当0时,二次函数f(x)的对称轴为直线因为f(x)在区间(-g ,6)上单调递减, 31 所以a>0,且2a > 6,解得 0<a w 4【误区警示】本题易忽视a=0的情况而失误【思路点拨】由于f(x)为R 上的减函数,所以当x<-1时,恒有f(x)>f(-1),由此可求得a 的取 值范围. 円【解析】因为f(x)为R 上的减函数,所以必有f(-1) W 1 ,即1+a w -1,所以a w -2. 答案:a w -2的取值范围是. 卜'+ax,x< li [ax z + x.x > 1【解析】因为函数f(x)=在R 上单调递减,2 2 所以g(x)=x +ax 在(-g ,1]上单调递减,且h(x)=ax +x 在(1,+ g )上单调递减,且g(1) > h(1),【解析】(1)当a=0时,f(x)=-3x+4. 函数在定义域 R 上单调递减,故在区间(-g ,6)上单调递减 10.函数 f(x)= f 1| —‘X <- 1,Xk - x + a f x >- 1在R 上是减函数,则实数 a 的取值范围是【加固训练】 (2013 •保定模拟)已知函数f(x)=在R 上单调递减,则实数a综上所述,0 < aw :.a < 0,11——v 1,2a _l + a > a + 1,b所以解得a w-2.答案:a w -211. (2014 •宁波模拟)规定符号“”表示一种两个正实数之间的运算,即ab岂^b+a+b,a,b是正实数,已知1k=3,则函数f(x)=kx 的值域是.【解析】由题意知1k=; +1+k=3,解得k=1,所以f(x)=kx=1x==(-£|+2)2+4,因为>0,所以f(x)>1.答案:(1,+ )12. 函数f(x)的定义域为A,若X I,X2€ A且f(x i)=f(x 2)时总有x i=X2,则称f(x)为单函数.例如,函数f(x)=2x+1(x € R)是单函数,下列命题:①函数f(x)=x 2(x € R)是单函数;②指数函数f(x)=2 x(x € R)是单函数;③若f(x)为单函数,x 1,x 2€ A 且X" X2,则f(x 1)丰 f(x 2);④在定义域上具有单调性的函数一定是单函数其中的真命题是(写出所有真命题的编号).【解析】对于①,x 1=2,x 2=-2时,f(x 1 )=f(x 2),而X" X2,故函数f(x)=x 不为单函数,故①错;对于②,因为y=2x在定义域内为单调增函数,故②正确;对于③,假设f(x 1)=f(x 2),由f(x)为单函数,故X1=X2,这与X1M X2矛盾,故原命题成立,故③正确;对于④,因函数在定义域上具有单调性,即满足f(x)为单函数的定义,故④正确.答案:②③④三、解答题(13题12分,14〜15题各14分)13. (2014 •温州模拟)已知函数 f(x)=log a (1-x)+log a (x+3)(0<a<1). ⑴求函数f(x)的定义域.⑵若函数f(x)的最小值为-4,求实数a 的值.解之得-3<x<1.所以函数的定义域为{x|-3<x<1}._ 22 ⑵ 函数可化为 f(x)=log a (l-x)(x+3)=log a (-x -2x+3)=log a [-(x+1)+4]. 2因为-3<x<1,所以 0<-(x+1) +4W 4.2因为 0<a<1,所以 log a [-(x+1) +4] > log a 4,即 f(x) min =log a 4.I -壯 由 log a 4=-4,得 a -4=4,所以 a=_=- 故实数a 的值为丄.I14. 已知函数f(x)=a- 1刘.⑵ 若f(x)<2x 在(1,+ g )上恒成立,求实数a 的取值范围【解析】 ⑴ 当x € (0,+ g )时,1f(x)=a- ”,设 0<X 1<X 2,则 X 1X 2>0,x 2-x 1>0, l\ 1\a a _电丿xj所以f(x)在(0,+ g )上是增函数【解析】(1)要使函数有意义:则有 I -X > 0 x + 3 > 0(1)求证:函数y=f(x) 在(0,+ g )上是增函数f(x 2)-f(X 1)=1 1⑵ 由题意a- <2x 在(1,+ g )上恒成立,设h(x)=2x+壬, 则a<h(x)在(1,+ g )上恒成立.任取 x i ,x 2€ (1,+ g )且 x i <X 2,因为 1<X 1<X 2,所以 X 1-X 2<O,X 1X 2>1, I 1 I所以 2-' >0,所以 h(x i )<h(X 2),所以h(x)在(i,+ g )上单调递增故 a w h(i)即 a w 3,所以a 的取值范围是(-g ,3].i5.(能力挑战题)(20i4 •绍兴模拟)已知函数f(x)⑴求f(i).⑵解不等式 f(-x)+f(3-x) > -2.【解析】⑴令x=y=i,则 f(i)=f(i)+f(i),f(i)=0.⑵由题意知f(x)为(0,+ g )上的减函数:-x>0,且B-xAO.所以 x<o,因为 f(xy)=f(x)+f(y),住)x,y € (0,+ g )且 f ' =i.所以 f(-x)+f(3-x) > -2,h(x i )-h(x 2)=(x i -x 2)的定义域是(0,+ g ),且满足f(xy)=f(x)+f(y),f =i,如果对于 0<x<y,都有 f(x)>f(y).解得-1 W x<0.所以不等式的解集为[-1,0). 可化为 f(-x)+f(3-x) > -2f > 0=f(1),f(-x)+f。
高三数学一轮复习三角函数(解析版)
数 学C 单元 三角函数C1 角的概念及任意角的三角函数 2.[2014·全国卷] 已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-452.D [解析] 根据题意,cos α=-4(-4)2+32=-45.C2 同角三角函数的基本关系式与诱导公式 18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0 2.C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C. 17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中, 由题意知,sin A =1-cos 2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =a sin Bsin A=3³6333=3 2. (2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =33³⎝⎛⎭⎫-33+63³63=13.因此△ABC 的面积S =12ab sin C =12³3³32³13=322.C3 三角函数的图象与性质 16.、[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 16.解: 由三角形面积公式,得12³3³1²sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³⎝⎛⎭⎫-13=12,所以a =2 3.7.[2014·福建卷] 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝⎛⎭⎫-π2,0对称7.D [解析] 将函数y =sin x 的图像向左平移π2个单位后,得到函数y =f (x )=sin ⎝⎛⎭⎫x +π2的图像,即f (x )=cos x .由余弦函数的图像与性质知,f (x )是偶函数,其最小正周期为2π,且图像关于直线x =k π(k ∈Z )对称,关于点⎝⎛⎭⎫π2+k π,0(k ∈Z )对称,故选D.图1-25.、[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.5.π6 [解析] 将x =π3分别代入两个函数,得到sin ⎝⎛⎭⎫2³π3+φ=12,解得23π+φ=π6+2k π(k ∈Z )或23π+φ=5π6+2k π(k ∈Z ),化简解得φ=-π2+2k π(k ∈Z )或φ=π6+2k π(k ∈Z ).又φ∈[0,π),故φ=π6.7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.C4 函数sin()y A x ωϕ=+的图象与性质8.[2014·天津卷] 已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C .πD .2π 8.C [解析] ∵f (x )=2sin ⎝⎛⎭⎫ωx +π6=1,∴sin ⎝⎛⎭⎫ωx +π6=12,∴ωx 1+π6=π6+2k 1π(k 1∈Z )或 ωx 2+π6=5π6+2k 2π(k 2∈Z ),则ω(x 2-x 1)=2π3+2(k 2-k 1)π.又∵相邻交点距离的最小值为π3,∴ω=2,∴T =π.7.[2014·安徽卷] 若将函数f (x )=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π47.C [解析] 方法一:将f (x )=2sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,得到y =2sin ⎝⎛⎭⎫2x +π4-2φ的图像,由所得图像关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,又φ>0,所以φmin =3π8.13.[2014·重庆卷] 将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.13.22[解析] 函数f (x )=sin(ωx +φ)图像上每一点的横坐标缩短为原来的一半,得到y =sin(2ωx +φ)的图像,再向右平移π6个单位长度,得到y =sin2ωx -π6+φ=sin ⎝⎛⎭⎫2ωx -ωπ3+φ的图像.由题意知sin ⎝⎛⎭⎫2ωx -ωπ3+φ=sin x ,所以2ω=1,-ωπ3+φ=2k π(k ∈Z ),又-π2≤φ≤π2,所以ω=12,φ=π6,所以f (x )=sin ⎝⎛⎭⎫12x +π6,所以f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫12³π6+π6=sin π4=22.16.[2014·北京卷] 函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.16.解:(1)f (x )的最小正周期为π. x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4 =-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12³8-sin ⎝⎛⎭⎫π12³8=10-3cos 2π3-sin 2π3=10-3³⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.11.[2014·辽宁卷] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增11.B [解析] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,得到y =3sin ⎝⎛⎭⎫2x -23π的图像 ,函数单调递增,则-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z ,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,当k =0时,可知函数在区间⎣⎡⎦⎤π12,7π12上单调递增.14.[2014·新课标全国卷Ⅱ] 函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. 14.1 [解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.12.,[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 12.π [解析] 因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .2.[2014·陕西卷] 函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π 2.B [解析] T =2π2=π.4.[2014·浙江卷] 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( )A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.A [解析] y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,故将函数y =2cos 3x 的图像向右平移π12个单位可以得到函数y =sin 3x +cos 3x 的图像,故选A.3.[2014·四川卷] 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度3.A [解析] 由函数y =sin x 的图像变换得到函数y =sin(x +1)的图像,应该将函数y =sin x 图像上所有的点向左平行移动1个单位长度,故选A.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.C5 两角和与差的正弦、余弦、正切 9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12³8-sin ⎝⎛⎭⎫π12³8=10-3cos 2π3-sin 2π3=10-3³⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 19.、、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC=7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-419.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ²sin 2π3EC =2³327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12³277+32³217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.16.、[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 16.解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ²(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.18.、[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .18.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )]=-tan(A+C)=tan A+tan C tan A tan C-1=-1,所以B=135°.14.[2014·新课标全国卷Ⅱ] 函数f(x)=sin(x+φ)-2sin φcos x的最大值为________.14.1[解析] f(x)=sin(x+φ)-2sin φcos x=sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x-φ),其最大值为1.17.,,[2014·山东卷] △ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cos A=63,B=A+π2.(1)求b的值;(2)求△ABC的面积.17.解:(1)在△ABC中,由题意知,sin A=1-cos2A=33.又因为B=A+π2,所以sin B=sin⎝⎛⎭⎫A+π2=cos A=63.由正弦定理可得,b=a sin Bsin A=3³6333=3 2.(2)由B=A+π2得cos B=cos⎝⎛⎭⎫A+π2=-sin A=-33.由A+B+C=π,得C=π-(A+B),所以sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B=33³⎝⎛⎭⎫-33+63³63=13.因此△ABC的面积S=12ab sin C=12³3³32³13=322.8.、[2014·四川卷] 如图1-3所示,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高度是60 m,则河流的宽度BC等于()图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m8.C [解析] 由题意可知,AC =60sin 30°=120.∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,所以sin ∠ABC =sin105°=sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45°=6+24.在△ABC 中,由正弦定理得AC sin ∠ABC =BC∠BAC,于是BC =120³222+64=240 22+6=120(3-1)(m).故选C.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.18.、[2014·重庆卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.18.解:(1)由题意可知c =8-(a +b )=72.由余弦定理得cos C =a 2+b 2-c 22ab=22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222³2³52=-15. (2)由sin A cos 2B 2+sin B cos 2A2=2sin C 可得sin A ²1+cos B 2+sin B ²1+cos A2=2sin C ,化简得sin A +sin A cos B +sin B +sin B cos A =4sin C .因为sin A cos B +cos A sin B =sin(A +B )=sin C ,所以sin A +sin B =3sin C . 由正弦定理可知a +b =3c .又a +b +c =8,所以a +b =6.由于S =12ab sin C =92sin C ,所以ab =9,从而a 2-6a +9=0,解得a =3,所以b =3.C6 二倍角公式 18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4 =-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sinπ4+1=2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2⎝⎛⎭⎫sin x -122+32,所以当sinx =12时函数y =cos 2x +2sin x 取得最大值,最大值为32. 16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16.43 [解析] 如图所示,根据题意知,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43,即l 1与l 2的夹角的正切值等于43.2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0 D .cos 2α>0 2.C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C. 17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.C7 三角函数的求值、化简与证明16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12³8-sin ⎝⎛⎭⎫π12³8=10-3cos 2π3-sin 2π3=10-3³⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 5.、[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.5.π6 [解析] 将x =π3分别代入两个函数,得到sin ⎝⎛⎭⎫2³π3+φ=12,解得23π+φ=π6+2k π(k ∈Z )或23π+φ=5π6+2k π(k ∈Z ),化简解得φ=-π2+2k π(k ∈Z )或φ=π6+2k π(k ∈Z ).又φ∈[0,π),故φ=π6.15.[2014·江苏卷] 已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值. 15.解: (1)因为α∈⎝⎛⎭⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-2 55.故sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α=22³⎝⎛⎭⎫-2 55+22³55=-1010. (2)由(1)知sin 2α=2sin αcos α=2³55³ ⎝⎛⎭⎫-2 55=-45,cos 2α=1-2sin 2α=1-2³⎝⎛⎭⎫552=35,所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α= ⎝⎛⎭⎫-32³35+12³⎝⎛⎭⎫-45=-4+3 310.16.、[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 16.解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ²(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →²BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →²BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2³2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23³223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13³79+2 23³4 29=2327.21.、[2014·辽宁卷] 已知函数f (x )=π(x -cos x )-2sin x -2,g (x )=(x -π)1-sin x1+sin x+2xπ-1.证明: (1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1>π.21.证明:(1)当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=π+πsin x -2cos x >0,所以f (x )在区间⎝⎛⎭⎫0,π2上为增函数.又f (0)=-π-2<0,f ⎝⎛⎭⎫π2=π22-4>0,所以存在唯一x 0∈⎝⎛⎫0,π2,使f (x 0)=0.(2)当x ∈⎣⎡⎦⎤π2,π时,化简得g (x )=(π-x )·cos x 1+sin x +2xπ-1.令t =π-x 则t ∈⎣⎡⎦⎤0,π2.记u (t )=g (π-t )=-t cos t 1+sin t -2πt +1,则u ′(t )=f (t )π(1+sin t ).由(1)得,当t ∈(0,x 0)时,u ′(t )<0;当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )>0.所以在⎝⎛⎭⎫x 0,π2上u (t )为增函数,由u ⎝⎛⎭⎫π2=0知,当t ∈⎣⎡⎭⎫x 0,π2时,u (t )<0,所以u (t )在⎣⎡⎭⎫x 0,π2上无零点.在(0,x 0)上u (t )为减函数,由u (0)=1及u (x 0)<0知存在唯一t 0∈(0,x 0),使u (t 0)=0.于是存在唯一t 0∈⎝⎛⎭⎫0,π2,使u (t 0)=0.设x 1=π-t 0∈⎝⎛⎭⎫π2,π,则g (x 1)=g (π-t 0)=u (t 0)=0.因此存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.由于x 1=π-t 0,t 0<x 0,所以x 0+x 1>π.12.,[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 12.π [解析] 因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.16.[2014·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 a -c =66b ,sin B =6sin C .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A -π6的值.16.解:(1)在△ABC 中,由b sin B =csin C,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c . 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ²cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ²cos π6+sin 2A ²sin π6=15-38.C8 解三角形18.[2014·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin B =2+ 2.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值. 18.解:(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2, 化简得-2cos A cos B +2sin A sin B =2, 故cos(A +B )=-22, 所以A +B =3π4,从而C =π4.(2)因为S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. 16.、[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 16.解: 由三角形面积公式,得12³3³1²sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³⎝⎛⎭⎫-13=12,所以a =2 3.12.[2014·北京卷] 在△ABC 中,a =1,b =2,cos C =14,则c =________;sin A =________.12.2158 [解析] 由余弦定理得c 2=a 2+b 2-2ab cos C =1+4-2³2³1³14=4,即c =2;cos A =b 2+c 2-a 22bc =4+4-12³2³2=78,∴sin A =1-⎝⎛⎭⎫782=158.14.[2014·福建卷] 在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________.14.1 [解析] 由BC sin A =ACsin B ,得sin B =2sin 60°3=1,即B =90°,所以△ABC 为以AB ,BC 为直角边的直角三角形, 则AB =AC 2-BC 2=22-(3)2=1,即AB 等于1.7.、[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 7.A [解析] 设R 是三角形外切圆的半径,R >0,由正弦定理,得a =2R sin A ,b =2R sin B .故选A.∵sin ≤A sin B ,∴2R sin A ≤2R sin B ,∴a ≤b .同理也可以由a ≤b 推出sin A ≤sin B .13.[2014·湖北卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a=1,b =3,则B =________.13.π3或2π3 [解析] 由正弦定理得a sin A =b sin B ,即1sin π6=3sin B,解得sin B =32.又因为b >a ,所以B =π3或2π3.19.、、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC=7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-419.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ²sin 2π3EC =2³327=217,即sin ∠CED =217. (2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12³277+32³217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.14.、[2014·江苏卷] 若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是______.14.6-24[解析] 设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,则由正弦定理得a +2b =2c .故cos C =a 2+b 2-c22ab=a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab=34a 2+12b 2-22ab 2ab =34a 2+12b 22ab -24≥234a 2²12b 22ab -24=6-24,当且仅当3a 2=2b 2,即a b =23时等号成立.18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 5.[2014·江西卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19 B.13 C .1 D.725.D [解析] 由正弦定理得,原式=2b 2-a 2a 2=2⎝⎛⎭⎫b a 2-1=2³⎝⎛⎭⎫322-1=72. 17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →²BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →²BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2³2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23³223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13³79+2 23³4 29=2327. 18.、[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .18.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 17.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积. 17.解:(1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积S =12AB ²DA sin A +12BC ²CD sin C =⎝⎛⎭⎫12³1³2+12³3³2sin 60°=2 3. 16.[2014·全国新课标卷Ⅰ] 如图1-3,为测量山高MN ,选择A 和另一座山的山顶C为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°,以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图1-316.150 [解析] 在Rt △ABC 中,BC =100,∠CAB =45°,所以AC =100 2.在△MAC中,∠MAC =75°,∠MCA =60°,所以∠AMC =45°,由正弦定理有AM sin ∠MCA =ACsin ∠AMC ,即AM =sin 60°sin 45°³100 2=1003,于是在Rt △AMN 中,有MN =sin 60°³1003=150 .17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每日一练6
1.设a >1,且)2(log ),1(log )1(log 2a p a n a m a a a =-=+=,则p n m ,,的大小关系为(B )
(A) n >m >p (B) m >p >n (C) m >n >p (D) p >m >n
2.对于函数①()()
12lg +-=x x f ,②()()22-=x x f ,③()()2cos +=x x f .判断如下三个命题的真假:命题甲:()2+x f 是偶函数;命题乙:()()2,∞-在区间x f 上是减函数,在区间()+∞,2上是增函数;命题丙:()()x f x f -+2在()+∞∞-,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是(D )
A.①③
B.①②
C. ③
D. ②
3.函数())1,0(13log ≠>-+=a a x y a 的图象恒过定点A,若点A 在直线01=++ny mx 上,其中0>mn ,则n
m 21+的最小值为 8 . 4.函数π()3sin 23f x x ⎛⎫=- ⎪⎝
⎭的图象为C ,如下结论中正确的是 ①②③(写出所有正确结论的编号..). ①图象C 关于直线11π12x =
对称;②图象C 关于点2π03⎛⎫ ⎪⎝⎭
,对称; ③函数()f x 在区间π5π1212⎛⎫- ⎪⎝⎭
,内是增函数;④由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C . 5.在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列
{}n a n -是等比数列;
(Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明不等式14n n S S +≤,对任意n ∈*
N 皆成立.。