综合法与分析法
综合法与分析法知识点总结
综合法与分析法知识点总结综合法与分析法是在研究认知过程和解决问题过程中的两种基本方法。
它们在科学研究、管理决策、问题解决等领域中都有着广泛的应用。
在本文中,我们将从综合法和分析法的基本概念、特点、适用范围、主要方法与应用技巧等方面进行综合分析,并结合具体例子进行具体说明。
一、综合法综合法是指在进行研究分析时,采用多个角度、多种方法进行综合比较,综合研究问题的方法。
综合法的主要特点有:1. 多因素综合:综合法强调多方面、多因素的综合研究。
它可以从不同的角度、不同的层面分析问题,得出综合、全面的结论。
2. 积极开放:综合法强调对各种可能性的积极开放,不固步自封,能够克服单一因素分析的片面性。
3. 统筹兼顾:综合法要求在研究中综合各种看法,避免偏听片信,充分尊重每个因素,统筹兼顾。
综合法的主要方法包括层层分析法、交叉综合法、数字与模型综合等。
在实际应用中,可以通过案例分析、数学模型分析等方法进行具体操作。
例如,在管理决策中,如果要分析一个市场是否具有潜在的发展前景,可以采用综合法。
首先,可以从市场规模、人口结构、经济发展情况等多个角度综合考虑;其次,可以采用数字模型进行综合分析,将不同因素的影响定量化,最终形成综合判断。
二、分析法分析法是通过对现象的分解、逐一研究,从而对复杂问题的本质和规律进行探讨的方法。
分析法的主要特点有:1. 逐一分解:分析法要求对问题进行逐层逐一的分解,从整体到局部,从细微到粗大地深入研究每个问题。
2. 重点着眼:分析法要求对问题的各个方面着重研究,找到问题的关键和症结所在,从而能够深刻理解问题。
3. 系统性:分析法在进行研究时需要具有系统性,从不同的角度对问题进行分析,形成全面、系统的认识。
分析法主要包括逐步分析法、归纳分析法、因果分析法等。
在实际应用中可以通过对数据的分解、对问题的逐步归纳等方法进行具体操作。
举例而言,在生产管理中,如果要分析一个生产环节中出现的问题,可以采用分析法。
分析方法与综合方法
⌛️
综合方法的优缺点及适用范围
优点
• 整合事物的内在联系和规律
• 发现新的联系和规律
缺点
• 可能忽视事物的细节和局部
• 需要较高的综合素质和创新能力
适用范围
• 研究事物的整体性和系统性
• 解决复杂问题和创新领域
分析方法与综合方法的综合运用与优化
综合运用
优化
• 在研究过程中,根据需要灵活运用分析方法和综合方法
CREATE TOGETHER
SMART CREATE
分析方法与综合方法:理论应用与实例
01
分析方法与综合方法的基
本概念
分析方法的定义与特点
分析方法是一种深入研究事物内部的方法
• 通过分解、剖析、观察等手段
• 了解事物的本质和规律
• 强调细节和局部
分析方法的特点
• 深入:深入挖掘事物的内在联系
• 细致:关注事物的细节和局部
域
归纳综合方法及其应用
归纳综合方法
应用领域
• 通过归纳手段从具体事物中提炼出一般规律
• 哲学:研究世界观、认识论等
• 如:归纳法、类比法等
• 科学:研究科学方法、科学发现等
• 艺术:研究艺术创作、审美规律等
演绎综合方法及其应用
演绎综合方法
• 通过演绎手段从一般规律推导出具体事物
• 如:演绎法、推理法等
• 员工满意度分析:评估员工满意度、激励措施等
品创新
综合方法在科技创新中的应用
科技创新中的综合方法
• 跨学科研究:整合不同学科的知识和技术,解决复杂问题
• 创新方法论:研究创新过程、创新策略等
• 技术路线图:规划技术发展路径,指导科技创新方向
高中数学—综合法与分析法
高中数学—综合法与分析法综合法与分析法是高中数学中常用的解题方法。
综合法强调整体把握和综合思考问题,而分析法则注重细致分析和逐步解决问题。
两者有各自的特点和应用场景,在解题过程中可以根据题目的要求和条件选择合适的方法。
综合法是先整体把握问题,然后思考解决方法的一种方法。
在解题过程中,先要明确问题的目标和条件,并将其整合为一个整体。
通过对整体的分析和思考,找出解决问题的关键点和方法。
综合法注重的是整体思考,不仅需要对问题进行全面的分析,还需要将各个条件和要求进行综合考虑,从而制定出解决问题的方案。
在高中数学中,综合法常常用于解决复杂的几何问题以及应用题中。
以解决几何问题为例,综合法的思路一般是先整体观察图形的性质和特点,然后从中找出关键的性质或定理,再利用这些性质或定理进行推理和证明。
通过整体把握,可以避免在解题过程中忽略一些重要的条件或关键点,从而提高解题的准确性和有效性。
分析法是逐步解决问题的一种方法。
分析法注重的是从问题中逐步抽象、归纳和推理,通过分解问题,逐步解决问题的各个部分,从而得到最终的解答。
分析法在高中数学中常常用于解决复杂的代数问题和一些特殊的几何问题。
以解决代数问题为例,分析法的思路一般是从已知条件出发,逐步推导出未知量的表达式或等式。
通过对问题的分析和推理,可以逐步解决问题,将复杂的问题分解为简单的步骤,提高解题的可行性和有效性。
在实际的解题过程中,综合法与分析法通常不是相互排斥的,而是相互补充的。
综合法注重整体把握,可以帮助我们快速了解问题的背景和要求;而分析法则注重细致分析,可以帮助我们逐步解决问题的各个部分。
在解题过程中,我们可以根据具体的情况综合运用这两种方法,选择合适的方法和策略来解决问题。
综合法与分析法在高中数学中的应用是非常广泛的。
通过综合法和分析法的学习和应用,我们可以更好地理解和掌握数学的基本概念和方法,提高解题的能力和水平。
同时,综合法和分析法也是培养我们综合思考和分析问题的能力的重要手段之一、通过不断的练习和实践,我们可以逐步提高综合法和分析法的应用水平,更好地解决数学问题。
2.2.1综合法与分析法课件人教新课标2
1 - tan2α 1 - tan2β 求证 1 + tan2α = 2(1 + tan2β) .
证明:
因为(sin2θ + cos2θ)2 - 2sinθcosθ = 1,
所以将(1)(2)代入,可得
4sin2α - 2sin2β = 1. 另一方面要证
4.作业:89页1 2 3
练习.如图,SA⊥平面ABC,AB⊥BC,过A作 SB的垂线,垂足为E,过E作SC的垂线,垂足为 F,求证 AF⊥SC.
S
判断
F E
应该用综合法还
是分析法?
A
C
B
1 - 2sin2α = 1 (1 - 2sin2β), 2
4sin2α - 2sin2β = 1.
由于上式与③相同,于是问题得证.
课堂小结
1.综合法的概念:
一般地,利用已知条件和某些数学定 义、公理、定理等,经过一系列的推理论证, 最后推导出所要证明的结论成立,这种证明 方法叫做综合法.
2.分析法的概念:
则综合法可用 框图表示如下:
P Q1 Q1 Q2 Q2 Q3 … Qn Q
例题1
在△ABC中,三个内角A、B、C对应的 边分别为a、b、c,且A、B、C成等差数列, a、b、c成等比数列,求证△ABC为等边三 角形.
分析
•将A,B,C成等差数列,转化为符号 语言就是2B=A+C;
•A,B,C为△ABC的内角,这是一个隐含 条件,即A+B+C=180°;
这就是另一种证 明方法——分析法.
一般地,从要证明的结论出发,逐 步寻求推证过程中,使每一步结论成立 的充分条件,直至最后,把要证明的结 论归结为判定一个明显成立的条件(已 知条件、定理、定义、公理等)为止, 这种证明的方法叫做分析法.
综合法和分析法
课前探究学习
课堂讲练互动
活页规范训练
法三 1a+1b=a+a b+a+b b=1+ba+ab+1≥2+2 当 a=b 时,取“=”号.
ba·ab=4.当且仅
课前探究学习
课堂讲练互动
活页规范训练
题型二 分析法的应用 【例 2】 设 a,b 为实数,求证: a2+b2≥ 22(a+b).
[思路探索] 题目条件要求使用分析法证明不等式,只需要注 意分析法证明问题的格式即可.
课前探究学习
课堂讲练互动
活页规范训练
题型一 综合法的应用 【例 1】 设数列{an}的前 n 项和为 Sn,且(3-m)Sn+2man=m+3(n
∈N*),其中 m 为常数,且 m≠-3. (1)求证:{an}是等比数列; (2)若数列{an}的公比 q=f(m),数列{bn}满足 b1=a1,bn=32f(bn -1)(n∈N*,n≥2),求证:b1n为等差数列.
课前探究学习
课堂讲练互动
活页规范训练
3.分析法 (1)定义:一般地,从要证明的 结论出发 ,逐步寻求使它成立 的 充分条件 ,直至最后,把要证明的结论归结为判定一个明显 成立的条件(已知条件 、 定理 、 定义 、 公理 等)为止,这种 证明方法叫做分析法. (2)框图表示:用Q表示要证明的结论,则分析法可用框图表示 为:
+2 c·a+2 c> a2b2c2=abc.(10 分) 即a+2 b·b+2 c·a+2 c>abc 成立. ∴logxa+2 b+logxb+2 c+logxa+2 c<logxa+logxb+logxc 成立.(12 分)
课前探究学习
课堂讲练互动
课前探究学习
课堂讲练互动
活页规范训练
综合法和分析法
综合法和分析法
一、综合法
1、一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。
2、综合法的思维方向是”,即由已知条件出发,逐步推出其必要条件(由因导果),最后推导出所要证明的结论成立,故综合法又叫顺推证法或由因导果法.综合法的依据:已知条件以及逻辑推理的基本理论,在推理时要注意:作为依据和出发点的命题一定要正确.
二、分析法
1、 1、一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。
2、分析法的思维特点是:执果索因;分析法的书写格式:要证明命题B为真,只需要证明命题为真,从而有……,这只需要证明命题为真,从而又有……这只需要证明命题A为真,而已知A为真,故命题B必为真。
3、用分析法证明的模式:
用分析法证:为了证明命题B为真,这只需证明命题B,为真,从而有……这只需证明命题B:为真,从而有……这只需证明命题A为真.而已知A为真,故B必真.可见分析法是”,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法。
特别提醒:当命题不知从何人手时,有时可以运用分析法来解决,特别是对
于条件简单而结论复杂的题目,往往更是行之有效.用分析法证明时,往往在最后加上一句步可逆,这无形中就出现了两个问题:①分析法证明过程的每一步不一定”,也没有必要要求”,因为这时仅需寻找充分条件,而不是充要条件;②如果非要”,则限制了分析法解决问题的范围,使得分析法只适用于证明等价命题了,但是,只要我们搞清了用分析法证明问题的逻辑结构,明确四种命题之间的关系,那么用分析法证明不等式还是比较方便的。
综合法和分析法 课件
1.综合法和分析法是数学中常用的两种直接证明方 法,也是不等式证明中的基本方法.由于两者在证明思路 上存在着明显的互逆性,这里将其放在一起加以认识、学 习,以便于对比研究两种思路方法的特点.
2.所谓综合法,即从已知条件出发,根据不等式的 性质或已知的不等式,逐步推导出要证的不等式.综合法 是“由因及果”.
分析:注意不等式左、右两端的差异,思考 如何脱去左端根号或如何去掉右端的分母
a= b1c<121b+1c,而1a=bc.
证明:法一:因为 a,b,c 是不等正数,且 abc=1,
所以 a+ b+ c=
b1c+
a1c+
1 ab
<121b+1c+121a+1c+121a+1b=1a+1b+1c.
法二:a,b,c 是不等正数,且 abc=1,
设 x,y∈(0,+∞).求证: 12(x+y)2+14(x+y)≥x y+y x.
证明:原不等式⇔2(x+y)2+(x+y)≥4x y+4y x ⇔(x+y)[2(x+y)+1]≥2 xy(2 x+2 y). ∵x+y≥2 xy>0, ∴只需证 2(x+y)+1≥2 x+2 y. 即证(x+14)+(y+14)≥ x+ y.
2
只需证 2ab+ma+b < c , 即证 1+2abm+2m-aab+b<1+mc , 只需证 m2c-abc<2mab+m2(a+b)成立, 只需证 m2[c-(a+b)]<ab(2m+c)成立, ∵a,b,c 分别是△ABC 的三边长,∴a+b>c. 即 c-(a+b)<0,而 m2>0, ∴m2[c-(a+b)]<0. 而 ab(2m+c)>0, ∴m2[c-(a+b)]<ab(2m+c)成立. ∴原不等式成立.
(当且仅当 a=b=c=13时,等式成立)
小学数学:分析法和综合法
分析法和综合法分析与综合都是思维的基本方法,无论是研究和解决一般问题,还是数学问题,分析和综合都是最基本的具有逻辑性的方法。
分析与综合本是两种思想方法,但因二者具有十分密切的联系,因此把二者结合起来阐述。
1. 分析法和综合法的概念。
分析是把研究对象的整体分解为若干部分、方面和因素,分别加以考察,找出各自的本质属性及彼此之间的联系。
综合是把研究对象的各个部分、方面和因素的认识结合起来,形成一个整体性认识的思维方法。
分析是综合的基础,综合是分析的整合,综合是与分析相反的思维过程。
在研究数学概念和性质时,往往先把研究对象分解成几个部分、方面和要素进行考察,再进行整合从整体上认识研究对象,形成理性认识。
实际上教师和学生都在经常有意识和无意识地运用了分析和综合的思维方法。
如认识等腰梯形时,可以从它的边和角等几个要素进行分析:它有几条边?几个角?四条边有什么关系?四个角有什么关系?再从整体上概括等腰梯形的性质。
数学中的分析法一般被理解为:在证明和解决问题时,从结论出发,一步一步地追溯到产生这一结论的条件是已知的为止,是一种“执果索因”的分析法。
综合法一般被理解为:在证明和解决问题时,从已知条件和某些定义、定理等出发,经过一系列的运算或推理,最终证明结论或解决问题,是一种“由因导果”的综合法。
如小学数学中的问题解决,可以由问题出发逐步逆推到已知条件,这是分析法;从已知条件出发,逐步求出所需答案,这是综合法。
再如分析法和综合法在中学数学作为直接证明的基本方法,应用比较普遍。
因此,分析法和综合法是数学学习中应用较为普遍的相互依赖、相互渗透的思想方法。
2. 分析法和综合法的重要意义。
大纲时代的小学数学教育,比较重视逻辑思维能力的培养,在教学过程中重视培养学生的分析、综合、抽象、概括、判断和推理能力,其中培养学生分析和综合的能力、推理能力是很重要的方面,如在解答应用题时重视分析法和综合法的运用,也就是说可以先从应用题的问题出发,找出解决问题需要的条件中哪些是已知的、哪些是未知的,未知的条件又需要什么条件解决,这样一步一步倒推,直到利用最原始的已知条件解决。
综合法和分析法
x 3 x 2
x 4,
2
展开得 2x 5 2 x 1 x 4 2x 5 2 x 3 x 2, 即
x 1 x 4 x 3 x 2 ,
2 2
只需证 x 1 x 4 x 3 x 2 , 即证x2-5x+4<x2-5x+6,即4<6,这显然成立. ∴当x≥4时, x 1
(4)a2+b2+c2≥ab+bc+ca(a,b,c∈R), (5)a+b+c,a2+b2+c2,ab+bc+ca这三个式子之间的关系,由 (a+b+c)2=a2+b2+c2+2(ab+bc+ca)得出.三式中已知两式,
第三式即可由设等式用另两式表示出来.
例2:在△ABC中,三个内角A、B、C对应的边分别 为a、b、c,且A、B、C成等差数列,a、b、c成等比数 列,求证△ABC为等边三角形.
2 2
练习:当x≥4时,证明: x 1 x 2 证明:欲证 只需证 即证
x 3 x 4.
x 1 x 2 x 3 x 4 (x≥4),
x 1 x 4 x 3 x 2 x 4 ,
x 1 x 4
2 B A C 证明: B 3 A B C
b ac a c 2ac cos B ac
2 2 2
a 2ac c 0 a c
2 2
∴△ABC为等边三角形.
练习:在锐角三角形中,A、B、C为三角形内角,求证: sinA+sinB+sinC>cosA+cosB+cosC.
高中数学综合法与分析法
高中数学综合法与分析法高中数学的综合法与分析法是高中数学教学的两种基本方法。
这两种方法虽然有不同的教学目标和教学内容,但都是为了提高学生的数学能力和数学思维,培养学生的数学兴趣和数学素养。
综合法是指将数学的各个分支有机地结合起来,使学生在学习中能够全面地认识数学的发展和应用。
综合法要求学生从整体上理解数学的概念和原理,学会将所学的知识和技巧应用到实际问题中,并且能够解决复杂的综合性问题。
综合法注重学生的思维能力和合作能力的培养,鼓励学生主动探索和发现问题,并通过合作解题、讨论与思考来提高学生的综合素质。
高中数学综合法和分析法在教学方法上有着不同的特点和优势。
综合法注重培养学生的合作精神和团队意识,通过合作解题和实际问题的分析解决来提高学生的综合素质和实际应用能力。
综合法能够激发学生的学习兴趣和主动性,培养学生的创新精神和解决问题的能力。
而分析法则注重发展学生的逻辑思维和推理能力,通过逐步分析和推导,使学生能够深入地理解和掌握数学的基本概念和原理。
分析法能够提高学生的数学思维和抽象能力,培养学生的数学思维方式和问题解决能力。
高中数学的综合法和分析法在教学中可以相互融合和补充,形成一种有机的教学体系。
在教学中,可以根据教学目标和教学内容的不同,灵活运用综合法和分析法,使学生能够全面地认识和理解数学的各个分支,掌握数学的基本方法和技巧,培养学生的数学思维和创新能力。
同时,教师应注重培养学生的数学素养和学习能力,引导学生主动参与到课堂教学中,提高学生的学习兴趣和能动性。
总之,高中数学的综合法和分析法是高中数学教学的两种基本方法。
综合法和分析法在教学方法上有着不同的特点和优势,能够有效地提高学生的数学能力和数学思维,培养学生的数学兴趣和数学素养。
在教学中,教师应根据教学目标和教学内容的不同,灵活运用综合法和分析法,使学生能够全面地理解和掌握数学的各个分支和基本原理,提高学生的数学思维和解决问题的能力。
综合法与分析法
综合法与分析法的概念 (1)综合法: 一般地,从_已__知__条__件__出发,利用定义、公理、定理、性质 等,经过一系列的推理、论证而得出命题成立,这种证明方法 叫做综合法.综合法又叫_顺__推__证__法__或_由__因__导__果__法__.
(2)分析法: 证明命题时,从_要__证__的__结__论__出发,逐步寻求使它成立的_充__分__ _条__件__,直至所需条件为_已__知__条__件__或_一__个__明__显__成__立__的__事__实__(定 义、公理或已证明的定理、性质等),从而得出要证的命题成 立,这种证明方法叫做分析法,这是一种_执__果__索__因__的思考和 证明方法.
用综合法证明不等式
综合法证明不等式的方法 (1)综合法证明不等式,揭示出条件和结论之间的因果联系, 为此要着力分析已知与求证之间,不等式的左右两端之间的差 异与联系.合理进行转换,恰当选择已知不等式,这是证明的 关键.
(2)综合法证明不等式所依赖的已知不等式主要有如下几个:
①a2≥0(a∈R);②(a-b)2≥0(a,b∈R),其变形有
只需证
a b2
a b2
a b 2 ab
,
4a
4b
即证: (a b)2 a b 2 (a b)2,
2a
2b
只需证
ab a b ab,
2a
2b
即证:
a b 1 a b,
2a
2b
即 b 1 a,
a
b
只需证 b 1 a .
ab
∵a>b>0, b 1 a 成立.
ab
a2 b2 2ab,(a b)2 ab,a2 b2 1 a b2;
2
分析与综合法
AD BD
1
4.前进型分析法 这种分析法,其思路是从整体物中已经成立的某 一部分出发,运用已有的知识逐步寻找并扩展到 其它部分成立的条件,最终挺进到原事物成立的 必要条件,也就是原命题成立的必要条件。
数论常用的方法
例3 设在一个由实数组成的有限数列中,任意7个相继项的 和都是负数,而任意11个相继项的和都是正数,试问,这 样的数列最多能包含多少项。 解:从已经明确的部分出发,即(最小项) ∵a1+…+a7<0,a1+a2+…+a11>0, ∴a8+a9+…+a11>0。(由已知:到11项是已成立的部分) 顺序往前推进,可得a11+a12+…+a14>0,则有 a8+a9+…+2a11+…+a14>0。 但∵ a8+a9+…+a14<0,∴a11>0。(从11进到14,得a11>0) 用同样的方法,顺序往前推进,可得a12>0,a13>0,因 而a11+a12+a13>0,(推至16项)但因为a11+a12+…+a17<0, ∴a14+…+a17<0。(考察17项) 另一方面,从a7+…+a17>0及a7+…+a13<0,可得 a14+…+a17>0。与前矛盾,因此项数≤16。(从11前进到17项, 第17项不成立,故只能是≤16)
分析与综合法
一、分析法与数学解题的分析法 1、分析法:把研究的对象分为各个组成部分,各个不同的 因素、不同的层次,然后分别地加以研究探索,从而认识 和理解事物的一种方法,这是方法论中的分析法,也是数 学思想方法中的分析法。 2、数学解题中的分析法: 指从结果追溯到其产生的原因的思维方法,它是从所需要 论证的结论出发,以一系列的已知定义、定理为依据逐步 逆推,从而达到已知条件(也叫执果索因)
【课件】 综合法与分析法
abc
证明: b2 c2 2bc,a2 0, a2(b2 c2 ) 2a2bc c2 a2 2ac,b2 0, b2(c2 a2 ) 2b2ac a2 b2 2ab,c2 0, c2(a2 b2 ) 2c2ab 2(a2b2 b2c2 c2a2 ) 2a2bc 2b2ac 2c2ab a2b2 b2c2 c2a2 abc(a b c) 又a,b,c 0, a b c 0, 1 0,
用综合法证明不等式的逻辑关系
A B1 B2 Bn B (已 知)(逐 步 推 演 不 等 式 成 立 的必 要 条 件)(结 论)
例2 已 知a1,a2 ,,an R , 且a1a2 an 1, 求 证(1 a1 )(1 a2 )(1 an ) 2n
证明: a1 R ,1 a1 2 a1 , 同理1 a2 2 a2 ,,1 an 2 an a1,a2 ,,an R ,由不等式的性质,得 (1 a1)(1 a2 )(1 an ) 2n a1a2 an 2n. ai 1时,1 ai 2 ai 取等号, 所以原式在a1 a2 an 1时取等号.
利用综合法证明不等式时, 应注意对已证 不 等 式 的 使 用, 常 用 的 不 等 式 有:
(1)a2 0;
(2) a 0;
(3)a2 b2 2ab;它的变形形式又有
(a
b)2
a2 4ab;
a
b 2
2 2
(4) a b ab;它的变形形式又有 2
a b 2(ab 0); a b 2(ab 0)
由于a,b,c不全相等, 所以上述三个式子中至少有一个不 取 等 号, 把 它 们 相 加 得
a(b2 c2 ) b(c2 a2 ) c(a2 b2 ) 6abc
分析与综合法
由A、B、C成等差数列→B=60° →b² =a² +c² -2accosB=a² +c² -ac。 思路接近,整理一下即得完整的证明。(从两 条线进行考察)
二、综合法
1、综合法:把研究的对象的各部分、方面、因素都联系起 来加以研究考察,从而在整体上认识和掌握事物的本质属 性和规律的一种思维方法。 特点是:从事物各部分、方面、因素的特点和属性出发寻找 内在联系,然后再去认识事物的整体规律。 2、数学解题中的综合法:指从已知的定义、定理、条件出 发,逐步推演从而导致所求结论的一种方法,是由因索果 的方法。 3、分析法与综合法混合使用 思维层面:解决问题总是从分析模式开始,找到方法后再 综合理解和表达出来。 方法层面:分析法和综合法是解决问题时的两种表达方式 4、联合使用二者的优势:目的性更明确;整体性更充分。
例2 已知A、B为锐角三角形之二内角,求证tgA· tgB>1。 证明 • 考虑到tgA· tgB,可作CD⊥AB,则应有 (要证明结论, 也就是要证) CD 2
tan A tan B
即 CD² >AD· BD。 我们希望能在CD所在直线上找一点E,使得ED² = AD· BD,且有CD>ED。(是否存在这样的点E?不明确) 假设这个不明确的部分是成立的,则E点应在CD内。通 过已有的知识和C是锐角, 我们很快知道E点即是以AB为直径的半圆与CD的交点,且落 在CD内,即原命题是成立的。
例1 若x、y、z为互不相等的正数,求证
证明 把要求证的不等式看成是一个整体事物,并假设其 成立。 然后变形(即把它分解成一些适当的部分,以找出能解决 问题的一种分解形式),即需证明
那么,原不等式做为一个整体,就可分解成以下三个部分 , 且有 这三个部分按题设条件是成立的,所以原不等式成立
综合法和分析法(公开课教案)
综合法和分析法课时安排:每章25分钟,共125分钟教学目标:1. 让学生理解综合法和分析法的概念及应用。
2. 培养学生运用综合法和分析法解决问题的能力。
3. 提高学生逻辑思维和判断能力。
教学方法:1. 讲授法:讲解综合法和分析法的原理及运用。
2. 案例分析法:分析实际案例,让学生深入理解综合法和分析法。
3. 小组讨论法:分组讨论,培养学生的合作意识和团队精神。
教学内容:第一章:综合法概述1.1 综合法的定义1.2 综合法的应用领域1.3 综合法的优势和局限性第二章:分析法概述2.1 分析法的定义2.2 分析法的应用领域2.3 分析法的优势和局限性第三章:综合法与分析法的区别与联系3.1 综合法与分析法的区别3.2 综合法与分析法的联系3.3 综合法与分析法在实际应用中的选择第四章:综合法在解决问题中的应用4.1 综合法解决问题的步骤4.2 综合法在案例中的应用4.3 综合法解决问题的注意事项第五章:分析法在解决问题中的应用5.1 分析法解决问题的步骤5.2 分析法在案例中的应用5.3 分析法解决问题的注意事项教学评估:1. 课后作业:布置相关案例分析作业,巩固所学内容。
2. 小组讨论:评估学生在小组讨论中的表现,检验学生对综合法和分析法的理解程度。
3. 课堂问答:通过提问,了解学生对教学内容的掌握情况。
教学资源:1. PPT课件:展示综合法和分析法的原理、案例及应用。
2. 案例材料:提供实际案例,供学生分析和讨论。
3. 参考书籍:为学生提供更多的学习资料,加深对综合法和分析法的理解。
教学建议:1. 在讲解综合法和分析法时,举例生动、贴近实际,激发学生的兴趣。
2. 组织小组讨论,鼓励学生发表自己的观点,培养学生的合作意识。
3. 注重课后作业的布置和批改,及时了解学生对教学内容的掌握情况。
4. 针对学生的反馈,调整教学方法和节奏,提高教学效果。
第六章:综合法在自然科学中的应用6.1 自然科学中综合法的典型应用案例6.2 综合法在自然科学研究中的作用与意义6.3 综合法在自然科学中的局限性与挑战第七章:分析法在社会科学中的应用7.1 社会科学中分析法的典型应用案例7.2 分析法在社会科学研究中的作用与意义7.3 分析法在社会科学中的局限性与挑战第八章:综合法与分析法在工程领域的应用8.1 工程领域中综合法的应用案例8.2 工程领域中分析法的应用案例8.3 综合法与分析法在工程领域的结合应用第九章:综合法与分析法在医学领域的应用9.1 医学领域中综合法的应用案例9.2 医学领域中分析法的应用案例9.3 综合法与分析法在医学领域的结合应用第十章:综合法与分析法在商业领域的应用10.1 商业领域中综合法的应用案例10.2 商业领域中分析法的应用案例10.3 综合法与分析法在商业领域的结合应用教学评估:1. 课后作业:布置相关案例分析作业,巩固所学内容。
综合法和分析法
一、复习:
推理
合情推理
(或然性推理)
演绎推理 (必然性推理)
归纳
类比
三段论
(特殊到一般) (特殊到特殊)(一般到特殊)
演绎推理是证明数学结论、建立数学体系的 重要思维过程.
数学结论、证明思路的发现,主要靠合情推理.
问题 1:已知 a, b 0 ,求证:a(b2 c2 ) b(c2 a2 )≥ 4abc
2
只要证 0 ≤ ( a b )2
因为最后一个不等式成 立,故结论成立。
综合法
分析法
表达简洁!
目的性强,易于探索!
练一练:
1、求证: 6 7 2 2 5
2、求证: a a 1 a 2 a 3(a 3)
3、已知1 tan a 1,求证:3sin 2a 4cos2a 2 tan a
综合法的特点:由因导果
分析法的特点:执果索因.
上联:由因导果,顺藤摸瓜 下联:执果索因,逆推破案 横批:得心应手
ab ≤ a b (a 0,b 0)? 指出其中的证明方法的特点. 2
证法1:对于正数a,b, 有
( a b)2 ≥ 0
证法2:要证 ab ≤ a b 2
只要证 2 ab ≤ a b
a b 2 ab ≥ 0 只要证 0 ≤ a 2 ab b
a b ≥ 2 ab a b ≥ ab
象这种利用已知条件和某些数学定义、公 理、定理等,经过一系列的推理论证,最后推 导出所要证明的结论成立,这种证明方法叫综 合法.(又称顺推证法)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合法与分析法
【一】综合法与分析法
课前预习学案
预习目标:
了解综合法与分析法的概念,并能简单应用。
预习内容:
证明方法可以分为直接证明和间接证明
1.直接证明分为和
2.直接证明是从命题的或出发,根据以知的定义,
公里,定理,推证结论的真实性。
3.综合法是从推导到的方法。
而分析法是一种从
追溯到的思维方法,具体的说,综合法是从的条件出发,经过逐步的推理,最后达到待证结论,分析法那么是从待证的结论出发,一步一步寻求结论成立的条件,最后达到题设的以知条件或以被证明的事实。
综合法是由导,分析法是执
索。
【三】提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容
[来源:学#科#网Z#X#X#K]
课内探究学案
学习目标
让学生理解分析法与综合法的概念并能够应用
【二】学习过程: a,b ∈R+,求证:
例2.a,b ∈R+,求证:
例3.a,b,c ∈R ,求证〔I 〕
[来源:1ZXXK] 课后练习与提高
1.〔A 级〕函数⎩⎨⎧≥<<-=-0
,;
01,sin )(12x e x x x f x π,假设,2)()1(=+a f f
那么a 的所有可能值为 〔
〕
A 、1
B 、22
- C 、21,2-或 D 、21,2
或[来源:学#科#网] 2.〔A 级〕函数x x x y sin cos -=在以下哪个区间内是增函数
〔 〕
A 、)23,
2(π
π B 、)2,(ππ
C 、)25,23(π
π D 、)3,2(ππ
3.〔A 级〕设b a b a b a +=+∈则,62,,22R 的最小值是
〔 〕
A 、22-
B 、335-
C 、-3
D 、2
7
- 4.〔A 级〕以下函数中,在),0(+∞上为增函数的是
〔 〕
A 、x y 2sin =
B 、x xe y =
C 、x x y -=3
D 、x x y -+=)1ln(
5.〔A 级〕设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,那么=+
y
c
x
a 〔 〕 A 、1 B 、2 C 、3 D 、不确定 6.〔A 级〕实数0≠a ,且函数)1
2()1()(2a
x x a x f +-+=有最小值1-,那么
a =__________。
7.〔A 级〕b a ,是不相等的正数,b a y b a x +=+=,2
,那么y x ,的大小
关系是_________。
8.〔B 〕假设正整数m 满足m m 102105121<<-,那么
)3010.02.(lg ______________≈=m
9.〔B 〕设)(),0)(2sin()(x f x x f <<-+=ϕπϕ图像的一条对称轴是8
π
=x .
〔1〕求ϕ的值;
〔2〕求)(x f y =的增区间;
〔3〕证明直线025=+-c y x 与函数)(x f y =的图象不相切。
10.〔B 〕ABC ∆的三个内角C B A ,,成等差数列,求证:c
b a
c b b a ++=
+++3
11 综合法与分析法 【一】教材分析
综合法与分析法作为高中数学中常用的两种基本方法,一直被学生所熟悉和应用,通过这节课的学习,学生将对这两种方法的掌握更加系统。
同时也复习了有关的其他数学知识。
【二】教学目标
知识目标:让学生理解分析法与综合法的概念并能够应用。
能力目标:提高证明问题的能力。
情感、态度、价值观:养成言之有理论证有据的习惯。
【三】教学重点难点
教学重点:让学生理解分析法与综合法的概念并能够应用。
教学难点:提高证明问题的能力。
【四】教学方法:探究法 【五】课时安排:1课时 六、教学过程 a,b ∈R+,求证:
例2.a,b ∈R+,求证:
例3.a,b,c ∈R ,求证〔I 〕
课后练习与提高
1.〔A 级〕函数⎩⎨⎧≥<<-=-0
,;
01,sin )(12x e x x x f x π,假设,2)()1(=+a f f
那么a 的所有可能值为 〔 〕
A 、1
B 、22
- C 、21,2-或 D 、21,2
或 2.〔A 级〕函数x x x y sin cos -=在以下哪个区间内是增函数
〔 〕
A 、)23,
2(π
π B 、)2,(ππ
C 、)25,23(π
π D 、)3,2(ππ
3.〔A 级〕设b a b a b a +=+∈则,62,,22R 的最小值是
〔 〕
A 、22-
B 、335-
C 、-3
D 、2
7
- 4.〔A 级〕以下函数中,在),0(+∞上为增函数的是
〔 〕
A 、x y 2sin =
B 、x xe y =
C 、x x y -=3
D 、x x y -+=)1ln(
5.〔A 级〕设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,那么=+
y
c
x
a 〔 〕 A 、1 B 、2 C 、3 D 、不确定 6.〔A 级〕实数0≠a ,且函数)1
2()1()(2a
x x a x f +-+=有最小值1-,那么
a =__________。
7.〔A 级〕b a ,是不相等的正数,b a y b a x +=+=,2
,那么y x ,的大小
关系是_________。
8.〔B 〕假设正整数m 满足m m 102105121<<-,那么
)3010.02.(lg ______________≈=m
9.〔B 〕设)(),0)(2sin()(x f x x f <<-+=ϕπϕ图像的一条对称轴是8
π
=x .
〔1〕求ϕ的值;[来源:学&科&网] 〔2〕求)(x f y =的增区间;
〔3〕证明直线025=+-c y x 与函数)(x f y =的图象不相切。
[来源:1ZXXK]
10.〔B 〕ABC ∆的三个内角C B A ,,成等差数列,
求证:c
b a
c b b a ++=+++3
11
七、板书设计
八、教学反思。