k磁场运动时间最长问题

合集下载

带电粒子在有界磁场中运动时间问题的解题策略

带电粒子在有界磁场中运动时间问题的解题策略

带电粒子在有界磁场中运动时间问题的解题策略作者:冯守灿来源:《中学物理·高中》2013年第10期求解带电粒子在有界磁场中运动时间问题是磁场中一种常见题型,求解粒子运动时间的基本方法是:根据粒子圆周运动的周期T和轨道所对应的圆心角,并根据求得。

除粒子运动时间计算问题之外,还有磁场中粒子运动时间的定性分析问题,比如:不同粒子在磁场中运动时间的比较以及粒子在磁场中运动时间的最值问题,此类问题除了用常规方法求解之外,还可以结合题目所给条件,从不同角度加以分析判断,效果更好,现结合实例从两方面分析如下:1、如何求解粒子在磁场运动时间1.1利用周期和圆心角求时间例1、如图所示,有界匀强磁场的磁感应强度B=2×10-8 T;磁场宽度L=0.2 m、一带电粒子电荷量q=-3.2×10-19 C,质量m=6.4×10-27 kg,以v=4×104 m/s的速度沿OO′垂直射入磁场,在磁场中偏转后从右边界射出.求:(1)大致画出带电粒子的运动轨迹;(画在题图上)(2)带电粒子在磁场中运动的轨道半径;(3)带电粒子在磁场中运动时间?解析:(1)轨迹如图.(2)带电粒子在磁场中运动时,由牛顿运动定律,有qvB=mv2R R=mvqB=6.4×10-27×4×1043.2×10-19×2×10-3 m=0.4 m.(3)带点粒子在磁场中运动的周期为设粒子在磁场中运动对应的圆心角为,由上图可知:所以粒子在磁场中运动的时间为1.2利用周期和速度偏转角求时间例2、如图所示,一束电子(质量为m,电量为e)以速度v0沿水平方向由S点射入垂直于纸面向里,磁感应强度为B,而宽度为d的匀强磁场。

射出磁场时的速度方向与竖直边界成30°,则穿过磁场所用的时间是多少?解析:已知初速度和末速度的方向,易得速度的偏转角,由几何知识可知:粒子运动的圆弧对应的圆心角等于粒子速度的偏转角。

2023年高考辽宁卷物理真题(含答案解析)

2023年高考辽宁卷物理真题(含答案解析)
Ekm h W逸出功 则用④照射该金属逸出光电子的最大初动能大于 Ek,选项 D 错误。 故选 A。 7.D 【详解】设月球绕地球运动的轨道半径为 r₁,地球绕太阳运动的轨道半径为 r₂,根据
答案第 2页,共 10页
可得
G
Mm r2
m
4 2 T2
r
G
m地 m月 r12
m月
4 2 T12
r1
其中
G
N A2
kg m/s2 A2
kg m/(s2 A2 )
故选 B。
3.B
【详解】AB.由图乙可知,甲下滑过程中,甲做匀加速直线运动,则甲沿Ⅱ下滑,乙做加速
度逐渐减小的加速运动,乙沿 I 下滑,任意时刻甲的速度都小于乙的速度,可知同一时刻甲
的动能比乙的小,A 错误,B 正确;
CD.乙沿 I 下滑,开始时乙速度为 0,到 N 点时乙竖直方向速度为零,根据瞬时功率公式
答案第 1页,共 10页
关于 P 点的对称点时,电流方向发生变化,根据 u BLv⊥
可知导体棒两端的电势差 u 随时间 t 变化的图像为余弦图像。 故选 C。
5.B
【详解】根据
可得
pV C T
pCT V
从 a 到 b,气体压强不变,温度升高,则体积变大;从 b 到 c,气体压强减小,温度降低,
测量硬币的质量,得到一元和一角硬币的质量分别为 m1 和 m2 ( m1 m2 )。将硬币甲放置
在斜面一某一位置,标记此位置为 B。由静止释放甲,当甲停在水平面上某处时,测量 甲从 O 点到停止处的滑行距离 OP。将硬币乙放置在 O 处,左侧与 O 点重合,将甲放 置于 B 点由静止释放。当两枚硬币发生碰撞后,分别测量甲乙从 O 点到停止处的滑行 距离 OM 和 ON。保持释放位置不变,重复实验若干次,得到 OP、OM、ON 的平均值

高考物理带电粒子在磁场中的运动基础练习题及解析

高考物理带电粒子在磁场中的运动基础练习题及解析

高考物理带电粒子在磁场中的运动基础练习题及解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

高考物理一轮复习(新高考版2(粤冀渝湘)适用) 第10章 专题强化19 动态圆问题

高考物理一轮复习(新高考版2(粤冀渝湘)适用) 第10章 专题强化19 动态圆问题

例4 (2020·全国卷Ⅲ·18)真空中有一匀强磁场,磁场边界为两个半径分
别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图5
所示.一速率为v的电子从圆心沿半径方向进入磁场.已知电子质量为m,
电荷量为e,忽略重力.为使该电子的运动被限制在图中实线圆围成的区
域内,磁场的磁感应强度最小为
03
题型四 “磁聚焦”模型
1.带电粒子的会聚 如图6甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆 形磁场区域,如果轨迹圆半径与磁场圆半径相等(R=r),则所有的带电 粒子将从磁场圆的最低点B点射出.(会聚) 证 明 : 四 边 形 OAO′B 为 菱 形 , 必 是平行四边形,对边平行,OB必平 行 于 AO′( 即 竖 直 方 向 ) , 可 知 从 A 点发出的带电粒子必然经过B点.
距 A 点的竖直距离 L2= R2-(d-R)2= 33d,
所以粒子在 PQ 边界射出的区域长度为 L=L1+L2=233d, 因为 R<d,所以粒子在 MN 边界射出区域的长度为 L′=2R =43d, 故两区域长度之比为 L∶L′=233d∶43d= 3∶2, 故C正确,A、B、D错误.
03Βιβλιοθήκη 3.常见的几种临界情况 (1)直线边界 最长时间:弧长最长,一般为轨迹与直线边界相切. 最短时间:弧长最短(弦长最短),入射点确定,入射点和出射点连线与 边界垂直. 如图1,P为入射点,M为出射点.
图1
(2)圆形边界:公共弦为小圆直径时,出现极值,即: 当运动轨迹圆半径大于圆形磁场半径时,以磁场直径的两端点为入射 点和出射点的轨迹对应的圆心角最大. 当运动轨迹圆半径小于圆形磁场半径时,则以轨迹圆直径的两端点为 入射点和出射点的圆形磁场对应的圆心角最大.

磁场习题(含答案解析)

磁场习题(含答案解析)

磁场典型例题(一)磁通量的大小比较与磁通量的变化例题1. 如图所示,a、b为两同心圆线圈,且线圈平面均垂直于条形磁铁,a的半径大于b,两线圈中的磁通量较大的是线圈___________。

解析:b 部分学生由于对所有磁感线均通过磁铁内部形成闭合曲线理解不深,容易出错。

例题2. 磁感应强度为B的匀强磁场方向水平向右,一面积为S的线圈abcd如图所示放置,平面abcd与竖直面成θ角。

将abcd绕ad轴转180º角,则穿过线圈的磁通量的变化量为()A. 0B. 2BSC. 2BSc osθD. 2BSs inθ解析:C部分学生由于不理解关于穿过一个面的磁通量正负的规定而出现错误。

(二)等效分析法在空间问题中的应用例题3. 一个可自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个圆线圈的圆心重合,当两线圈都通过如图所示的电流时,则从左向右看,线圈L1将()A. 不动B. 顺时针转动C. 逆时针转动D. 向纸外平动解析:C 本题可把L1、L2等效成两个条形磁铁,利用同名磁极相斥,异名磁极相吸,即可判断出L1将逆时针转动。

(三)安培力作用下的平衡问题例题4. 一劲度系数为k的轻质弹簧,下端挂有一匝数为n的矩形线框abcd,bc边长为l。

线框的下半部处在匀强磁场中,磁感应强度大小为B,方向与线框平面垂直,在图中垂直于纸面向里。

线框中通以电流I,方向如图所示。

开始时线框处于平衡状态。

令磁场反向,磁感应强度的大小仍为B,线框达到新的平衡。

在此过程中线框位移的大小=__________,方向_____________。

解析:,向下。

本题为静力学与安培力综合,把安培力看成静力学中按性质来命名的一个力进行受力分析,是本题解答的基本思路。

例题5. 如图所示,两平行光滑导轨相距为20cm,金属棒MN质量为10g,电阻R=8Ω,匀强磁场的磁感应强度B的方向竖直向下,大小为0.8T,电源电动势为10V,内阻为1Ω。

高考物理带电粒子在磁场中的运动压轴难题

高考物理带电粒子在磁场中的运动压轴难题

高考物理带电粒子在磁场中的运动压轴难题一、带电粒子在磁场中的运动压轴题1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。

现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。

【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R OQ QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高中物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)及解析

高中物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)及解析
8.如图所示,质量为m=0.5kg的小球用长为r=0.4m的细绳悬挂于O点,在O点的正下方有一个质量为m1=1.0kg的小滑块,小滑块放在一块静止在光滑水平面上、质量为m2=1.0kg的木板左端.现将小球向左上方拉至细绳与竖直方向夹角θ=60°的位置由静止释放,小球摆到最低点与小滑块发生正碰并被反弹,碰撞时间极短,碰后瞬间细绳对小球的拉力比碰前瞬间的减小了△T=4.8N,而小滑块恰好不会从木板上掉下.已知小滑块与木板之间的动摩擦因数为μ=0.12,不计空气阻力,重力加速度g取10m/s2.求:
4.在游乐场中,父子两人各自乘坐的碰碰车沿同一直线相向而行,在碰前瞬间双方都关闭了动力,此时父亲的速度大小为v,儿子的速度大小为2v.两车瞬间碰撞后儿子沿反方向滑行,父亲运动的方向不变且经过时间t停止运动.已知父亲和车的总质量为3m,儿子和车的总质量为m,两车与地面之间的动摩擦因数均为μ,重力加速度大小为g,求:
(2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R;
(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q.
【详解】
(1)设弹簧恢复到自然长度时A、B的速度分别为vA、vB,由动量守恒定律: 由能量关系:
解得vA=2m/s;vB=4m/s
(2)设B经过d点时速度为vd,在d点:
v′= 0.4m/s
(2)小球与小滑块碰撞过程,动量守恒
mv= -mv′+m1v1
v1= (v+v′) = 1.2m/s
小滑块在木板上滑动过程中,动量守恒
m1v1=(m1+m2)v2
v2= v1= 0.6m/s
由能量守恒可得
μm1gL= m1v12- (m1+m2)v22

磁场精选题目(含答案、解析)

磁场精选题目(含答案、解析)

1.在如图所示的匀强电场和匀强磁场共存的区域内.在如图所示的匀强电场和匀强磁场共存的区域内((不计重力不计重力)),电子可能沿水平方向向右做直线运动的是,电子可能沿水平方向向右做直线运动的是( ( )解析:若电子水平向右运动,在A 图中电场力水平向左,洛伦兹力竖直向下,故不可能;在B 图中,电场力水平向左,洛伦兹力为零,故电子可能水平向右做匀减速直线运动;在C 图中电场力竖直向下,洛伦兹力竖直向下,电子不可能向右做匀速直线运动;在D 图中电场力竖直向上,洛伦兹力竖直向上,故电子不可能做水平向右的直线运动,因此只有选项B 正确.正确.答案:答案:B B2.2.如图所示,在长方形如图所示,在长方形abcd 区域内有正交的电磁场,ab =bc /2/2==L ,一带电粒子,一带电粒子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc 边的中点P 射出,若撤射出,若撤去磁场,则粒子从c 点射出;若撤去电场,则粒子将点射出;若撤去电场,则粒子将((重力不计重力不计)( )( )A .从b 点射出点射出B .从b 、P 间某点射出间某点射出C .从a 点射出点射出D .从a 、b 间某点射出间某点射出解析:由粒子做直线运动可知qv 0B =qE ;撤去磁场粒子从c 点射出可知qE =ma ,at =2v 0,v 0t =L ,所以撤除电场后粒子运动的半径r =mv 0qB =L 2. 3.如图所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁.如图所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径r 相同,则它们一定具有相同的同,则它们一定具有相同的( ( ) A .动量.动量 B B.质量.质量.质量C .电荷量.电荷量D D D.比荷.比荷.比荷解析:离子流在区域Ⅰ中不偏转,一定是qE =qvB ,v =E B .进入区域Ⅱ后,做匀速圆周运动的半径相同,由r =mv qB知,因v 、B 相同,所以只能是比荷相同,故D 正确,正确,A A 、B 、C 错误.错误.4.(2012年合肥模拟年合肥模拟))两块金属板a 、b 平行放置,板间存在与匀强电场正交的匀强磁场,假设电场、磁场只存在于两板间的空间区域.一束电子以一定的初速度v 0从两极板中间,沿垂直于电场、磁场的方向射入场中,无偏转地通过场区,如图所示.已知板长l =10 cm 10 cm,两板间距,两板间距d =3.0 cm 3.0 cm,两板间电势差,两板间电势差U =150 V 150 V,,v 0=2.0×107 m/s. m/s.求:求:求:(1)(1)磁感应强度磁感应强度B 的大小;的大小;(2)(2)若撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能增加多少?若撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能增加多少?若撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能增加多少?((电子所带电荷量的大小与其质量之比e m =1.76×1011C/kg)解析:(1)(1)电子进入正交的电磁场不发生偏转,则满足电子进入正交的电磁场不发生偏转,则满足电子进入正交的电磁场不发生偏转,则满足Bev 0=e U dB =U v 0d=2.5×10-4T.(2)(2)设电子通过场区偏转的距离为设电子通过场区偏转的距离为y l =v 0t ,a =eU mdy =12at 2=12×eU md·(l v 0)2=1.1×10-2m. ΔE k =eEy =e U dy =8.8×10-18J =55 eV. [例1] 在平面直角坐标xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为磁感应强度为 B .一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半 轴上的P 点垂直于y 轴射出磁场,如图所示.不计粒子重力,求:轴射出磁场,如图所示.不计粒子重力,求:(1)M 、N 两点间的电势差UMN ;(2)(2)粒子在磁场中运动的轨道半径粒子在磁场中运动的轨道半径r ;(3)(3)粒子从粒子从M 点运动到P 点的总时间t .[思路点拨思路点拨] ] 根据粒子在不同区域内的运动特点和受力特根据粒子在不同区域内的运动特点和受力特点画出轨迹,分别利用类平抛和圆周运动的分析方法列方程求解.点画出轨迹,分别利用类平抛和圆周运动的分析方法列方程求解.[自主解答] (1)(1)设粒子过设粒子过N 点时的速度大小为点时的速度大小为 v ,有v 0v=cos θ,v =2v 0粒子从M 点运动到N 点的过程,有qu MN =12mv 2-12mv 20,U MN =3mv 202q . (2)(2)粒子在磁场中以粒子在磁场中以O ′为圆心做匀速运动,半径为O ′N ,有qvB =mv 22r ,r =2mv 0qB . (3)(3)由几何关系得由几何关系得ON =r sin θ设粒子在电场中运动的时间为t 1,有ON =v 0t 1t 1=3mqB粒子在磁场中做匀速圆周运动的周期T =2πm qB设粒子在磁场中运动的时间为t 2,有,有t 2=π-θ2πT ,故t 2=2πm 3qBt =t 1+t 2,t =33+2πm 3qB .1.如图所示.如图所示 ,匀强电场区域和匀强磁场区域是紧邻的,且宽度相等均为d ,电场方向在纸平面内竖直向下,而磁场方向垂直于纸面向里,一带正电的粒子从O 点以速度v 0沿垂直电场方向进入电场,从A 点射出电场进入磁场,离开电场点时的速度方向一致,已知d 、v 0(带电粒子重力不计带电粒子重力不计)),求:,求:(1)(1)(1)粒子从粒子从C 点穿出磁场时的速度大小v ;(2)(2)电场强度电场强度E 和磁感应强度B 的比值E B .解析:(1)(1)粒子在电场中偏转时做类平抛运动,则粒子在电场中偏转时做类平抛运动,则粒子在电场中偏转时做类平抛运动,则垂直电场方向d =v 0t ,平行电场方向d 2=v y2t 得v y =v 0,到A 点速度大小为v =2v 0在磁场中速度大小不变,所以从C 点出磁场时速度大小仍为2v 0.(2)(2)在电场中偏转时,出在电场中偏转时,出A 点时速度与水平方向成45°45° v y =qE m t =qEd mv 0,并且v y =v 0得E =mv 20qd在磁场中做匀速圆周运动,如图所示在磁场中做匀速圆周运动,如图所示由几何关系得R =2d又qvB =mv 22R ,且v =2v 0 得B =mv 0qd 解得E B =v 0.[例2] 如右图所示,在磁感应强度为B 的水平匀强磁场中,有一足够长的绝缘细棒OO ′在竖直面内垂直于磁场方向放置,细棒与水平面夹角为α.一质量为m 、带电荷量为+q 的圆环A 套在OO 圆′棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α.现让圆环A 由静止开始下滑,试问圆环在下滑过程中:由静止开始下滑,试问圆环在下滑过程中:(1)(1)圆环圆环A 的最大加速度为多大?获得最大加速度时的速度为多大?的最大加速度为多大?获得最大加速度时的速度为多大?(2)(2)圆环圆环A 能够达到的最大速度为多大?能够达到的最大速度为多大?[思路点拨][自主解答] (1)(1)由于由于μ<tanα,所以环将由静止开始沿棒下滑.环A 沿棒运动的速度为v 1时,受到重力mg 、洛伦兹力qv 1B 、杆的弹力F N1和摩擦力F f 1=μF N1.根据牛顿第二定律,对圆环A 沿棒的方向:沿棒的方向:mg sin α-F f 1=ma垂直棒的方向:F N1+qv 1B =mg cos α所以当F f 1=0(0(即即F N1=0)0)时,时,a 有最大值a m ,且a m =g sin α此时qv 1B =mg cos α解得:v 1=mg cos αqB. (2)(2)设当环设当环A 的速度达到最大值v m 时,环受杆的弹力为F N2,摩擦力为F f 2=μF N2.此时应有a =0,即mg sin α=F f 2在垂直杆方向上:F N2+mg cos α=qv m B解得:v m =mg sin α+μcos αμqB. 2.如图所示,套在很长的绝缘直棒上的小球,质量为 1.0×10-4 kg ,带 4.0×10-4 C 正电荷,小 球在棒上可以滑动,将此棒竖直放置在沿水平方向的匀强电场和球在棒上可以滑动,将此棒竖直放置在沿水平方向的匀强电场和匀强磁场中.匀强电场的电场强度E =10 N/C 10 N/C,方向水平向右,,方向水平向右,,方向水平向右,匀强磁场的磁感应强度B =0.5 T 0.5 T,方向为垂直纸面向里,小球与棒,方向为垂直纸面向里,小球与棒,方向为垂直纸面向里,小球与棒间动摩擦因数为μ=0.20.2,求小球由静止沿棒竖直下落的最大加速度,求小球由静止沿棒竖直下落的最大加速度,求小球由静止沿棒竖直下落的最大加速度和最大速度.和最大速度.((设小球在运动过程中所带电荷量保持不变,g 取10 m/s2)解析:带电小球沿绝缘棒下滑过程中,受竖直向下的重力,竖直向上的摩擦力,水平方向弹力和洛伦兹力及电场力作用.当小球静止时,弹力等于电场力,小球在竖直方向所受摩擦力最小,小球加速度最大,小球运动过程中,弹力等于电场力与洛伦兹力之和,随着小球运动速度的增大,小球所受洛伦兹力增大,小球在竖直方向的摩擦力也随之增大,小球加速度减小,速度增大,当球的加速度为零时,速度达最大.小球刚开始下落时,加速度最大,设为a m ,这时竖直方向有mg -F f =ma ①在水平方向上有qE -F N =0②又F f =μF N ③由①②③解得a m =mg -μqE m,代入数据得a m =2 m/s 2. 小球沿棒竖直下滑,当速度最大时,加速度a =0在竖直方向上mg -F ′f =0④在水平方向上qv m B +qE -F N ′=′=00⑤又F ′f =μF N ′⑥′⑥ 由④⑤⑥解得v m =mg -μqE μqB, 代入数据得v m =5 m/s.[例3] 如图所示 ,在磁感应强度为B 的匀强磁场中,有一与磁感线垂直且水平放置的、长为L 的摆线,拴一质量为m 、带有+q 电荷量的摆球,若摆球始终能在竖直平面内做圆弧运动.试求 摆球通过最低位置时绳上的拉力F 的大小.的大小.[思路点拨思路点拨] ] 解答此题应把握以下两点:解答此题应把握以下两点:(1)(1)弹力和洛伦兹力都随小球速度改变而改变,但这两力不做功,只有重力做功.弹力和洛伦兹力都随小球速度改变而改变,但这两力不做功,只有重力做功.弹力和洛伦兹力都随小球速度改变而改变,但这两力不做功,只有重力做功.(2)(2)在最低点应用牛顿第二定律求解.在最低点应用牛顿第二定律求解.在最低点应用牛顿第二定律求解.[自主解答] 以摆球为研究对象.以摆球为研究对象.根据机械能守恒定律得:mgL =12mv 2m , 当向左摆动,到最低点速度向左时F 洛的方向向下.的方向向下.由牛顿第二定律得:F -mg -F 洛=mv 2m /L ,且:F 洛=qv m B ,联立以上各式解得:F =3mg +qB 2gL .当向右摆动,到最低点的速度向右时,F 洛的方向则向上.的方向则向上.由牛顿第二定律得:F +F 洛-mg =mv 2m /L ,联立解得:F =3mg -qB 2gL .3.在竖直平面内半圆形光滑绝缘管处在如图所示的匀强磁场中,B =1.1 T ,半径R =0.8 m ,其直径AOB 在竖直线上.圆环平面与磁场方向垂直,在管口A 处以2 m/s 水平速度射入一个直径略小于管内径的带电小球,其电荷量为+10-4 C ,问:(1)小球滑到B 处的速度为多少?(2)若小球从B 处滑出的瞬间,管子对它的弹力恰好为零,小球质量为多少?(g =10 m/s2)解析:(1)(1)小球从小球从A 到B ,利用动能定理得,利用动能定理得mg 2R =12mv 2B -12mv 2A得v B =v 2A +4gR =22+4×10×0.8+4×10×0.8 m/s m/s m/s==6 m/s. (2)(2)在在B 点,小球受到的洛伦兹力方向指向圆心,由于小球做圆周运动,所以有qv B B -mg =mv 22B R 即:即:1010-4×6×1.1-×6×1.1-1010m =36m 0.8得m =1.2×10--55 kg.2.(2012年淮北模拟年淮北模拟))如图所示,空间存在正交的匀强电场和匀强磁场,匀强电场方向竖直向上,匀强磁场的方向垂直纸面向里.有一内壁光滑、底部有带正电小球的试管.在水平拉力F 作用下,试管向右匀速运动,带电小球能从试管口处飞出.口处飞出.已知小球质量为已知小球质量为m ,带电量为q ,场强大小为E =mg q.关于带电小球及其在离开试管前的运动,关于带电小球及其在离开试管前的运动,下列说法中不下列说法中不正确的是正确的是( ( )A .洛伦兹力对小球不做功.洛伦兹力对小球不做功B .洛伦兹力对小球做正功.洛伦兹力对小球做正功C .小球的运动轨迹是一条抛物线.小球的运动轨迹是一条抛物线D .维持试管匀速运动的拉力F 应逐渐增大应逐渐增大解析:洛伦兹力方向始终与小球运动速度方向垂直,不做功,故A 正确、正确、B B 错误;小球在竖直方向受向上的电场力与向下的重力,二者大小相等,试管向右匀速运动,小球的水平速度保持不变,则竖直向上的洛伦兹力分量大小不变,小球竖直向上做匀加速运动,即小球做类平抛运动,故C 正确;小球竖直分速度增大,受水平向左的洛伦兹力分量增大,为维持试管匀速运动拉力F 应逐渐增大,应逐渐增大,D D 正确.正确.答案:答案:B B3.(2012年铜陵模拟年铜陵模拟))如图所示的装置,左半部分为速度选择器,右半部分为匀强的偏转电场.一束同位素离子流从狭缝S 1射入速度选择器,能够沿直线通过速度选择器并从狭缝S 2射出的离子,又沿着与电场垂直的方向,立即进入场强大小为E 的偏转电场,最后打在照相底片D 上.已知同位素离子的电荷量为q (q >0)>0),速度选择器内部存在着相互垂,速度选择器内部存在着相互垂直的场强大小为E 0的匀强电场和磁感应强度大小为B 0的匀强磁场,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.忽略重力的影响.(1)(1)求从狭缝求从狭缝S 2射出的离子速度v 0的大小;(2)(2)若打在照相底片上的离子在偏转电场中沿速度若打在照相底片上的离子在偏转电场中沿速度v 0方向飞行的距离为x ,求出x 与离子质量m 之间的关系式之间的关系式((用E 0、B 0、E 、q 、m 、L 表示表示)).解析:(1)(1)能从速度选择器射出的离子满足能从速度选择器射出的离子满足能从速度选择器射出的离子满足qE 0=qv 0B 0①故v 0=E 0B 0② (2)(2)离子进入匀强偏转电场离子进入匀强偏转电场E 后做类平抛运动,则后做类平抛运动,则x =v 0t ③L =12at 22④ 由牛顿第二定律得qE =ma ⑤由②③④⑤解得x =E 0B 0 2mL qE4.(2010年高考课标全国卷年高考课标全国卷))如图所示,在0≤x ≤a 、0≤y ≤a2范围内垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B 坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xOy 平面内,与y 轴正方向的夹角分布在0~90°范围内.已知粒子在磁场中做圆周运动的半径介于a /2到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的磁场的粒子从粒子源射出时的(1)(1)速度的大小;速度的大小;速度的大小;(2)(2)速度方向与速度方向与y 轴正方向夹角的正弦.轴正方向夹角的正弦.解析:(1)(1)设粒子的发射速度大小为设粒子的发射速度大小为v ,粒子做圆周运动的轨道,粒子做圆周运动的轨道半径为R ,由牛顿第二定律和洛伦兹力公式得:,由牛顿第二定律和洛伦兹力公式得: qvB =mv 2R① 由①式得R =mv qB ②当a 2<R <a 时,在磁场中运动时间最长的粒子,其轨迹是圆心为C 的圆弧,圆弧与磁场的上边界相切,如图所示.的圆弧,圆弧与磁场的上边界相切,如图所示. 设该粒子在磁场中运动的时间为t ,依题意t =T 4,得,得 ∠OCA =π2③设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系得,由几何关系得R sin α=R -a 2④ R sin α=a -R cos α⑤又sin 2α+cos 2α=1⑥由④⑤⑥式得R =(2(2--62)a ⑦ 由②⑦式得v =(2(2--62)aqB m(2)(2)由④⑦式得:由④⑦式得:由④⑦式得:sin sin α=6-610. [例1] 在真空中,半径r =3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B =0.2 T ,一个带正电的粒子以初速度v 0=106 m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷q m =108C/kg C/kg,不计粒子重,不计粒子重力.(1)(1)求粒子在磁场中做匀速圆周运动的半径;求粒子在磁场中做匀速圆周运动的半径;(2)(2)若要使粒子飞离磁场时有最大偏转角,若要使粒子飞离磁场时有最大偏转角,求入射时v 0与ab 的夹角θ及粒子的最大偏转角.及粒子的最大偏转角.[解析] (1)(1)粒子射入磁场后,由于不计重力粒子射入磁场后,由于不计重力粒子射入磁场后,由于不计重力,,所以洛伦兹力提供圆周运动需要的向心力,根据牛顿第二定律有:qv 0B =m v 220R , R =mv 0qB =5×10-2m. (2)(2)粒子在圆形磁场区域运动轨迹为一段半径粒子在圆形磁场区域运动轨迹为一段半径R =5 cm 的圆弧,要使偏转角最大,就要求这段圆弧对应的弦最长,即为圆形区域的直径,粒子运动轨迹的圆心O ′在ab 弦中垂线上,如上图所示.由几何关系可知:知:sin θ=r R =0.60.6,,θ=37°=37°最大偏转角β=2θ=74°.=74°.[例2] 如图所示,半径为r =0.1 m 的圆形匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感应强度B = 0.332 T 方,方向向垂直纸向面向里里.在O 有处有一一射放射源源,可沿纸向面向各各方个方向向射出速率均为v =3.2×106 m/s 的α粒子.已知α粒子质量m =6.646.64××1010--27kg 27kg,电荷量,电荷量q =3.23.2××1010--19C 19C,不计,不计α粒子的重力.求α粒子在磁场中运动的最长时间.动的最长时间.m v R 得=mv =粒子在磁场中运动的圆弧所对应的弦长最长,从右图可以看出,粒子在磁场中运动的时间最长.粒子在磁场中运动的时间最长.=2πm qB ,运动时间=2θ2π·=r R =y 轴上的a 点射入右图中第可在适当的地方加一个垂直于的匀强磁场,若此磁场分布在一个圆形区域内,试求这个圆形磁场区域的最小面积.的匀强磁场,若此磁场分布在一个圆形区域内,试求这个圆形磁场区域的最小面积.[解析] 质点在磁场中做半径为=mv 0qB 的圆周运动,根据题意,质点在磁场区域中的轨道为半径等于的圆上的的圆上的113圆周,这段圆弧应与入射方向的速度,出射方向的速度相切,如右图所示.则到入射方向所在直线和出射方向所在直线相距为R 的O ′点就是圆周的圆心.质点在磁场区域中的轨道就是以和f 点应在所求圆形磁场区域的边界上,在通过即得圆形磁场区域的最小半径sin 60°=3mv 02qB=34π(mv 0qB )。

高三物理粒子在有界磁场中运动试题答案及解析

高三物理粒子在有界磁场中运动试题答案及解析

高三物理粒子在有界磁场中运动试题答案及解析1.一个重力不计的带电粒子垂直进入匀强磁场,在与磁场垂直的平面内做匀速圆周运动.则下列能表示运动周期 T 与半径R之间的图像是()【答案】D【解析】带电粒子在磁场中做匀速圆周运动,根据,,联立可求粒子做圆周运动的周期为,周期与轨道半径r无关,所以A、B、C错误;D正确。

【考点】本题考查带电粒子在磁场中的运动2.如图所示,在xOy平面内存在着磁感应强度大小为B的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P(- L,0)、Q(0,-L)为坐标轴上的两个点.现有一电子从P点沿PQ方向射出,不计电子的重力,则.A.若电子从P点出发恰好经原点O第一次射出磁场分界线,则电子运动的路程一定为B.若电子从P点出发经原点O到达Q点,则电子运动的路程一定为πLC.若电子从P点出发经原点O到达Q点,则电子运动的路程可能为2πLD.若电子从P点出发经原点O到达Q点,则nπL(n为任意正整数)都有可能是电子运动的路程【答案】AC【解析】若电子从P点出发恰好经原点O第一次射出磁场分界线,则有运动轨迹如图所示,由几何关系知:半径R=L,则微粒运动的路程为圆周的,即为,A正确;若电子从P点出发经原点O到达Q点,运动轨迹可能如图所示,因此则微粒运动的路程可能为πL,也可能为2πL,BD错误C正确;【考点】本题考查带电粒子在磁场中的运动。

3.如图是某离子速度选择器的原理示意图,在一半径为R 的绝缘圆柱形筒内有磁感应强度为B的匀强磁场,方向平行于轴线.在圆柱形筒上某一直径两端开有小孔M、N,现有一束速率不同、比荷均为k的正、负离子,从M孔以α角入射,一些具有特定速度的离子未与筒壁碰撞而直接从N孔射出(不考虑离子间的作用力和重力).则从N孔射出的离子()A.是正离子,速率为kBR/cos αB.是正离子,速率为kBR/sin αC.是负离子,速率为kBR/sin αD.是负离子,速率为kBR/cos α【答案】B【解析】因为离子向下偏,根据左手定则,离子带正电,运动轨迹如图,由几何关系可知r=,由qvB=m可得v=,故B正确.4.(8分)在真空中,半径的圆形区域内有匀强磁场,方向如图所示,磁感应强度B="0.2" T,一个带正电的粒子以初速度从磁场边界上直径ab的一端a射入磁场,已知该粒子的比荷,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径;(2)若要使粒子飞离磁场时有最大偏转角,求入射时与ab的夹角及粒子的最大偏转角.【答案】(1)(2)最大偏转角【解析】(1)粒子射入磁场后,由于不计重力,所以洛伦兹力提供圆周运动需要的向心力,根据牛顿第二定律有.(2)粒子在圆形磁场区域运动轨迹为一段半径R=5cm的圆弧,半径一定要使偏转角最大,就要求这段圆弧对应的弦最长,即为图形区域的直径,粒子运动轨迹的圆心在ab弦的中垂线上,如图所示.由几何关系可知最大偏转角【考点】带电粒子在圆形匀强磁场区域的运动5.如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴平行于x轴正方向射入磁场,上的点a(0,L)。

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开. 如图3和如图4,由几何关系有:2223()(3)22L R R L =+- 解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=2.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

带电粒子在磁场中的运动压轴难题二轮复习及答案解析

带电粒子在磁场中的运动压轴难题二轮复习及答案解析

带电粒子在磁场中的运动压轴难题二轮复习及答案解析一、带电粒子在磁场中的运动压轴题1.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小【答案】(1) 222202e B R mc v mh h =+,22202e B R E m = ;(2) 20e B U mπ ;(3)02sin B R n dπ【解析】 【详解】解:(1)正、负电子在回旋加速器中磁场里则有:200mv evB R = 解得正、负电子离开回旋加速器时的速度为:00eB Rv m =正、负电子进入对撞机时分别具有的能量:222200122e B R E mv m==正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=正、负电子对撞湮灭后产生的光子频率:222202e B R mc v mh h=+(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:2012neU mv =解得:2202eB R n mU=正、负电子在磁场中运动的周期为:02mT eB π=正、负电子在磁场中运动的时间为:2022B R nt T Uπ==D 型盒间的电场对电子做功的平均功率:20e B UW E P t t mπ===(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin2dr nπ=解得:2sind r nπ=根据洛伦磁力提供向心力可得:200mv ev B r=电磁铁内匀强磁场的磁感应强度B 大小:02sinB R n B dπ=2.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L【答案】(1)0mv ed ; (2)02y d ≤≤;(3)94d ; 【解析】(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:20v ev B m r=解得:0mv B ed=(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.设此时的圆心位置为O ',有:sin 30rO a '=︒3OO d O a ='-'解得OO d '=即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:根据运动学公式有:0x v t =212eE y t m=⋅ y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =即98y d =时,L 有最大值 解得:94L d =当322d y y【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.3.如图所示,在直角坐标系xOy 平面内有两个同心圆,圆心在坐标原点O,小圆内部(I 区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy 平面向里的匀强磁场(图中未画出),I 、Ⅱ区域磁场磁感应强度大小分别为B 、2B 。

带电粒子在磁场中的运动压轴难题知识归纳总结含答案

带电粒子在磁场中的运动压轴难题知识归纳总结含答案

带电粒子在磁场中的运动压轴难题知识归纳总结含答案一、带电粒子在磁场中的运动压轴题1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A ,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为20粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (23B E【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子21L v t =,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:29v m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'=而v ''=所以,运动过程中粒子的最小速率为v v v =''-'即:0E v B =3.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m =当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k =A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=4.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

2023年高考物理真题训练11磁场

2023年高考物理真题训练11磁场

专题11 磁场1.〔2023·天津高考真题〕如以下图,在Oxy平面的第一象限内存在方向垂直纸面对里,磁感应强度大小为B 的匀强磁场。

一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45︒。

粒子经过磁场偏转后在N 点〔图中未画出〕垂直穿过x 轴。

OM =a ,粒子电荷量为q,质量为m,重力不计。

则〔〕A.粒子带负电荷B.粒子速度大小为qBa mC.粒子在磁场中运动的轨道半径为a【答案】AD【解析】D.N 与O 点相距(+1)aA.粒子向下偏转,依据左手定则推断洛伦兹力,可知粒子带负电,A 正确;BC.粒子运动的轨迹如图由于速度方向与y 轴正方向的夹角θ=45︒,依据几何关系可知2∠OMO = ∠OO M = 45︒ , OM = OO = a111则粒子运动的轨道半径为洛伦兹力供给向心力r = O M = 2a1qvB = m v 2r解得v = mBC 错误;D . N 与O 点的距离为D 正确。

NO = OO 1+ r = (+ 1)a应选 AD 。

2.〔2023·浙江省高考真题〕特高压直流输电是国家重点能源工程。

如以下图,两根等高、相互平行的水平长直导线分别通有方向一样的电流I 和I , I > I 。

a 、b 、c 三点连线与两根导线等高并垂直,b 点位 1212于两根导线间的中点,a 、c 两点与 b 点距离相等,d 点位于 b 点正下方。

不考虑地磁场的影响,则〔 〕A .b 点处的磁感应强度大小为 0B .d 点处的磁感应强度大小为 0C .a 点处的磁感应强度方向竖直向下D .c 点处的磁感应强度方向竖直向下【答案】C 【解析】2qBa2b bA .通电直导线四周产生磁场方向由安培定推断,如以下图I 在 点产生的磁场方向向上, I 在 点产生的磁场方向向下,由于 12I > I12即B > B12则在 b 点的磁感应强度不为零,A 错误;BCD .如以下图,d 点处的磁感应强度不为零,a 点处的磁感应强度竖直向下,c 点处的磁感应强度竖直向上,BD 错误,C 正确。

高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析

高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析

高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。

P是圆外一点,OP=3r。

一质量为m、电荷量为q(q>0)的粒子从P点在纸面内垂直于OP射出。

己知粒子运动轨迹经过圆心O,不计重力。

求(1)粒子在磁场中做圆周运动的半径;(2)粒子第一次在圆形区域内运动所用的时间。

【答案】(1)(2)【解析】【分析】本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力。

【详解】(1)找圆心,画轨迹,求半径。

设粒子在磁场中运动半径为R,由几何关系得:①易得:②(2)设进入磁场时速度的大小为v,由洛伦兹力公式和牛顿第二定律有③进入圆形区域,带电粒子做匀速直线运动,则④联立②③④解得2.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mvqB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2mqBπ故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).3.在水平桌面上有一个边长为L的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P点(P为正方形框架对角线AC与圆盘的交点)以初速度v0水平射入磁场区,小球刚好以平行于BC边的速度从圆盘上的Q点离开该磁场区(图中Q点未画出),如图甲所示.现撤去磁场,小球仍从P点以相同的初速度v0水平入射,为使其仍从Q点离开,可将整个装置以CD边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g.求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x =r =v 0t 2, 运动时间:t 2=22L v , 则:t1:t 2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r =2212at ,解得,加速度:a =222v L,对小球,由牛顿第二定律得:a =mgsin mθ=g sinθ, AB 边距离桌面的高度:h =L sinθ=222v g;4.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P 2点时的速度大小和方向; (2)EB; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【答案】(1)53v 0,与x 成53°角;(2)043v ;(3)2L ;(4)()04053760L v π+.【解析】 【详解】(1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y ,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB=m2vR解得:B=mvqR=5352m vq L⨯⨯=023mvqL解得:043vEB=;(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-32L直线与Q′点,可得:P2O′=3253Lcos o=52L=r故粒子在磁场中做圆周运动的圆心为O′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y=-32L直线从M点穿出磁场,由几何关系知M的坐标x=32L+(r-r cos37°)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P1到P2做类平抛运动:t1=32Lv在磁场中由P2到M动时间:t2=372 360rvπ︒⨯o=37120Lvπ从M运动到N,a=qEm=289vL则t3=va=158Lv则一个周期的时间T=2(t1+t2+t3)=()4053760Lvπ+.5.如图所示,坐标原点O左侧2m处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V的加速电场,经加速后沿x轴正方向运动,O点右侧有以O1点为圆心、r=0.20m为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T的匀强磁场(图中未画出)圆的左端跟y轴相切于直角坐标系原点O,右端与一个足够大的荧光屏MN相切于x轴上的A点,粒子重力不计。

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。

求3〕〕匀强磁场的磁感应强度B和射出点的坐标。

〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。

带电粒子在磁场中的运动最长时间方法

带电粒子在磁场中的运动最长时间方法

带电粒子在磁场中的运动最长时间方法1.引言概述部分的内容可以描述带电粒子在磁场中的运动以及最长时间方法的背景和基本概念。

下面是一个示例:引言1.1 概述随着科学技术的不断发展,磁场对带电粒子的运动轨迹产生了广泛的研究兴趣。

磁场可以通过磁场力对带电粒子施加作用力,从而影响其运动。

在某些情况下,我们希望找到一种方法,使得带电粒子在磁场中的运动时间能够最长。

带电粒子在磁场中的运动可以通过洛伦兹力得到描述。

洛伦兹力是带电粒子受到的电场力和磁场力的合力。

电场力和磁场力的方向和大小都与带电粒子的电荷、速度以及磁场强度相关。

在磁场力的作用下,带电粒子将沿着一条曲线路径运动,形成所谓的磁场力线。

由于带电粒子的质量、电荷和速度可能不同,以及磁场的强度和方向也可能不同,所以带电粒子在磁场中的运动时间不尽相同。

然而,我们希望找到一种最佳的方法,可以使带电粒子在给定磁场条件下运动的持续时间达到最长。

在本文中,我们将探讨带电粒子在磁场中运动最长时间的方法。

首先,我们将介绍带电粒子在磁场中的基本运动规律和数学模型。

然后,我们将讨论如何通过调整带电粒子的初始条件来优化其运动轨迹,以达到最长的运动时间。

最后,我们将总结本文的主要内容,并讨论研究带电粒子在磁场中运动最长时间的意义。

通过深入研究带电粒子在磁场中的运动以及最长时间方法,我们可以更好地理解磁场对带电粒子的作用机制,为粒子加速器、磁共振成像等领域的应用提供理论依据。

此外,这一研究成果也有助于推动基础物理学的发展,为未来更深入的研究奠定基础。

敬请阅读后续章节,了解更多关于带电粒子在磁场中的运动最长时间方法的内容。

1.2文章结构文章结构部分的内容可以包括以下几个方面:在本文中,我们将按照以下结构来组织我们的讨论:1)引言:在引言部分,我们将引入带电粒子在磁场中的运动问题,并简要介绍其重要性和研究现状。

2)正文:正文将分为两个要点来探讨带电粒子在磁场中运动最长时间的方法。

2.1 第一个要点:在这一部分,我们将介绍目前已有的一些常见方法,如利用拉莫尔进动和库仑力使带电粒子保持较长时间运动的方法,并分析其优缺点。

带电粒子在磁场中运动的最值问题

带电粒子在磁场中运动的最值问题
mV R 0.1m 10cm
Bq
总长8 6cm
三、求磁场区域的最值半径和最值面积
一质量为m、带电量为+q的粒子以速度V0从O点沿y轴正方向 射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向 外,粒子飞出磁场区域后,从A处穿过x轴,速度方向与x轴正方 向成300角。如图所示,粒子的重力不计,试求:
射速率V0= 1.0 105 m / s 的带正电粒子,粒子质量m=
1.0 10 26 kg ,粒子的带正电量为 q 1.0 10 18 C ,则带电粒
子能打到y轴上的范围为
(不计重力的影响。)
同步导学128页第2题
P
如图所示,在真空区域内存在着有界的匀强磁场,L1、 L2为磁场的边界线,磁场方向垂直纸面向里,磁感强度
射入磁场区域。不计重力,不计粒子间的相互影响。图18中阴影
部分表示带电粒子可能经过的区域,其中 R mv
哪个图是正确的?( A)
Bq
O
②粒子在磁场中运动的最长时间是多少?在这种情况下,
粒子将从什么范围射出磁场?
r1
sin 300

r1

L 2
rr2 1
r1

mv1 qB
r2
sin
300

r2

L 2
r2

mv 2 qB
二、粒子在磁场中打到的最大范围
如图所示,在真空中坐标xoy平面的x>0区域内,有磁感应 强度B= 1.0 102T 的匀强磁场,方向与xoy平面垂直,在X轴 上的P(10,0)点,有一放射源,在xoy平面内向各个方向发
(1)圆形匀强磁场区域的最小面积; (2)求粒子从O点进入磁场区域到达A点所需的时间。

k磁场运动时间最长问题

k磁场运动时间最长问题

k 磁场运动时间最长问题针对训练21:(2010年湖州联考)如图所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a 、b 、c ,以不同的速率对准圆心O 沿着AO 方向射入磁场,其运动轨迹如图.若带电粒子只受磁场力的作用,则下列说法正确的是( )A .a 粒子动能最大B .c 粒子速率最大C .b 粒子在磁场中运动时间最长D .它们做圆周运动的周期T a <T b <T c解析:由题图可知,c 的半径最大,a 的半径最小,根据r =m v Bq,可知c 粒子的速率最大,A 错,B 对;由T =2πm Bq 可知,三个粒子的周期相同,D 错误;由t =αm Bq得,对应的圆心角越大,运动时间越长,可知a 粒子的运动时间最长,C 错.比较运动时间:T 相同,r 不同时,可以比较圆心角(或速度偏转角)6.(2010年杭州期中)如图所示,一束电子以大小不同的速率沿图示方向飞入横截面为一正方形的匀强磁场区域,在从ab 边离开磁场的电子中,下列判断正确的是( AD )A .从b 点离开的电子速率最大B .从b 点离开的电子在磁场中运动时间最长C .从b 点离开的电子速度偏转角最大D .在磁场中运动时间相同的电子,其轨迹线一定重合解析:从a 点离开的电子半径最小,从b 点离开的电子半径最大,根据r =m v Be知,从b 点离开的电子速率最大,A 正确;速度的偏转角等于圆心角,从a 点离开的电子圆心角最大,时间t =αm Be也最大.所以B 、C 错;在磁场中运动的时间相同,也就 是圆心角相同,根据几何关系得,其半径也相同,从同一点以相同的速度入射,轨迹也相同.D 对.2.(2010年湖州月考)如图所示,一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场,下列判断正确的是( B )A .电子在磁场中运动时间越长,其轨迹线越长B .电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C .在磁场中运动时间相同的电子,其轨迹线一定重合D .电子的速率不同,它们在磁场中运动时间一定不相同解析:在题图中画出了不同速率的电子在磁场中的轨迹,轨迹的半径r =m v Be,说明了半径的大小与电子的速率成正比.t =αm Be电子在磁场中运动时间的长短仅与轨迹所对应的圆心角大小有关,故可判断题图中五条轨迹线所对应的运动时间关系有t 5=t 4=t 3>t 2>t 1显然,本题选项中只有B 正确.7.如图所示,在半径为R 的圆形区域内,有匀强磁场,磁感应强度为B ,方向垂直于圆平面(未画出).一群比荷为的负离子以相同速率v0(较大)由P 点在纸平面内向不同方向射入磁场中,发生偏转后,又飞出磁场,则下列说法正确的是(不计重力)( BC )A .离子飞出磁场时的动能一定相等B .离子在磁场中运动半径一定相等C .由Q 点飞出的离子在磁场中运动的时间最长D .沿PQ 方向射入的离子飞出时偏转角最大 解析:射入磁场的离子比荷相等,但质量不一定相等,故射入时初动能可能不等,又因为洛伦兹力不做功,故这些离子从射入到射出动能不变,故不同离子的动能可能不等,A 错误.离子在磁场中偏转的半径为r =mv qB,由于比荷和速度都相等,磁感应强度B 为定值,因此所有离子的偏转半径都相等,B 正确.同时各离子在磁场中做圆周运动的周期T =2πm qB也相等,根据几何规律:圆内较长的弦对应较大的圆心角,所以从Q 点射出的离子在磁场内运动的时间最长,C 对.沿PQ 方向射入的离子不可能从Q 点射出,故偏转角不是最大,D 错.比较运动时间:r 相同, T 相同时,可以比较圆心角(或速度偏转角)或弧长(或弦长)对半径相同的圆弧,弦越长对应的弧也越长弦越长对应的弧也越长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k 磁场运动时间最长问题
针对训练21:(2010年湖州联考)如图所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a 、b 、c ,以不同的速率对准圆心O 沿着AO 方向射入磁场,其运动轨迹如图.若带电粒子只受磁场力的作用,则下列说法正确的是( )
A .a 粒子动能最大
B .c 粒子速率最大
C .b 粒子在磁场中运动时间最长
D .它们做圆周运动的周期T a <T b <T c
解析:由题图可知,c 的半径最大,a 的半径最小,根据r =m v Bq
,可知c 粒子的速率最大,A 错,B 对;由T =2πm Bq 可知,三个粒子的周期相同,D 错误;由t =αm Bq
得,对应的圆心角越大,运动时间越长,可知a 粒子的运动时间最长,C 错.
比较运动时间:T 相同,r 不同时,可以比较圆心角(或速度偏转角)
6.(2010年杭州期中)如图所示,一束电子以大小不同的速率沿图示方向飞入横截面为一正方形的匀强磁场区域,在从ab 边离开磁场的电子中,下列判断正确的是( AD )
A .从b 点离开的电子速率最大
B .从b 点离开的电子在磁场中运动时间最长
C .从b 点离开的电子速度偏转角最大
D .在磁场中运动时间相同的电子,其轨迹线一定重合
解析:从a 点离开的电子半径最小,从b 点离开的电子半径最大,根据r =m v Be
知,从b 点离开的电子速率最大,A 正确;速度的偏转角等于圆心角,从a 点离开的电子圆心
角最大,时间t =αm Be
也最大.所以B 、C 错;在磁场中运动的时间相同,也就 是圆心角相同,根据几何关系得,其半径也相同,从同一点以相同的速度入射,轨迹也相同.D 对.
2.(2010年湖州月考)如图所示,一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场,下列判断正确的是( B )
A .电子在磁场中运动时间越长,其轨迹线越长
B .电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大
C .在磁场中运动时间相同的电子,其轨迹线一定重合
D .电子的速率不同,它们在磁场中运动时间一定不相同
解析:在题图中画出了不同速率的电子在磁场中的轨迹,轨迹的半径r =m v Be
,说明了半径的大小与电子的速率成正比.t =αm Be
电子在磁场中运动时间的长短仅与轨迹所对应的圆
心角大小有关,故可判断题图中五条轨迹线所对应的运动时间关系有t 5=t 4=t 3>t 2>t 1显然,本题选项中只有B 正确.
7.如图所示,在半径为R 的圆形区域内,有匀强磁场,磁感应强度为B ,方向垂直于圆平面(未画出).一群比荷为的负离子以相同速率v0(较大)由P 点在纸平面内向不同方向射入磁场中,发生偏转后,又飞出磁场,则下列说法正确的是(不计重力)( BC )
A .离子飞出磁场时的动能一定相等
B .离子在磁场中运动半径一定相等
C .由Q 点飞出的离子在磁场中运动的时间最长
D .沿PQ 方向射入的离子飞出时偏转角最大 解析:射入磁场的离子比荷相等,但质量不一定相等,故射入时初动能可能不等,又因为洛伦兹力不做功,故这些离子从射入到射出动能不变,故不同离子的动能可能不等,
A 错误.离子在磁场中偏转的半径为r =mv qB
,由于比荷和速度都相等,磁感应强度B 为定值,因此所有离子的偏转半径都相等,B 正确.同时各离子在磁场中做圆周运动的周期T =2πm qB
也相等,根据几何规律:圆内较长的弦对应较大的圆心角,所以从Q 点射出的离子在磁场内运动的时间最长,C 对.沿PQ 方向射入的离子不可能从Q 点射出,故偏转角不是最大,D 错.
比较运动时间:r 相同, T 相同时,可以比较圆心角(或速度偏转角)或弧长(或弦长)
对半径相同的圆弧,弦越长对应的弧也越长弦越长对应的弧也越长。

相关文档
最新文档