第三章参数估计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章参数估计

重点:

1.总体参数与统计量

2.样本均值与样本比例及其标准误差

难点:

1.区间估计

2.样本量的确定

知识点一:总体分布与总体参数

统计分析数据的方法包括:描述统计和推断统计(第一章)

推断统计是研究如何利用样本数据来推断总体特征的统计学方法,包括参数估计和假设检验两大类。

总体分布是总体中所有观测值所形成的分布。

总体参数是对总体特征的某个概括性的度量。通常有

总体平均数(μ)

总体方差(σ2)

总体比例(π)

知识点二:统计量和抽样分布

总体参数是未知的,但可以利用样本信息来推断。

统计量是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。

统计量是样本的函数,如样本均值()、样本方差(s2)、样本比例(p)等。

构成统计量的函数中不能包括未知因素。

由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也就是随机的。统计量的取值是依据样本而变化的,不同的样本可以计算出不同的统计量值。

[例题·单选题]以下为总体参数的是( )

a.样本均值b.样本方差

c.样本比例d.总体均值

答案:d

解析:总体参数是对总体特征的某个概括性的度量。通常有总体平均数、总体方差、总体比

例题·判断题:统计量是样本的函数。

答案:正确

解析:统计量是样本的函数,如样本均值()、样本方差()、样本比例(p)等。构成统计量的函数中不能包括未知因素。

[例题·判断题]在抽样推断中,作为推断对象的总体和作为观察对象的样本都是确定的、唯一的。

答案:错误

解析:作为推断对象的总体是唯一的,但作为观察对象的样本不是唯一的,不同的样本可以计算出不同的统计量值。。

(一)样本均值的抽样分布

设总体共有n个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有n n种抽法,即

可以组成n n不同的样本,在不重复抽样时,共有个可能的样本。每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。

但现实中不可能将所有的样本都抽取出来,因此,样本均值的概率分布实际上是一种理论分布。

数理统计学的相关定理已经证明:

即样本均值的均值就是总体均值。

在重置抽样时,样本均值的方差为总体方的1/n,即

在不重置抽样时,样本均值的方差为

其中,为修正系数,对于无限总体进行不重置抽样时,可以按照重置抽样计算,当总体为有限总体,n比较大而n/n≥5% 时,修正系数可以简化为1-n/n,当n比较大,而n/n<5%时,修正系数可以近似为1,即可以按重置抽样计算。

当总体服从正态分布时,样本均值一定服从正态分布,即有x~n(,)时,~n(,) 若总体为未知的非正态分布时,只要样本容量n足够大(通常要求n ≥30),样本均值仍会接近

正态分布。样本分布的期望值为总体均值,样本方差为总体方差的1/n 。这就是统计上著名的中心极限定理。

该定理可以表述为:从均值为,方差为的总体中,抽取样本量为n的随机样本,当n充分

大时(通常要求n ≥30),样本均值的分布近似服从均值为,方差为的正态分布。

如果总体不是正态分布,当n为小样本时(通常n<30),样本均值的分布则不服从正态分布。[例题·单选题]设一个总体共有5个元素,从中随机抽取一个容量为2的样本,在重置抽样时,共有( )个样本

a.25

b.10

c.5

d.1

答案:a

解析:在重置抽样时,共有n n种抽法,共有样本n n个,即52=5×5=25个。

[例题·单选题]设一个总体共有5个元素,从中随机抽取一个容量为2的样本,在不重置抽样时,共有( )个样本

a.25 b.10

c.5 d.1

答案:b

解析:在不重复抽样时,共有个可能的样本。即

(个)

(二)样本比例的抽样分布

比例是指具有某种属性的单位占全部单位数的比重。

总体比例(通常用π表示)是总体中具有某种属性的单位数占全部总体单位数的比例,是一个参数,通常是未知的,也是我们想通过抽样得到的说明总体特征的数据。

样本比例(通常用p表示)是随机抽取的样本中具有某种属性的单位数占样本全部单位数的比例,是一个样本统计量,是随机变量,对于一个已经抽取出来的样本来讲,是可以观察到的。描述所有可能样本比例的概率分布就是样本比例的抽样分布。

当样本容量比较大时,样本比例p近似服从正态分布,且有p的数学期望就是总体比率π ,即σ(p)=π

而p的方差与抽样方法有关,在重置抽样下为,在不重置抽样下为即在重置抽样时,p的分布为p~n(,)

在不重置抽样时,p的分布为p~n(,)

一般讲,当np≥5,并n(1-p) ≥5时,就可以认为样本容量足够大。对于无限总体进行不重置抽样时,可以按照重置抽样计算,当总体为有限总体,当n比较大,而n/n ≤ 5%时,修正系数

会趋向1,这时也可以按重置抽样计算方差。

从上述分析可以看出,随着样本容量的增大,样本比例的方差愈来愈小,说明样本比例随样本容量增大,围绕总体比例分布的峰度愈来愈高。

[例题·单选题]当样本容量比较大时,在重置抽样条件下,样本比例p的方差为( )

a. b. c. d.

答案:a

解析:当样本容量比较大时,在重置抽样条件下,样本比例p的方差为

[例题·单选题]设一个总体含有3个可能元素,取值分别为1,2,3。从该总体中采取重复抽样方法抽取样本量为2的所有可能样本,样本均值为2的概率值是( )

a.1/9 b.2/9 c.1/3 d.4/9

答案:c

解析:在重复抽样下,样本为1,2,3的概率都是1/3。

[例题·判断题] 样本容量是指从一个总体中可能抽取的样本个数。

答案:错误

解析:样本容量是样本中个体的数目。一个总体可以有多个样本,各个样本的的容量可以相同

相关文档
最新文档