温度传感器及应用(一)-PPT课件

合集下载

传感器原理及应用PPT教程课件专用

传感器原理及应用PPT教程课件专用
湿度传感器
湿度传感器能够监测室内湿度变化,与加湿器、除湿器等设备配合,保持室内湿度在适宜 范围内,避免潮湿或干燥对家居环境和人体健康的影响。
光照传感器
光照传感器能够感知室内光线强弱,与照明设备联动,实现室内光线的自动调节。同时, 还可用于窗帘、百叶窗等设备的自动控制,提高室内采光效果。
未来发展趋势预测
传感器应用领域
医疗领域
用于监测人体生理参数,如体 温、血压、心率等,以及医疗 设备中的控制和检测。
智能家居
用于实现家庭环境的智能化控 制,如温度控制、照明控制等。
工业自动化
用于检测和控制生产过程中的 各种参数,如温度、压力、流 量等。
环保领域
用于监测大气、水质等环境参 数,为环境保护提供数据支持。
传感器与通信接口的电路 设计
介绍传感器与通信接口之间的 电路设计,包括信号调制、解 调、编码、解码等。
接口电路设计的实例分析
通过具体案例,分析接口电路 设计的实现过程及效果。
06 传感器在物联网和智能家 居中应用展望
物联网中传感器作用及发展趋势
物联网中传感器的作用
物联网中的传感器是实现万物互联的基础, 它们能够感知和测量各种物理量,如温度、 湿度、压力、光照等,并将这些数据转换为 可处理和传输的数字信号,为物联网应用提 供实时、准确的数据支持。
新型传感器的研发
针对特定应用场景和需求,未来将研发更多新型传感器。例如,柔性传感器、生物传感器、化学传感器 等,它们将具有更高的灵敏度、选择性和稳定性,为物联网和智能家居等领域的发展提供有力支持。
THANKS FOR WATCHING
感谢您的观看
牌和型号。
注意传感器的尺寸、重量、 安装方式等是否符合应用场

《温度传感器》课件

《温度传感器》课件

04
温度传感器的选型与使用注意事项
温度传感器的选型原则
根据测量范围选择
根据所需测量的温度范围选择合 适的温度传感器,如热电偶适用 于高温测量,而热敏电阻则适用
于中低温测量。
根据精度要求选择
根据测量精度要求选择合适的温度 传感器,如高精度测量需要使用热 电偶或热电阻等高精度温度传感器 。
根据环境因素选择
温度传感器的分类
总结词:种类介绍
详细描述:温度传感器有多种类型,常见的有热电阻、热电偶、集成温度传感器等。不同类型的温度传感器有不同的特点和 适用范围。
温度传感器的工作原理
总结词:工作机制
详细描述:温度传感器的工作原理基于热电效应、热电阻效应等物理效应,通过感知物体温度变化产 生的物理量变化,转换为电信号输出。
02
常见温度传感器介绍
热电阻型温度传感器
总结词
基于热电阻原理,通过测量电阻值变化来感知温度变化。
详细描述
热电阻型温度传感器利用金属导体随温度变化的电阻值来测 量温度。常见的热电阻材料有铜、镍、铂等,其中铂电阻精 度高,稳定性好,广泛应用于工业和科研领域。
热电偶型温度传感器
总结词
基于热电效应原理,通过测量热电势来反映温度变化。
农业与园艺领域
总结词
农业与园艺领域中,温度传感器对于作物生长、动物 养殖和农业设施的运行具有重要意义。
详细描述
在农业领域,温度传感器可以监测温室、畜禽舍、渔塘 等场所的温度变化,帮助养殖户和农民及时调整环境温 度,保证动植物的正常生长和生产效益。在园艺领域, 温度传感器可以用于监测植物生长环境的温度变化,如 花房、植物培养室等场所的温度控制,促进植物健康生 长和提高园艺产品的品质。此外,温度传感器还可以用 于农业设施的温度监测和控制,如农业机械、灌溉系统 等设备的运行状态和温度管理。

温度传感器精品PPT课件

温度传感器精品PPT课件

波长/μm
ห้องสมุดไป่ตู้
0.01 极远紫外
可见光 近红外
5
10
远红外
近紫外 远紫外
5.2 红外温度传感器
相对应的频率大致在4×1014~3×1011 Hz之间,红外线 与可见光、紫外线、x射线、射线和微波、无线电波一起 构成了整个无限连续的电磁波谱。
红外辐射的物理本质是热辐射。物体的温度越高, 辐射出来的红外线越多,红外辐射的能量就越强。研究发 现,太阳光谱各种单色光的热效应从紫色光到红色光是逐 渐增大的,而且最大的热效应出现在红外辐射的频率范围 内,因此人们又将红外辐射称为热辐射或热射线。
5.1 半导体温度传感器
半导体材料的电阻率对温度十分敏感,可利 用半导体材料电阻率随温度变化的特征制成半导 体温度传感器,可分为单晶非结型、PN结型、集 成温度传感器等。
5.1.1单晶非结型温度传感器 由半导体材料的电子学特征可知,半导体的
电阻率主要取决于载流子的浓度和迁移率,而载 流子的浓度和迁移率的变化又与温度的变化密切 相关。
3 V+
10 mV / K
传感器
+ 放大器 -
2 输入 50 k
1 输出
4 V-
图5-20 电压输出型IC温度传感器放大器的原理框图
5.2 红外温度传感器
任何物体只要其自身及周围的温度不是 绝对零度,都会以电磁波的形式向周围辐射 热量,这种能量叫辐射能。当与周围的温度 相等时,辐射热量过程处于动平衡状态。
5.1 半导体温度传感器
1.迁移率与温度的关系(如书上的图5-1、5-2)
2.电阻率与温度的关系 载流子产生 杂质电离
散射结构
本征激发 电离杂质散射
晶格散射
3.硅温度传感器的结构 4.电阻—温度特性

《温度传感器概述》课件

《温度传感器概述》课件
2 温度传感器种类
温度传感器的种类包括热电传感器、热敏电阻传感器、晶体管传感器、晶体谐振传感器 和光学式传感器等多种类型。
温度传感器的应用
领域应用
温度传感器广泛应用于工业控制、家用电器、汽车、 医疗设备和气象领域等。
物联网中的应用
在物联网中,温度传感器被用于智能家居、智能农 业、环境监测和能源管理等。
温度传感器的工作原理
热电传感器
利用不同金属导体的温差来 产生电压信号。
热敏电阻传感器
根据电阻与温度之间的关系 来测量温度变化。
晶体管传感器
通过晶体管的温度特性来检 测温度变化。
晶体谐振传感器
利用晶体谐振频率对温度进行测量。
光学式传感器
利用光学原理来感知温度变化。
温度传感器的。
3 微电子技术
微电子技术的发展将进一步推动温度传感器的小型化、高性能化和低功耗化。
总结
重要作用
温度传感器在许多领域中发挥了重要的作用,为工业、家居和物联网等提供了不可或缺的数 据支持。
需注意的问题
温度传感器的种类、工作原理、性能指标和选型都是需要注意的问题,确保选择最适合的传 感器。
未来发展
温度传感器的未来发展前景广阔,无线传输技术、光学传感技术和微电子技术将驱动其进一 步创新与突破。
应用环境选型
考虑使用环境的特殊性,选择 能够适应环境条件的温度传感 器。
精度要求选型
根据应用场景的精度要求,选 择具备足够精度的温度传感器。
温度传感器的未来发展趋势
1 无线传输技术
温度传感器的无线传输技术将会得到进一步的发展,实现更方便的数据采集和监测。
2 光学传感技术
光学传感技术可能成为未来温度传感器的重要方向,具备更高的测量精度和更大的应用 潜力。

《传感器及其应用》课件

《传感器及其应用》课件
传感器将在智能交通、智能医疗、环境监测等领域发挥更大作用,提升生活品质和工业 效率。
传感器根据测量物理量的不同可分为温度传 感器、光电传感器、压力传感器等。
3 传感器的基本结构
传感器由感知元件、转换元件和输出元件组 成,实现环境参数到电信号的转换。
4 传感器的工作原理
传感器通过感知元件对环境参数进行测量, 并将这些信号转换为电信号,用于后续处理 和分析。
二、传感器的应用
1 温度传感器
4
智能质量检测
利用传感器对产品进行在线检测和质量监控,提高产品质量和一致性。
五、传感器的发展趋势
1 传感器的技术革新
传感器技术在小型化、集成化、智能化方面不断创新,提供更多应用场景和功能。
2 传感器市场的前景
随着物联网和智能化的发展,传感器市场将持续增长,成为未来重要的产业。
3 传感器应用的未来发展
《传感器及其应用》PPT 课件
欢迎来到《传感器及其应用》的课程介绍PPT。在本课程中,我们将探讨传 感器的概念、工作原理以及在不同领域的应用,包括智能家居和制造业。让 我们一起开始吧!
一、传感器的概念
1 传感器定义
2 传感器分类
传感器是一种能够对周围环境进行感知和测 量的装置,将环境参数转化为可用的电信号。
用于测量环境温度,广泛 应用于气候控制、工业过 程监测等。
2 光电传感器
可感知光信号的存在和强 度,常用于自动化控制、 光电开关等领域。
3 压力传感器
测量压力或压力变化,广 泛应用于汽车、航空航天 等工业领域。
4 气体传感器
用于检测空气中的不同气体成分,常用于环 境监测、气体泄漏报警等。
5 液位传感器
测量液体的高度和变化,广泛应用于液体储 罐、水处理等领域。

传感器的应用 ppt课件

传感器的应用 ppt课件

在工农业生产中经常用到自动控制装置, 在工农业生产中经常用到自动控制装置,而 设计自动控制装置很多情况下要用到传感器. 设计自动控制装置很多情况下要用到传感器.如 光电传感器,把光信号转化为电信号, 光电传感器,把光信号转化为电信号,然后对电 信号进行放大,再将电信号输入到相应的装置, 信号进行放大,再将电信号输入到相应的装置, 进而完成相应的自动控制。 进而完成相应的自动控制。
MEMSIC加速度传感器应用 加速度传感器应用
手机存储卡的安全保护
当手机发生意外被摔落时,安放在手机中的 当手机发生意外被摔落时,安放在手机中的MEMSIC 加速度传感器 会感应到加速度的变化并做出判断是否需要关闭使用存储器的应用 程序,最后完成关闭这些应用程序以达到保护存储器的目的。 程序,最后完成关闭这些应用程序以达到保护存储器的目的。
MEMSIC加速度传感器的优势 加速度传感器的优势
MEMSIC 传感器中的质量块是气体。气态的质量块和 传感器中的质量块是气体。 传统的实体质量块相比具有很大的优势。 传统的实体质量块相比具有很大的优势。MEMSIC 的 器件不存在电容式传感器所存在的粘连、颗粒等问题, 器件不存在电容式传感器所存在的粘连、颗粒等问题, 同时能抵抗50000g 的冲击,这使得 的冲击,这使得MEMSIC 器件的次 同时能抵抗 品率和故障率很低,同时降低了产品的返修率。 品率和故障率很低,同时降低了产品的返修率。
五、MEMSIC加速度传感器 加速度传感器
MEMSIC 器件是基于单片 器件是基于单片CMOS 集成电路制造工艺 而生产出来的一个完整的双轴加速 度测量系统。就像其它加速度传感器有重力块一样, 度测量系统。就像其它加速度传感器有重力块一样, MEMSIC 器件是通过移动的热对流小 气团作为重力块。 气团作为重力块。器件通过测量由加速度引起的内 部温都的变化来测量加速度。 部温都的变化来测量加速度。

温度传感器PPT课件

温度传感器PPT课件
•由于两端温差的存在、高温端 电子能量比低温端电子能量大。 因而,高温端失去电子带正电 荷,低温端获得电子带负电, 这样,在导体内从高温端到低 温端形成一个静电场。
(一)热电偶式传感器
❖ 2)温差电势
当静电场形成并两端电子数达到动态平衡时,
在导体两端便产生一个相应的电位差,即(UtUt0),该电位差称温差电动势。
(一)热电偶式传感器
❖ 1)接触电势
接触电动势的大小取决于两种不同导体的性质 和接触点的温度,与材料几何形状和接触点的位 置无关。
e U U At、t0 e U U Bt、t0
At
Bt
At0
Bt0
(1)
(一)热电偶式传感器
❖ 2)温差电势
图2 温差电势
•温差电势:在同一导体的两端 因其温度不同而产生的一种热 电势。
e U U At、t0 e U U Bt、t0
At
Bt
At0
Bt0
(2)
(一)热电偶式传感器
❖ 3)热电偶回路总热电动势
总热电势是接触电势和温差电势之和。即:
ee e e E A ( t、 B t0 ) A tBB t、 t0 A t0 B A t、 t0 (3)
由于温差电势比接触电势小得多,故可略去。则:
❖ 温度传感器在日本等国已应用于煤矿井下。
(一)热电偶式传感器
❖ 1、热电效应
•两种不同的导体(或半导体)如A/B,组成闭合回路,当A、B 相接的两个节点温度不同时(t≠t0),则在回路中产生一个 热电动势,这种现象通常称作热电效应。 •A、B组件称热电偶,每个单件称热电极。两个接点中,一端 称工作端(测量端或热端)如t端;另一端称自由端(参比端 或冷端)如t0端。

温传感器PPT课件

温传感器PPT课件
第1页/共22页
温度传感器
一.温度传感器的分类 二.温度传感器的应用 三.温度传感器的前景
第2页/共22页
温度传感器分类
温度传感器主要有四种主要类型: 热电偶 热敏电阻 电阻温度检测器(RTD) IC温度传感器
第3页/共22页
温度传感器分类
第4页/共22页
热电偶
热电偶(thermocouple)是温度测量仪表中常用的测温元件,它直 接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转 换成被测介质的温度。各种热电偶的外形常因需要而极不相同,但 是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接 线盒等主要部分组成,通常和显示仪表、记录仪表及电子调节器配 套使用。
数字输出IC温度传感器:带有一个内置参考 源,它们的响应速度也相当慢。虽然它们固有 地会自身发热,但可以采用自动关闭和单次转 换模式使其在需要测量之前将IC设置为低功耗
第13页/共22页
温度传感器的应用
第14页/共22页
温度传感器的应用
第15页/共22页
温度传感器的应用
第16页/共22页
温度传感器的应用
第19页/共22页
温度传感器的前景及发展方向
温度传感器技术朝着高精度、高可靠性、宽测量范围、微型化及微功耗方向 发展.并不断开发出一些能在特殊环境下工作的温度传感器,如可在高低温(一 200一2000℃)、化学腐 蚀性强、电磁干扰严重的恶劣环境中工作的光纤温度 传感器。
第20页/共22页
第21页/共22页
陶瓷外绕式铂电阻示意图
第11页/共22页
RTD应用实例
应用范围:铂电阻温度传感器具有极佳的可互 换性和长期稳定性,被广泛应用于气象和环保 等部门用来测量空气、土壤和水,另外,在防 护设备里也经常用到。

温度传感器1PPT课件

温度传感器1PPT课件

消除连接导线电阻引起的测量误差。这是因为测量热电阻的电路一般是不平
衡电桥。热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室
)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造
成测量误差。采用三线制,将导线一根接到电桥的电源端,其余两根分别接
3、中间温度定律 热电偶回路两接点(温度为T、T0)间的热电势,等于
热电偶在温度为T、Tn时的热电势与在温度为Tn、T0时的热电势的代数和。Tn称中 间温度。 应用:由于热电偶E-T之间通常呈非线性关系,当冷端温度不为0℃时, 不能利用已知回路实际热电势E(t,t0)直接查表求取热端温度值;也不能利用已知回 路实际热电势E(t,t0)直接查表求取的温度值,再加上冷端温度确定热端被测温度值 ,需按中间温度定律进行修正。初学者经常不按中间温度定律 来修正!
的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电
阻的影响,是工业过程控制中的最常用的。
○3四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其
中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根 引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主 要用于高精度的温度检测。 热电阻采用三线制接法。采用三线制是为了
2、中间导体定律 在热电偶回路中接入中间导体(第三导体),只要中间
导体两端温度相同,中间导体的引入对热电偶回路总电势没有影响,这就是中间导 体定律。 应用:依据中间导体定律,在热电偶实际测温应用中,常采用热端焊接 、冷端开路的形式,冷端经连接导线与显示仪表连接构成测温系统。 有人担心 用铜导线连接热电偶冷端到仪表读取mV值,在导线与热电偶连接处产生的接触电势 会使测量产生附加误差。根据这个定律,是没有这个误差的!

《温度传感器》课件

《温度传感器》课件
常见温度传感器介绍
REPORTING
热电偶温度传感器
总结词
基于热电效应原理,测量范围宽,准确度高,但响应时间较慢。
详细描述
热电偶温度传感器是利用热电效应原理进行测温的传感器,其测量范围宽,准 确度高,适用于中高温的测量。但由于其响应时间相对较慢,因此不适用于需 要快速响应的场合。
热电阻温度传感器
总结词
温度传感器通过感知周围环境的温度变化,将其转换为电信 号,再经过信号处理电路的处理,最终输出温度值。
详细描述
温度传感器内部通常包含敏感元件和信号处理电路。敏感元 件负责感知周围环境的温度变化,产生相应的电信号;信号 处理电路则对电信号进行放大、滤波、线性化等处理,最终 输出稳定的温度值。
PART 02
温度传感器类型
总结词
温度传感器有多种类型,包括热电阻、热电偶、集成温度传感器等。
详细描述
热电阻型温度传感器利用金属导体的电阻随温度变化的特性来测量温度;热电偶 型温度传感器利用热电效应原理测量温度;集成温度传感器则是将温度传感器与 信号处理电路集成在一起,具有测量精度高、体积小等优点。
温度传感器工作原理
温度传感器可用于监测工厂或工业园 区的环境温度,优化能源消耗,降低 运营成本。
农业领域应用
温室环境调控
在温室种植中,温度对作物的生 长至关重要。温度传感器可以监 测温室内外的温度变化,为温室
环境调控提供数据支持。
畜禽养殖管理
在畜禽养殖中,温度传感器可以帮 助养殖户监测畜禽的生长环境,提 高养殖效率和管理水平。
农业物联网应用
结合物联网技术,温度传感器可以 为农业智能化管理提供数据支持, 实现精准农业和智慧农业的发展。
医疗领域应用

九年级上册5.2温度传感器(共35张PPT)

九年级上册5.2温度传感器(共35张PPT)
热电阻传感器
热电阻:电阻值随温度变化的温度检测元件。 金属热电阻的阻值与温度的关系: RT=R0[1+a(T-T0)+b(T-T0)2...] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。 半导体热电阻的阻值与温度的关系: RT=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。
右图是采用热敏电阻的温度测量电路, 图a为并联方式,热敏电阻RT与电阻RS 并联,输出UO为: U0=( )Ub 式中,RTH=RRT//RS。由于这种电 路非常简单,电源电压的变化会直接影 响输出,因此,工作电源一般采用稳压 电源。 图b)为桥接方式,热敏电阻作为桥 的一臂,输出为桥路之差,即为: U0= ( )Ua 式中,RTH=RRT//RS。
温度传感器
温度传感器的类型
Template for Microsoft PowerPoint
温度传感器的测温范围
用比较法测量各种量(如电阻、电容、电感等)的仪器。最简单的是由四个支路组成的电路。各支路称为电桥的“臂”。如图电路中有一电阻为未知(R2),一对角线中接入直流电源U,另一对角线接入检流计G。可以通过调节各已知电阻的值使G中无电流通过,则电桥平衡,未知电阻R2=R1·R4/R3。 图2中,非平衡电桥的BD两端接负载电阻为Ro的电压表。该电桥不需要调平衡,只要测量输出电压Uo或电流Io,就可得到Rx值。 当负载电阻Ro→∞(即电桥输出处于开路状态)时,Io=0,电桥输出端接数字电压表或高输入阻抗放大器时属这种情况。
用热敏电阻构成的测温计
图c用热敏电阻作为运算放大器的反馈电阻的测温电路,电路中2.5V基准电压与电阻形成的电流变换为与热敏电阻阻值变化相应的电压,这作为运算放大器A1的输出电压。该输出电压再经运算放大器A2后会被扣除一定的偏置电压,于是A2的输出电压信号与温度相对应。该电路的热敏电阻直接接在运算放大器构成的反相放大电路中,易受到外部感应噪声的影响,因此,重要的是热敏电阻回路的布线要尽量短。 根据继承运算放大器的性质不难算得: U0= 图d是热敏电阻与比较器组合的电路,其电路若达到设定温度,则比较器A1开始工作,A1应具有适当时滞特性,这样,电路就具有较好的快关特性。 U+=[(1.5+RP)/(1.5+RP+RT||Rs)]Ucc U-=(1/2)Ucc U+>U-时比较器开始工作。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石英晶体振动器

超声波温度计

示温涂料 液晶
半导体二极管
晶体管半导体集成电路温度传感器
可控硅
辐射温度传感器 光学高温计
三、温度传感器的发展概况


公元1600年,伽里略研制出气体温度计。一百年后,
建 设
即T=273.16(Q1/Q2)。
湖南铁道职业技术
2.国际实用温标
应 用 电 1968年国际实用温标规定热力学温度是基本温度,用t 子 技 表示,其单位是开尔文,符号为K。1K定义为水三相点 术 热力学温度的1/273.16,水的三相点是指纯水在固态、 专 业 液态及气态三项平衡时的温度,热力学温标规定三相点 教 温度为273.16 K,这是建立温标的惟一基准点。 学 资 源 建 设

物质 颜色


P–N结电动势
源 晶体管特性变化
建 可控硅动作特性变化 设
热、光辐射 湖南铁道职业技术
1.气体温度计
2. 玻璃制水银温度

3.玻璃制有机液体温度计 4.双金属温度计
5.液体压铂力测温温度电计阻、热敏6电. 气阻体压力温度计
热电偶
1. 热铁氧体 2. Fe-Ni-Cu合金
BaSrTiO3陶瓷
资 能大批量生产,价格便宜
源 建
无危险性,无公害等

湖南铁道职业技术
3. 温度传感器的种类及特点
应 用 电
子 接触式温度传感器

术 非接触式温度传感器
专 业 教 学 资 源 建 设
湖南铁道职业技术
3. 温度传感器的种类及特点
应 接触式温度传感器


接触式温度传感器的特点:传感器直接与被测物体接
湖南铁道职业技术
3.摄氏温标



是工程上最通用的温度标尺。摄氏温标是在标准大气
子 技
压(即101325Pa)下将水的冰点与沸点中间划分一百个等份,
术 每一等份称为摄氏一度(摄氏度 ℃),一般用小写字母t表
专 示。与热力学温标单位开尔文并用。

教 学
摄氏温标与国际实用温标温度之间的关系如下:


t=T-273.15 ℃
热噪声


湖南铁道职业技术
2.温度传感器应满足的条件
应 特性与温度之间的关系要适中,并容易检测和处理,且随
用 电
温度呈线性变化
子 除温度以外,特性对其它物理量的灵敏度要低
技 术
特性随时间变化要小
专 重复性好,没有滞后和老化
业 灵敏度高,坚固耐用,体积小,对检测对象的影响小
教 学
机械性能好,耐化学腐蚀,耐热性能好
子 技
出红外线,从而测量物体的温度,可进行遥测。其制

造成本较高,测量精度却较低。优点是:不从被测物

体上吸收热量;不会干扰被测对象的温度场;连续测
业 教
量不会产生消耗;反应快等。





湖南铁道职业技术
体积热膨胀

理应
电阻变化
现象用电子
温差电现象 导磁率变化

电容变化
术 专
压电效应
业超声波传播速度变化
教 学
❖ 了解其他温度传感器工作原理




湖南铁道职业技术
第一节 概 论
应 用
温度是反映物体冷热状态的物理参数。
电 温度是与人类生活息息相关的物理量 子 技 在2000多年前,就开始为检测温度进行了各种努力,并
术 开始使用温度传感器检测温度
专 业 教
人类社会中,工业、农业、商业、科研、国防、医学及 环保等部门都与温度有着密切的关系
业量
教 温标:表示温度大小的尺度是温度的标尺





湖南铁道职业技术
温标



子 技
热力学温标
术 专
国际实用温标
业 摄氏温标

学 华氏温标




湖南铁道职业技术
1.热力学温标
应 1848年威廉·汤姆首先提出以热力学第二定律为基础,建
用 电
立温度仅与热量有关,而与物质无关的热力学温标。

T=t+273.15 K

湖南铁道职业技术
4.华氏温标
应 用 规定在标准大气压下冰的融点为32华氏度,水的沸点为
电 212华氏度,中间等分为180份,每一等份称为华氏一度, 子 技 符号用℉,它和摄氏温度的关系如下:

专 业
m=1.8n+32 ℉



n= 5/9 (m-32) ℃



湖南铁道职业技术
子 根据热力学中的卡诺定理,如果在温度T1的热源与温度为
技 T2的冷源之间实现了卡诺循环,则存在下列关系式。 术
专 业 教
T1 Q 1
T2
Q2
Q1——热源给予热机的传热量 Q2——热机传给冷源的传热量
学 资 1954年,国际计量会议选定水的三相点为273.16,并以
源 它的1/273.16定为一度,这样热力学温标就完全确定了,
《传感器应用》课程教学资源建设
建设院校:
顺德职业技术学院
主要参与企业:
广东美的集团 广东新宝电器 佛山市顺德区美智电子 佛山市顺德区高迅电子
温度传感器及应用
应 用 电 子 技 术 专 业 教 学 资 源 建 设
湖南铁道职业技术
主要内容

用 ❖ 第一节 概 论

子 ❖ 第二节 热电偶温度传感器
技 术
学 工业生产自动化流程,温度测量点要占全部测量点的一
资 半左右 源
建 在家电产品的控制中,温度的检测也是无处不在

湖南铁道职业技术
一、温度的基本概念

用 电 热平衡:温度是描述热平衡系统冷热程度的物理量
子 分子物理学:温度反映了物体内部分子无规则运动的剧烈
技 程度
术 专
能量:温度是描述系统不同自由度间能量分配状况的物理
二、温度传感器的特点与分类
应 用
1 温度传感器的物理原理
电 随物体的热膨胀相对变
子 技
化而引起的体积变化
热电效应
术 蒸气压的温度变化
专 业
电极的温度变化
教 热电偶产生的电动势
介电常数、导磁率的温度 变化 物质的变色、融解
学 光电效应 资
强性振动温度变化 热放射

子 技
触进行温度测量,由于被测物体的热量传递给传感器,

降低了被测物体温度,特别是被测物体热容量较小时,

测量精度较低。因此采用这种方式要测得物体的真实


温度的前提条件是被测物体的热容量要足够大。





湖南铁道职业技术
3. 温度传感器的种类及特点
应 非接触式温度传感器


非接触式温度传感器主要是利用被测物体热辐射而发

第三节
热敏电阻温度传感器
专 业

第四节
IC温度传感器
教 学

第五节
其他温度传感器




湖南铁道职业技术
学习内容与学习目标

用 ❖通过本章的学习了解温度传感器的作用、地位、
电 分类和发展趋势

技 ❖了解热电偶三定律及相关计算
术 专
❖ 掌握热敏电阻不同类型的特点及应用场合
业 ❖掌握集成温度传感器使用方法
相关文档
最新文档