高三数学第一轮复习椭圆.ppt
合集下载
高中数学一轮复习课件:“椭圆的定义及其标准方程” (共28张PPT)

问题3:在笔尖运动的过程中,哪些 长度
是变化的?哪些长度是不变的?
并且回答问题2:椭圆是满足什么条件的轨 迹呢?
请看用超级画板进行的动态演示:
(超级链接2)
椭圆的定义
椭圆定义的文字表述: 椭圆定义的符号表述:
• 平面上到两个定点 的距离的和(2a) 等于定长(大于 |F1F2 |)的点的轨 迹叫椭圆。 • 定点F1、F2叫做椭 圆的焦点。 • 两焦点之间的距离 叫做焦距(2C)。
♦ 求动点轨迹方程的一般步骤: 坐标法 (1)建系; (2)设点; (3)列等式; (4)等式坐标化; (5)检验.
师生互动,导出椭圆的方程:
♦ 问题8、探讨建立平面直角坐标系的方案
(学生分组讨论,合作探究) y y y
y F1
O O O
y F2
M M
O F2
xx x
O
x F1
x
方案二 方案一 原则:一般利用对称轴或已有的互相垂直的线段 所在的直线作为坐标轴.这样能使方程的形式简单、 运算简单。
(问题11)如果椭圆的焦点 在y上,那么椭圆的标准方程 又是怎样的呢?
如果椭圆的焦点在y轴上(选取方式不同,调换x,y F1 (0, c), F2 (0, c) 轴) 如图所示,焦点则变成 x2 y2 只要将方程中 2 2 1 的 x, y 调换,即可得
课题:
二、【自主探究,形成概念】 ——“定性”地画出椭 圆
问题2: 动点按照某种规律运动形成的轨迹叫
曲线,那么椭圆是满足什么条件的轨迹呢?
数学实验(做一做)
请同学们拿出课前准备好的一块纸板, 一段细绳,两枚图钉,同桌间相互磋商、动手 绘图 .并思考问题:
在绳长 (设为 2 a )不变的条件下, 实验1:当两个图钉重合在一点时,画出 的图形是什么? (圆) 实验2:改变两个图钉之间的距离(让绳 长大于两个图钉之间的距离),画出的图形是 什么? (椭圆)
椭圆及其几何性质课件-高三数学一轮复习

B 分别为 C 的左,右顶点.P 为 C 上一点,且 PF⊥x 轴.过点 A 的直线 l
与线段 PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C
的离心率为( A )
A.13
B.12
C.23
D.34
[解析] 设点 M(-c,y0),OE 的中点为 N,则直线 AM 的斜率 k=a-y0 c, 从而直线 AM 的方程为 y=a-y0 c(x+a), 令 x=0,得点 E 的纵坐标 yE=aa-y0c.同理,OE 的中点 N 的纵坐标 yN=aa+y0c. 因为 2yN=yE,所以a+2 c=a-1 c,即 2a-2c=a+c,所以 e=ac=13.故选 A.
(2)已知椭圆xa22+by22=1(a>b>0)上有一点 A,它关于原点的对称点为 B,点 F
为椭圆的右焦点,且 AF⊥BF.设∠ABF=α,且 α∈1π2,π6,则该椭圆的离 心率 e 的取值范围为( A )
A.
3-1,
6
3
B.[ 3-1,1)
C.
46,
6
3
D.0,
6
3
[解析] 如图所示,设椭圆的左焦点为 F′,连接 AF′,BF′,则四边形 AFBF′
为矩形,因此|AB|=|FF′|=2c,|AF|+|BF|=2a,|AF|=2csin α,|BF|=2ccos
α,∴2csin α+2ccos α=2a,
∴e=sin
1 α+cos
α=
2sin1α+π4.∵α∈1π2,π6,∴α+π4∈π3,51π2,
∴sinα+π4∈ 23,
2+ 4
6,∴
2sinα+π4∈ 26,1+2
旧教材适用2023高考数学一轮总复习第九章平面解析几何第6讲椭圆二课件

3.(2022·河南平顶山模拟)已知椭圆 C:ax22+by22=1(a>b>0)与直线 y=x
+3 只有一个公共点,且椭圆的离心率为 55,则椭圆 C 的方程为( )
A.42x52+y52=1
B.x52+y42=1
C.x92+y52=1
D.2x52 +2y02 =1
答案 B
解析 将直线方程 y=x+3 代入 C 的方程并整理得(a2+b2)x2+6a2x+
2.直线 y=kx+1,当 k 变化时,此直线被椭圆x42+y2=1 截得的弦长的
最大值是( )
A.2 C.4
B.4 3 3 D.不能确定
答案 B
解析 直线恒过定点(0,1),且点(0,1)在椭圆上,可设另外一个交点为(x, y),则x42+y2=1,即 x2=4-4y2,则弦长为 x2+y-12= 4-4y2+y2-2y+1 = -3y2-2y+5,因为-1≤y≤1,所以当 y=-13时,弦长最大为433.
2
PART TWO
核心考向突破
考向一 直线与椭圆的位置关系 例 1 已知直线 l:y=2x+m,椭圆 C:x42+y22=1.试问当 m 取何值时, 直线 l 与椭圆 C:
(1)有两个不重合的公共点;
解 将直线 l 的方程与椭圆 C 的方程联立,
y=2x+m,
①
得方程组x42+y22=1, ②
将①代入②,整理得 9x2+8mx+2m2-4=0. ③ 方程③根的判别式 Δ=(8m)2-4×9×(2m2-4)=-8m2+144. (1)当 Δ>0,即-3 2<m<3 2时,方程③有两个不同的实数根,可知原方 程组有两组不同的实数解.这时直线 l 与椭圆 C 有两个不重合的公共点.
2023年高考数学(理科)一轮复习课件——椭圆 第一课时 椭圆及其性质

2.若点P在椭圆上,F为椭圆的一个焦点,则 (1)b≤|OP|≤a; (2)a-c≤|PF|≤a+c.
索引
3.焦点三角形:椭圆上的点 P(x0,y0)与两焦点构成的△PF1F2 叫作焦点三角形, r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2 的面积为 S,则在椭圆xa22+yb22=1(a>b>0)
2c=
23,短轴长
2b=12,离心率
e=ac=
3 2.
索引
5.(易错题)已知椭圆x52+ym2=1(m>0)的离心率 e= 510,则 m 的值为___3_或__2_3_5___.
解析 若 a2=5,b2=m,则 c= 5-m.
由ac= 510,即
5-m= 5
510,解得 m=3.
若 a2=m,b2=5,则 c= m-5.
索引
法二(定义法) 椭圆2y52+x92=1 的焦点为(0,-4),(0,4),即 c=4. 由椭圆的定义知,2a= ( 3-0)2+(- 5+4)2+ ( 3-0)2+(- 5-4)2,解 得 a=2 5. 由 c2=a2-b2 可得 b2=4. 所以所求椭圆的标准方程为2y02 +x42=1.
索引
3.设点 P 为椭圆 C:xa22+y42=1(a>2)上一点,F1,F2 分别为 C 的左、右焦点,且
43 ∠F1PF2=60°,则△PF1F2 的面积为____3____.
解析 由题意知,c= a2-4.
又∠F1PF2=60°,|F1P|+|PF2|=2a,|F1F2|=2 a2-4, ∴|F1F2|2 = (|F1P| + |PF2|)2 - 2|F1P|·|PF2| - 2|F1P|·|PF2|cos 60°= 4a2 - 3|F1P|·|PF2|=4a2-16,
索引
3.焦点三角形:椭圆上的点 P(x0,y0)与两焦点构成的△PF1F2 叫作焦点三角形, r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2 的面积为 S,则在椭圆xa22+yb22=1(a>b>0)
2c=
23,短轴长
2b=12,离心率
e=ac=
3 2.
索引
5.(易错题)已知椭圆x52+ym2=1(m>0)的离心率 e= 510,则 m 的值为___3_或__2_3_5___.
解析 若 a2=5,b2=m,则 c= 5-m.
由ac= 510,即
5-m= 5
510,解得 m=3.
若 a2=m,b2=5,则 c= m-5.
索引
法二(定义法) 椭圆2y52+x92=1 的焦点为(0,-4),(0,4),即 c=4. 由椭圆的定义知,2a= ( 3-0)2+(- 5+4)2+ ( 3-0)2+(- 5-4)2,解 得 a=2 5. 由 c2=a2-b2 可得 b2=4. 所以所求椭圆的标准方程为2y02 +x42=1.
索引
3.设点 P 为椭圆 C:xa22+y42=1(a>2)上一点,F1,F2 分别为 C 的左、右焦点,且
43 ∠F1PF2=60°,则△PF1F2 的面积为____3____.
解析 由题意知,c= a2-4.
又∠F1PF2=60°,|F1P|+|PF2|=2a,|F1F2|=2 a2-4, ∴|F1F2|2 = (|F1P| + |PF2|)2 - 2|F1P|·|PF2| - 2|F1P|·|PF2|cos 60°= 4a2 - 3|F1P|·|PF2|=4a2-16,
椭圆的几何性质课件高三数学一轮复习

Fra bibliotek× √
核心考点·分类突破
解题技法
求椭圆标准方程的步骤
考点二 椭圆的几何性质 考情提示 高考对椭圆性质的考查是历年的重点,主要以离心率或与椭圆有关的最值问题为载 体考查逻辑推理与运算求解能力.
2.求解与椭圆有关的范围、最值问题的常用思路 (1)充分利用椭圆的几何性质,结合图形进行分析. (2)注意利用椭圆的范围如-a≤x≤a,-b≤y≤b,0<e<1构造不等式. (3)列出所求目标的解析式,构造函数利用单调性,或者利用基本不等式求最值或范 围.
预计2025年高考椭圆的几何性质仍会出题,三种题型都可能会出,往往会 预测
与其他知识交汇出题.
必备知识·逐点夯实
知识梳理·归纳 椭圆的几何性质
焦点的位置
图形
标准方程
焦点在x轴上 +=1(a>b>0)
焦点在y轴上 +=1(a>b>0)
范围
顶点 性 质 轴长
焦点 离心率 a,b,c的关系
_-_a_≤_x_≤_a_,_且__-b_≤_y_≤_b_
_-_b_≤_x_≤_b_,_且__-a_≤_y_≤_a_
_A_1_(_-a_,_0_)_,A_2_(_a_,0_)_, _B__1(_0_,-_b_)_,B__2(_0_,b_)_
_A_1_(_0_,-_a_)_,A_2_(_0_,a_)_, _B__1(_-_b_,0_)_,B__2(_b_,0_)_
谢谢观赏!!
长轴长=2a,短轴长=2b
_F__1(_-_c,_0_)_,F_2_(_c_,0_)_
_F__1(_0_,_-c_)_,F__2(_0_,c_)_
e=,且e∈(0,1)
核心考点·分类突破
解题技法
求椭圆标准方程的步骤
考点二 椭圆的几何性质 考情提示 高考对椭圆性质的考查是历年的重点,主要以离心率或与椭圆有关的最值问题为载 体考查逻辑推理与运算求解能力.
2.求解与椭圆有关的范围、最值问题的常用思路 (1)充分利用椭圆的几何性质,结合图形进行分析. (2)注意利用椭圆的范围如-a≤x≤a,-b≤y≤b,0<e<1构造不等式. (3)列出所求目标的解析式,构造函数利用单调性,或者利用基本不等式求最值或范 围.
预计2025年高考椭圆的几何性质仍会出题,三种题型都可能会出,往往会 预测
与其他知识交汇出题.
必备知识·逐点夯实
知识梳理·归纳 椭圆的几何性质
焦点的位置
图形
标准方程
焦点在x轴上 +=1(a>b>0)
焦点在y轴上 +=1(a>b>0)
范围
顶点 性 质 轴长
焦点 离心率 a,b,c的关系
_-_a_≤_x_≤_a_,_且__-b_≤_y_≤_b_
_-_b_≤_x_≤_b_,_且__-a_≤_y_≤_a_
_A_1_(_-a_,_0_)_,A_2_(_a_,0_)_, _B__1(_0_,-_b_)_,B__2(_0_,b_)_
_A_1_(_0_,-_a_)_,A_2_(_0_,a_)_, _B__1(_-_b_,0_)_,B__2(_b_,0_)_
谢谢观赏!!
长轴长=2a,短轴长=2b
_F__1(_-_c,_0_)_,F_2_(_c_,0_)_
_F__1(_0_,_-c_)_,F__2(_0_,c_)_
e=,且e∈(0,1)
高三第一轮复习椭圆精选课件

������������ ������
二、考点探究
探究点一 椭圆的定义
(2)已知F1,F2是椭圆
x2 16
y2 9
=1的两焦点,过点
F2的直线交椭圆于A,B两点,在△AF1B中,若
有两边之和是10,则第三边的长度为( A )
(A)6 (B)5 (C)4 (D)3
二、考点探究
探究点一 椭圆的定义
圆的标准方程为
������������+y2=1 或������������+������������=1
������
������ ������
.
8.已知椭圆������������+ ������������ =1
������ ������-������
的离心率为������������,则
k=
������������或-21
������ ������������
B. ������������+������������������=1
������������ ������
C. ������������+������������������=1 或������������+������������������=1
������ ������������
二、考点探究
探究点二 椭圆的标准方程
变式题(1)已知点 P 在以坐标轴为对称轴的椭圆上,点 P 到两焦
点的距离分别为������������������和������������������,过点 P 作长轴的垂线恰好过椭圆的
一个焦点,则该椭圆的方程是 ( D )
A. ������������+������������������=1
二、考点探究
探究点一 椭圆的定义
(2)已知F1,F2是椭圆
x2 16
y2 9
=1的两焦点,过点
F2的直线交椭圆于A,B两点,在△AF1B中,若
有两边之和是10,则第三边的长度为( A )
(A)6 (B)5 (C)4 (D)3
二、考点探究
探究点一 椭圆的定义
圆的标准方程为
������������+y2=1 或������������+������������=1
������
������ ������
.
8.已知椭圆������������+ ������������ =1
������ ������-������
的离心率为������������,则
k=
������������或-21
������ ������������
B. ������������+������������������=1
������������ ������
C. ������������+������������������=1 或������������+������������������=1
������ ������������
二、考点探究
探究点二 椭圆的标准方程
变式题(1)已知点 P 在以坐标轴为对称轴的椭圆上,点 P 到两焦
点的距离分别为������������������和������������������,过点 P 作长轴的垂线恰好过椭圆的
一个焦点,则该椭圆的方程是 ( D )
A. ������������+������������������=1
椭圆及其性质课件-2025届高三数学一轮复习

,
=
+
向量的数量积求解;
= ,再由 =
+ ,借助
思路二:先利用椭圆定义以及在焦点三角形中用余弦定理先求出
,
=
+
和等于四条边的平方和求解.
思路三:利用等面积,即
点的坐标.ຫໍສະໝຸດ = ,再利用平行四边形对角线的平方
2025届高考数学一轮复习讲义
平面解析几何之椭圆及其性质
1.椭圆的定义
条件
结论1
,
①________为椭
平面内与两个定点 , 的距离的和等
于常数(大于 )的点
+ =
>
结论2
点的轨
迹为椭圆
圆的焦点;
②_______为椭圆
求 ⋅ 的值,通过整体代入可求其面积等.
1.(2023·全国甲卷)设 , 为椭圆:
+ = 的两个焦点,点在上,
若 ⋅ = ,则 ⋅ =(
A.1
B.2
√
)
C.4
D.5
解析:选B.方法一:因为 ⋅ = ,所以 ⊥ ,则
的焦距
若= ,则动点的轨迹是线段 ;若< ,
则动点 的轨迹不存在.
2.椭圆的标准方程及几何性质
焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围
顶点
+
= >>
+
2025年高考数学一轮复习-9.5.1-椭圆的定义及标准方程【课件】

考法 答题的第一问中.
预计2025年高考求椭圆的标准方程、直线与椭圆的交汇问题仍会
预测 出题,一般以解答题出现,求椭圆的离心率,考查比较灵活,一般以选择
题、填空题的形式出现.
必备知识·逐点夯实
知识梳理·归纳
1.椭圆的定义
常数
把平面内与两个定点F1,F2的距离的和等于______(大于|F
1F2|)的点的轨迹叫做椭圆.
(3)
源自教材第113页例6.此题给出椭圆的另一种定义方式
[例1](1)如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在
2 2
+y =1
圆上运动时,则线段PD的中点M的轨迹方程为______________.
4
【解析】(1)设点M的坐标为(x,y),点P的坐标为(x0,y0),
(6)焦点三角形的周长为2(a+c).
基础诊断·自测
类型
辨析
改编
易错
高考
题号
1
2
4
3
1.(思考辨析)(正确的打“√”,错误的打“×”)
(1)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆.
(
×
)
提示:(1)因为2a=|F1F2|=8,动点的轨迹是线段F1F2,不是椭圆;
(2)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于6的点的轨迹是椭圆.
(
×
)
提示:(2)由于2a<|F1F2|,动点不存在,因此轨迹不存在;
(3)平面内到点F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的
预计2025年高考求椭圆的标准方程、直线与椭圆的交汇问题仍会
预测 出题,一般以解答题出现,求椭圆的离心率,考查比较灵活,一般以选择
题、填空题的形式出现.
必备知识·逐点夯实
知识梳理·归纳
1.椭圆的定义
常数
把平面内与两个定点F1,F2的距离的和等于______(大于|F
1F2|)的点的轨迹叫做椭圆.
(3)
源自教材第113页例6.此题给出椭圆的另一种定义方式
[例1](1)如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在
2 2
+y =1
圆上运动时,则线段PD的中点M的轨迹方程为______________.
4
【解析】(1)设点M的坐标为(x,y),点P的坐标为(x0,y0),
(6)焦点三角形的周长为2(a+c).
基础诊断·自测
类型
辨析
改编
易错
高考
题号
1
2
4
3
1.(思考辨析)(正确的打“√”,错误的打“×”)
(1)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆.
(
×
)
提示:(1)因为2a=|F1F2|=8,动点的轨迹是线段F1F2,不是椭圆;
(2)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于6的点的轨迹是椭圆.
(
×
)
提示:(2)由于2a<|F1F2|,动点不存在,因此轨迹不存在;
(3)平面内到点F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6分
课堂互动讲练
(1)求此椭圆的方程; (2)设直线l:y=x+m,若l与此椭 圆相交于P、Q两点,且|PQ|等于椭圆 的短轴长,求m的值.
课堂互动讲练
x2 y2 解:(1)设椭圆方程为 2+ 2=1(a>b>0) a b c 3 则 c= 3, = ,∴a=2,b=1. 2分 a 2 x2 2 ∴所求椭圆方程为 + y =1. 4分 4
答案:4
课堂互动讲练
考点一 求椭圆的标准方程
求椭圆方程,若中心和对称轴已 知,则只求a、b即可,而a、b、c有关 系式a2=b2+c2,由方程的思想,还须 列出两个关于a、b、c的关系式,即可 求出a、b,解决问题的关键是:列方 程(组),解方程(组),求待定系数.
课堂互动讲练
例1 求满足下列各条件的椭圆的标准 方程: (1)长轴长是短轴长的3倍且经过 点A(3,0); (2)短轴一个端点与两焦点组成一 个正三角形,且焦点到同侧顶点的距 离为 3;
课堂互动讲练
而 y1y2=k2x1x2+k(x1+x2)+ 1,9 分 3 3k2 2k2 于是 x1x2+ y1y2=- 2 - 2 - 2 +1 k +4 k +4 k +4 -4k2+1 = 2 = 0, k +4 1 2 化简得-4k + 1=0,所以 k=± . 10 分 2 1 4 12 当 k= ± 时,x1+x2=∓ ,x1x2=- . 2 17 17
课堂互动讲练
y= x+ m (2)由x2 2 + y =1 4
消去 y 得关于 x 的方程:
5x2+ 8mx+4(m2- 1)= 0,则 Δ= 64m2-80(m2- 1)>0 得 m2<5(*) 设 P(x1, y1)、 Q(x2, y2),则 8 x1+ x2=- m, 5 4(m2-1) x1x2= , 8分 5
c e= aຫໍສະໝຸດ (0,±c)c e= a
基础知识梳理
椭圆的离心率的大小与椭圆的扁 平程度有怎样的关系? 【思考·提示】 离心率越接近 1,椭圆越扁,离心率越接近0,椭圆 就越接近于圆.
三基能力强化
1.已知两定点A(-1,0), B(1,0),点M满足|MA|+|MB|=2,则 点M的轨迹是( ) A.圆 B.椭圆 C.线段 D.直线 答案:C
课堂互动讲练
【解】 两定圆的圆心和半径分 别是O1(-3,0),r1=1, O2(3,0),r2=9. 设动圆圆心为M(x,y),半径为 R, 则由题设条件,可知 |MO1|=1+R,|MO2|=9-R, ∴|MO1|+|MO2|=10,
课堂互动讲练
由椭圆的定义知:M在以O1、O2为焦点 的椭圆上,且 a=5,c=3,b2=a2-c2=25-9=16,
x2 y2 答案: + =1 16 4
三基能力强化
5 . (2009 年高考上海卷改编 ) x2 y2 已知 F1、F2 是椭圆 C: 2+ 2=1(a a b >b>0)的两个焦点, P 为椭圆 C 上 → → 一点,且PF1⊥PF2.若△PF1F2 的面 积为 16,则 b=________.
x2 y2 故动圆圆心的轨迹方程为 + =1. 25 16
课堂互动讲练
【名师点评】 不明确椭圆定义 或不能将题目所给信息有效转化为椭 圆定义.
课堂互动讲练
考点三
椭圆的性质及应用
主要问题有两类,一类根据椭圆 方程研究椭圆的几何性质,另一类根 据椭圆几何性质,综合其他知识求椭 圆方程或者研究其他问题,这一类利 用性质是关键.
三基能力强化
2.若△ABC的两个顶点坐标分 别为A(-4,0)、B(4,0),△ABC的周长 为18,则顶点C的轨迹方程为( )
x2 y2 y2 x2 A. + =1(y≠0) B. + =1(y≠0) 25 9 25 9 x2 y2 y2 x2 C. + =1(y≠0) D. + =1(y≠0) 16 9 16 9
课堂互动讲练
→ 【解】 设点 M 的坐标为 (x, y),则F1M= (x → → → + c, y),F2M= (x- c, y).由F1M· F2M=0, 得 x2- c2+ y2=0,即 y2= c2-x2. ① 2 x 2 2 又由点 M 在椭圆上得 y =b (1- 2), a 2 x 代入①得 b2(1- 2)= c2-x2, a 2 a 所以 x2=a2(2- 2), c
【名师点评】 (1)解析几何与向 量的结合是近几年高考的热点,解题 时应尽量将向量问题转化为非向量问 题; (2)涉及弦长问题时,一般不会求 方程组的解,而是利用两点间的距离 公式,借助根与系数关系,利用整体 代入的方法求解.
课堂互动讲练
高考检阅
(本题满分 12 分 )已知椭圆的两焦点为 3 F1(- 3,0),F2( 3,0),离心率 e= . 2
课堂互动讲练
设点H(x,y)是椭圆上的一点,则 |HN|2=x2+(y-3)2 =(2b2-2y2)+(y-3)2 =-(y+3)2+2b2+18(-b≤y≤b). ①若0<b<3,则-b>-3, 当y=-b时,|HN|2有最大值b2+6b+9.
课堂互动讲练
由题意知: b2+6b+9=50, b=5 2 -3,这与 0<b<3 矛盾. ②若b≥3,则-b≤-3, 当y=-3时, |HN|2有最大值2b2+18, 由题意知:2b2+18=50,∴b2= 16,符合条件.
课堂互动讲练
考点二 椭圆的定义
由椭圆的定义可知在平面内与两 个定点F1,F2的距离之和等于常数(大 于|F1F2|)的点的轨迹叫做椭圆.可以 将椭圆上的点到两个焦点的距离进行 转化,从而解决有关线段长度的问 题.一般地,遇到与焦点距离有关的 问题时,首先应考虑用定义来解题.
课堂互动讲练
例2 一动圆与已知圆O1:(x+3)2+y2 =1外切,与圆O2:(x-3)2+y2=81内 切,试求动圆圆心的轨迹方程. 【思路点拨】 两圆相切,圆心 之间的距离与两圆半径有关,据此可 以找到动圆圆心满足的条件.
课堂互动讲练
例3
x2 y2 椭圆 2 + 2 = 1(a>b>0) 的两个焦 a b 点为 F1(-c,0)、F2(c,0),M 是椭圆上 → → 一点,满足F1M· F2M= 0.求离心率 e 的取值范围.
【思路点拨】 设M(x,y),由 题意将x表示为关于e的不等式,根据 椭圆上的点的取值范围得到关于e的不 等式,即可得.
课堂互动讲练
互动探究
在例 3 中当离心率 e 取得最小值 时,点 N(0,3)到椭圆上的点的最远距离为 5 2,求此时椭圆的方程. 2 解:当离心率 e 取最小值 时, 2 c 2 2 = ⇒c= a,a2- b2= c2⇒a2- b2 2 a 2 1 2 = a ⇒a2= 2b2, 2 x2 y2 ∴椭圆方程可表示为 2+ 2=1, 2b b
课堂互动讲练
∵0≤x2≤a2 , ∴0≤a2(2 -
a2 2 2 )≤ a , c
a2 1 即 0≤2- 2 ≤1,0≤2- 2≤1, c e 2 解得 ≤e≤1 ,又 ∵0<e<1 , 2 2 ∴ ≤e<1. 2
课堂互动讲练
【思维总结】 椭圆的几何性质 主要是围绕椭圆中的“六点”(两个焦 点、四个顶点),“两线”(两条对称轴 ),“两形”(中心、焦点以及短轴端点 构成的三角形、椭圆上一点和两焦点 构成的三角形),“两围”(x的范围,y 的范围). 而本题易忽略y的范围而不对y的 取值进行讨论.
x1+x2 B B - ,而 =- 恰为弦的中点. 2 A 2A
课堂互动讲练
例4
(解题示范)(本题满分 12 分) 在平面直角坐标系 xOy 中,点 P 到两点 (0,- 3), (0, 3)的距离之 和等于 4,设点 P 的轨迹为 C. (1)写出 C 的方程; (2)设直线 y=kx+1 与 C 交于 A, → → B 两点,则 k 为何值时OA⊥OB?此 时|A B |的值是多少?
→
课堂互动讲练
【思路点拨】
课堂互动讲练
【解】 (1)设 P(x, y), 由椭圆定义可知, 点 P 的轨迹 C 是以 (0,- 3), (0, 3)为焦 点,长半轴为 2 的椭圆,它的短半轴 b = 22- ( 3)2=1, 2 y 故曲线 C 的方程为 x2+ =1. 4分 4
课堂互动讲练
(2)设 A(x1, y1), B(x2, y2), 2 y2 x + = 1, 4 其坐标满足 y= kx+ 1, 消去 y 并整理,得(k2+4)x2+2kx-3=0, 2k 3 故 x1+x2=- 2 , x1x2=- 2 . 8分 k +4 k +4 → → 若OA⊥OB,则 x1x2+ y1y2= 0.
课堂互动讲练
→ |AB|= (x2-x1)2+ (y2- y1)2 = (1+k2)(x2- x1)2, 2 2 而 (x2-x1) = (x2+x1) - 4x1x2 3 2 4 12 4 ×13 = 2+ 4× = . 17 17 172 → 4 65 所以|AB|= . 12 分 17
课堂互动讲练
课堂互动讲练
若椭圆的焦点在 y 轴上,设椭圆方程为 y2 x2 2+ 2= 1(a>b>0), a b ∵椭圆过点 A(3,0), 02 9 ∴ 2+ 2=1, a b ∴b=3,又 2a=3· 2b, ∴a=9, y2 x2 ∴方程为 + = 1. 81 9 2 2 2 x y x 2 综上所述,椭圆方程为 + y = 1 或 + =1. 9 81 9
第1课时
椭圆
基础知识梳理
1.椭圆的定义 平面内动点P到两个定点F1,F2的距 离的和等于常数2a,当 2a>|F1F2| 时,动 点P的轨迹是椭圆;当 2a=|F1F2| 时,轨 迹为线段F1F2;当2a<|F1F2|时,轨迹不 存在.
基础知识梳理
2.椭圆的标准方程与几何性质