新激光ppt课件第二章 光学谐振腔理论03

合集下载

第二章 光学谐振腔基本理论

第二章   光学谐振腔基本理论

第二章光学谐振腔基本概念 (1)2.1光学谐振腔 (1)2.2非稳定谐振腔及特点 (1)2.3光学谐振腔的损耗 (2)2.4减小无源稳定腔损耗的途径 (2)反射镜面的种类对损耗的影响 (2)腔的结构不同,损耗不同 (2)第二章光学谐振腔基本概念2.1光学谐振腔光学谐振腔是激光器的基本组成部分之一,是用来加强输出激光的亮度,调节和选定激光的波长和方向的装置。

光线在两镜间来回不断反射的腔叫光学谐振腔。

由平面镜、凹面镜、凸面镜的任何两块镜的组合,构成各类型光学谐振腔。

光学谐振腔的分类方式很多。

按照工作物质的状态可分为有源腔和无源腔。

虽有工作物质,但未被激发从而无放大作用的谐振腔称之为无源谐振腔;而有源腔则是指经过激发有放大作用的谐振腔。

2.2非稳定谐振腔及特点非稳定谐振腔的反射镜可以由两个球面镜构成也可由一个球面镜和一个平面镜组合而成。

若R1和R2为两反射镜曲率半径,L为两镜间距离,对于非稳腔则g1,g2:满足g1*g2<O或g1*g2>l 非稳腔中光在谐振腔内经有限次往返后就会逸出腔外,也就是存在着固有的光能量可以横向逸出而损耗掉,所以腔的损耗很大。

在高功率激光器中,为了获得尽可能大的模体积和好的横模鉴别能力,以实现高功率单模运转,稳定腔不能满足这些要求,而非稳腔是最合适的。

与稳定腔相比,非稳腔有如下几个突出优点:1.大的可控模体积在非稳腔中,基模在反射镜上的振幅分布式均匀的,它不仅充满反射镜,而且不可避免地要向外扩展。

非稳腔的损耗与镜的大小无关,这一点是重要的,因此,只要把反射镜扩大到所需的尺寸,总能使模大致充满激光工作物质。

这样即使在腔长很短时也可得到足够大的模体积,故特别适用于高功率激光器的腔型。

2.可控的衍射耦合输出一般稳定球面腔是用部分透射镜作为输出耦合镜使用的,但对非稳腔来说,以反射镜面边缘射出去的部分可作为有用损耗,即从腔中提取有用衍射输出。

3.容易鉴别和控制横模对于非稳腔系统,在几何光学近似下,腔内只存在一组球面波型或球面一平面波型,故可在腔的一端获得单一球面波型或单一平面波型(即基模),从而可提高输出光束的定向性和亮度。

光学谐振腔的稳定性问题资料课件

光学谐振腔的稳定性问题资料课件

减小腔镜间距
减小腔镜间距可以减小光 束在腔内的损耗,从而降 低谐振腔对外部环境的敏 感性。
优化腔镜形状
采用合适的腔镜形状,如 球面或抛物面,可以减少 光束在腔内的散射和折射 ,提高谐振腔的稳定性。
采用新型材料和制造工艺
采用高反射率材料
采用反射率更高的材料制 作腔镜,可以减小光束在 腔镜上的反射损失,提高 谐振腔的稳定性。
在这一领域中,光学谐振腔的 稳定性问题主要体现在如何减 小测量误差和提高测量精度。
为此,需要采取一系列技术措 施来提高光学谐振腔的稳定性 ,如采用高精度位移台、光学 锁相等技术。
05
CATALOGUE
未来展望与研究方向
深入研究稳定性问题的物理机制
01
深入研究光学谐振腔的稳定性问 题,需要深入理解其物理机制, 包括光场与物质相互作用的细节 、光学元件的散射和损耗等。
稳定性问题的重要性
光学谐振腔在激光雷达、光学通信、光学传感等领域具有广泛应用,其稳定性 问题直接影响到这些领域的应用效果和性能。因此,解决稳定性问题对于提高 光学谐振腔的应用性能和可靠性具有重要意义。
光学谐振腔稳定性的影响因素
01
环境因素
温度、湿度、振动等环境因素对光学谐振腔的稳定性产生影响。这些因
素会导致光学元件的位置和角度发生变化,从而影响光束的输出质量和
稳定性。
02
光学元件的加工和装配精度
光学元件的加工和装配精度对光学谐振腔的稳定性也有重要影响。元件
的加工和装配误差会导致光束的聚焦位置、模式质量和光束指向发生变
化,从而影响光束的输出质量和稳定性。
03
光学谐振腔的设计
光学谐振腔的设计参数也会影响其稳定性。例如,腔长、反射镜曲率、

《光学谐振腔理论》PPT课件

《光学谐振腔理论》PPT课件

规定:光线出射方向在腔轴线的上方时, 为正;反之,为负。
当凹面镜向着腔内时,R取正值;
当凸面镜向着腔内时,R取负值。
精选ppt
18
2.2 开放光学球面谐振腔的稳定性
用一个二阶方阵描述入射光线和出射光线的坐标变换。该 矩阵称为光学系统对光线的变换矩阵T。
r2
2
A
C
B D
r1
1
近轴光线通过焦距为f的薄透镜的变换矩阵
r2 2
r1
1 f
r1 1
r2
2
1
1
f
0
1
r1
1
1
2
r1
r2
P1 P2
精选ppt
22
2.2 开放光学球面谐振腔的稳定性
精选ppt
23
2.2 开放光学球面谐振腔的稳定性
精选ppt
24
2.2 开放光学球面谐振腔的稳定性
2)光线在谐振腔中往返一周变换矩阵
y
sin
p
l
z e im ,n, pt
k k xex k ye y kzez ,k x m / a,k y n / b,kz p / l
m,n,p c / k
c
m / a 2 n / b2 p / l 2
精选ppt
6
2.1
光学谐振腔概论
相邻两个模式波矢之间的间距
精选ppt
8
2.1 光学谐振腔概论
谐振腔内只能存在满足以下条件的光场:经腔内往返一周再回 到原来位置时,与初始出发波同相(即相差是2的整数倍—— 相长干涉
q
q 2cLq
c 2L
2 2L q2L q q
q

《光学谐振腔》课件

《光学谐振腔》课件

挑战与机遇:新型光 学谐振腔在提高性能 、降低成本等方面面 临挑战,同时也带来 了新的机遇
未来展望:新型光学 谐振腔将在光学、光 电子学等领域发挥更 加重要的作用,具有 广阔的应用前景
面临的技术挑战和解决方案
挑战:光学谐振腔的尺寸和 重量
解决方案:采用先进的材料 和工艺,提高光学谐振腔的 稳定性和可靠性
添加标题
添加标题
添加标题
添加标题
光学测量:光学谐振腔可以用于 光学测量,如光谱分析、干涉测 量等
光学成像:光学谐振腔可以用于 光学成像,如显微镜、望远镜等
05
光学谐振腔的发展趋势和挑战
新型光学谐振腔的研究进展
研究背景:光学谐振 腔在光学、光电子学 等领域具有广泛应用
研究进展:新型光学 谐振腔的设计、制造 和测试技术不断取得 突破
在光通信中的应用
光通信:利用光波进行信息传输的技术 光学谐振腔:在光通信中用于提高光信号的传输效率和稳定性 应用领域:光纤通信、光缆传输、光网络等 应用效果:提高光信号的传输距离和传输速率,降低传输损耗和噪声干扰
在其他领域的应用
激光器:光学谐振腔是激光器的 核心部件,用于产生和放大激光
光学通信:光学谐振腔可以用于 光学通信,如光纤通信、自由空 间光通信等
实验结果与分析
实验目的:验 证光学谐振腔 的振腔、探 测器等设备进
行实验
实验结果:观 察到光学谐振 腔的共振现象, 验证了其特性
分析与讨论: 对实验结果进 行深入分析, 探讨光学谐振 腔的应用前景
和局限性
演示视频与教学素材
演示视频:提供 光学谐振腔的实 验演示视频,包 括实验步骤、实 验现象和实验结
优化目标:提高光学谐振腔 的性能和效率

2 光学谐振腔理论

2 光学谐振腔理论

光线能在腔内往返无限多次而不会从侧面横向逸出。
• 反之,若φ值不是实数,由于有虚部,必然导致An、
Bn、Cn、Dn以及rn+1与θn+1的值都随n增大而增大。这
样一来,傍轴光线在腔内往返有限次后便可逸出腔外。
• 由上述分析可知,φ值为实数且不等于0或π时,
谐振腔为稳定腔。φ值有虚部时,谐振腔为非稳 腔。φ等于0或π时,谐振腔是临界腔。由φ的计 算公式(2.2.4)不难得出上述结论的数学描述:
I1 I 0r1r2e
因此:
2a
I 0e
2
(2.2.12)
(2.2.13)
1 当r11,r2 1时有: a 2 1 r1 1 r2
1 a ln r1r2 2
2. 腔内光子平均寿命 R
I (t ) I 0e
t R
N (t )hv
D sin n sinn 1
B sin n
n次往返后的光 线坐标有
1 arccos A D 2
(2.2.4)
rn1 An r1 Bn1
n1 Cn r1 Dn1
(2.2.2)
2 .2.2 光学谐振腔的 稳定性条件
• 如果光线在共轴球面谐振腔内能够往返任意次而
(2.2.1)
• 如果光线在球面谐振腔内往返n次,则它的光学变 换短阵就应该是往返矩阵T的n次方,按照矩阵理 论 • n次往返矩阵
An Tn Cn
Bn Dn
(2.2.3)
1 A sin n sinn 1 C sin n sin
1 I0 i r d t ln 2 I1

3.1光学谐振腔的衍射理论——激光原理课件PPT

3.1光学谐振腔的衍射理论——激光原理课件PPT
模的电磁场理论(横截面内的场的分布,横模) 模的基本特征模 模在 的腔 频内 率往返(一纵次模经)受的相对功率损耗
每一个模的激光束的发散角
四 开放式光腔 • 激光器中使用的谐振腔通常是开放式的,即侧面
没有光学边界(理想化的处理方法),称为开放 式光学谐振腔,简称开腔。 开腔模的一般物理概念
• 为突出特征、简化分析,提出理想的开腔模型:两块反射镜 片沉浸在均匀的、无限的、各向同性的介质中,没有侧壁的 不连续性。
3.1.2 光学谐振腔的自再现模积分方程
1.决定腔模的形成:
(1)反射镜的有限大小会引起衍射损耗,而且在决定开腔 中激光振荡能量的空间分布方面,衍射将起主要作用
(2)非选择性损耗将使横截面内各点的场按同样的比例衰 减,对场的空间分布不会发生重要影响
(3)衍射主要发生在镜的边缘上,将对场的空间分布发生 重要影响;而且,只要镜的横向尺寸是有限的,这种影响 将永远存在。
的激光模式的良好近似 • 激活介质的作用主要是补充腔内电磁场在振荡过
程中的能量损耗,使之满足阈值条件;激活介质 对场的空间分布和振荡频率的影响是次要的,不 会使模式发生本质的变化
三 采用的理论
• 衍射光学理论(标量衍射理论) --深入了解模式特 性
模的概念——腔与模的一般
• 在激光技术术语中,通常将光学谐振腔内可能存在 的电磁波的本征态称为腔的模式。(每种本征态将 具有一定的振荡频率和空间分布)。
本章讨论:由两个球面镜构成的开放式光学谐振腔
我们更关心镜面上的场
激光输出直接与镜面上的场相。镜面上稳态场分 布的形成可以看成是光在两个镜面间往返传播的 结果。因此,两个镜面上的场必然是互相关联的: 一个镜面上的场可以视为另一个镜面上的场所产 生,反之亦然。

光学谐振腔理论

光学谐振腔理论
光学谐振腔理论
目录
• 光学谐振腔的基本概念 • 光学谐振腔的原理 • 光学谐振腔的设计与优化 • 光学谐振腔的实验研究 • 光学谐振腔的发展趋势与展望
01 光学谐振腔的基本概念
定义与特性
定义
光学谐振腔是由两个反射镜或一个反 射镜和一个半透镜构成的封闭空间, 用于限制光波的传播方向和模式。
特性
具有高反射率和低损耗的特性,能够 使光波在腔内多次反射并形成共振, 从而增强光波的强度和相干性。
光的衍射是指光波在传播过程中遇到 障碍物时,光波发生弯曲绕过障碍物 的现象。
光学谐振腔的共振条件
光学谐振腔是一种具有特定边界条件的封闭空间,光波在其中传播时会形成共振 现象。
光学谐振腔的共振条件是光波在腔内传播的相位差为2π的整数倍,即光波在腔内来 回反射的相位相同。
光学谐振腔的品质因数
品质因数(Q值)是衡量光学谐振腔性能的重要参数,表示 光波在腔内振荡的次数与能量损耗的比值。
振动稳定性分析
分析谐振腔在振动情况下的稳定性,确保其性能不受 振动影响。
老化稳定性分析
评估光学谐振腔在使用过程中的性能变化,确保其长 期稳定性。
04 光学谐振腔的实验研究
实验设备与环境
高精度光学元件
如反射镜、透镜、分束器等,用于构建光学谐振腔。
激光器
作为光源,提供单色光束。
光谱仪和探测器
用于测量光束的波长和强度。
实验得到的共振光谱与理论预测相符, 验证了理论模型的正确性。
品质因子
通过实验测量了光学谐振腔的品质因 子,与理论计算值进行比较。
腔损耗
实验分析了光学谐振腔的腔损耗,包 括反射镜的反射率、透镜的透射率等 因素。
稳定性分析
实验研究了光学谐振腔在不同环境条 件下的稳定性,如温度、振动等。

第二章光学谐振腔

第二章光学谐振腔

实际情况下,谐振腔的截面是受腔中的其他光阑限制的, 67页的图2-2-5给出了孔阑传输线的自再现模的形成
2009
湖北工大理学院
23
激光模式的测量方法
横模的测量方法:在光路中放置一个光屏;拍照;
小孔或刀口扫描方法获得激光束的强度分布,确定激 光横模的分布形状
纵模的测量方法:法卜里-珀洛F-P扫描干涉仪
1.5803106
q 1.5 10 9 Hz 5 310 8 Hz
2009
湖北工大理学院
28
例:相邻纵模的波长差异
已知:He-Ne激光器谐振腔长50 [cm],若模式m的波长 为 632.8 [nm];计算:纵模 m+1 的波长;
解答: 纵模的频率间隔为:
由:m = 0.6328000*10-6 [m] 可以得到:
2L/ 2L
2 • 2L q • 2
光腔中的驻波
驻波条件(光波波长和平行平面腔腔长):
L
q

2
q•
q
2
谐振频率(频率和平行平面腔腔长):
q
q•
C
2L
2009
湖北工大理学院
9
纵模-纵向的稳定场分布
激光的纵模(轴模):由整数q所表征的腔内纵向稳定场分布 整数q称为纵模的序数,驻波系统在腔的轴线上零场强度的数目
3
稳定腔和非稳定腔
看在腔内是否存在稳定振荡的高斯光束
2009
湖北工大理学院
4
R1+R2=L
双凹球面镜腔:由两 块相距为L,曲率半 径分别为R1和R2的凹 球面反射镜构成
R1=R2=L
由两块相距09
由两个以上的 反射镜构成 平凹腔和凹凸 与双凸腔图22-1书中58页

新激光ppt课件第二章 光学谐振腔理论02-精选文档32页

新激光ppt课件第二章 光学谐振腔理论02-精选文档32页
u(P)4 iku '(P )eik (1co )d s's
图3-1 惠更斯-菲涅耳原理
式中 源点
为源点 P'与观察点
P'处的波面法线 n与
P之间的距离; 为
P'P 的夹角;k2/
为光波矢的大小,为光波长; ds'为源点 P'
处的面元。
二、衍射积分公式在谐振腔中的应用
(3)等相位面的分布 共焦腔行波场相位分布决定于
m(x n ,y,z)k[fz2 z((x f2 2 y z2 2))](m n 1 ) 4 (arz fc)tg
与腔的轴线相交于z0点的等相位面的方程为
φ (x,y,z)= φ (0,0,z)
zz0
x2 y2 2R(z0)
迭代法
所谓迭代法,就是利用迭代公式
uj1(x,y) Kju(x',y')d's
M'
直接进行数值计算。 首先,假设在某一镜面上存在一个初始场分布u1,将它代 人上式,计算在腔内经第一次渡越而在第二个镜面上生成 的场u2,然后再用所得到的场代入,计算在腔内经第二次 渡越而在第一镜上生成的场u3。如此反复运算,在对称 开腔的情况下,当j足够大时,数值计算得出的uj uj+1uj+2满 足
m nar1 m g n k L (m n 1 ) 2
为单程附加相移Δ φ mn
谐振频率: νmnq2cL[q1 2(mn1)]
讨论 共焦腔模在频率上是高度简并的
频率间隔
同横邻纵
qm(n q1)mnq2cL
同纵邻横
m(m1)nqm
uj1(x,y)iL uj(x',y')eikd's M'

光学谐振腔理论PPT课件

光学谐振腔理论PPT课件

应用范围:推导出谐振腔的稳定性条件
优 点:处理问题简明、规范,易于用计算机求解
常用的近似研究方法
波动光学分析方法 出发点:波动光学的菲涅耳—基尔霍夫衍射积分理论
建立一个描述光学谐振腔模式特性的本征积分方程 应用范围:求任意光腔的模式,得到场的振幅、相位分布,谐振频率以
及衍射损耗等腔模特性 优 点:是一种比较普遍和严格的理论
纵模
能在腔内形成稳定振荡的光波长为
λ0q

2L' q
——腔的谐振波长
能在腔内形成稳定振荡 的光频率为
q

q
c 2L'
——腔的谐振频率
将整数q所表征的腔内纵向场分布称为腔的纵模
纵模
q
2
L
q

2 L/ q
q

q
c 2L'
对于不同的q存在不同的谐振波长和谐振频率
纵模模谱图
q c
2)腔给定,模式确定
SUCCESS
THANK YOU
2019/7/11
纵模
纵模:腔内的纵向(沿腔轴方向)稳定场分布。
考察:平面波在平平腔内沿腔轴方向往返传播的情况
相长干涉条件可表示为
q
2
Δ 2π 2L' q 2π
λq
L
其中,λ0为光在真空中的波长; L'为腔的光学长度; q为正整数
νq2
νq1
νq
ν q 1
νq2

c : 纵模频带宽度
腔的相邻两个纵模的频率之差为:
q
q1
q

c 2 L'
q称为纵模间隔,与q无关。
实例

激光原理 第二章光学谐振腔理论

激光原理 第二章光学谐振腔理论

光学谐振腔一方面具有光学正反馈作用,另一方面 也存在各种损耗。损耗的大小是评价谐振腔质量 的一个重要指标,决定了激光振荡的阈值和激光的 输出能量。本节将分析无源开腔的损耗,并讨论表 征无源腔质量的品质因数Q值及线宽。
一、损耗及其描述 (1)几何偏折损耗: 光线在腔内往返传播时,可能从腔的侧面 偏折出去,我们称这种损耗为几何偏折损 耗。其大小首先取决于腔的类型和几何尺 寸。
概述
3.波动光学分析方法 从波动光学的菲涅耳-基尔霍夫衍射积分理论出发,可以建立 一个描述光学谐振腔模式特性的本征积分方程。 利用该方程原则上可以求得任意光腔的模式,从而得到场的 振幅、相位分布,谐振频率以及衍射损耗等腔模特性。 虽然数学上已严格证明了本征积分方程解的存在性,但只有在 腔镜几何尺寸趋于无穷大的情况下,该积分方程的解析求解 才是可能的。 对于腔镜几何尺寸有限的情况,迄今只对对称共焦腔求出了 解析解。 多数情况下,需要使用近似方法求数值解。虽然衍射积分方 程理论使用了标量场近似,也不涉及电磁波的偏振特性,但与 其他理论相比,仍可认为是一种比较普遍和严格的理论。
第一节 光学谐振腔的基本知识
本节主要讨论光学谐振腔的构成、分类、作用,以及 腔模的概念
光学谐振腔的构成和分类
根据结构、性能和机理等方面的不同,谐振腔有不同 的分类方式。
按能否忽略侧面边界,可将其分为

开腔、 闭腔 气体波导腔
第一节 光学谐振腔的基本知识
开腔而言: 1. 根据腔内傍轴光线几何逸出损耗的高低,又可分为 稳定腔、非稳腔及临界腔; 2. 按照腔镜的形状和结构,可分为球面腔和非球面腔; 3. 就腔内是否插入透镜之类的光学元件,或者是否考 虑腔镜以外的反射表面,可分为简单腔和复合腔; 4. 根据腔中辐射场的特点,可分为驻波腔和行波腔; 5. 从反馈机理的不同,可分为端面反馈腔和分布反馈 腔; 6. 根据构成谐振腔反射镜的个数,可分为两镜腔和多 镜腔等。

新激光ppt课件第二章 光学谐振腔理论

新激光ppt课件第二章 光学谐振腔理论

光线在腔内往返传播n次
式中
rn An C n n
Bn r1 Dn 1
二、共轴球面腔的稳定性条件
1.稳定腔条件
光线在腔内往
A n、B n、 C n、D n
对任意n有限
Φ 为实数
返多次不逸出
且φ ≠kπ
引人g参数则得稳定性条件
平平腔 N>>1
谐振条件: 以Δ Φ 表示均匀平面波在腔内往返
一周时的相位滞后,则
若腔内介质分段均匀 若腔内介质非均匀 谐振条件:
L
L
i
i i
L dL ( z )dz
0


L
2 L q q c q q 2 L
分立

腔的本征模式: 在平平腔中满足 q q c
一定类型的积分方程。 腔的具体结构 振荡模的特征
3.模的基本特征

电磁场分布(特别是在腔的横截面内的场分布); 谐振频率; 在腔内往返一次经受的相对功率损耗; 激光束的发散角
4.纵模和横模
腔内电磁场的空间分布
沿传播方向(腔轴方向)的分布
垂直于传播方向的横截面内的分布 (1)纵模

纵模 横模
(1)(2)两种损耗为选择损耗,因为不同模式的几何 损耗与衍射损耗各不相同。(3)(4)两种损耗称为非 选择损耗,在一般情况下它们对各个模式都一样。
2.平均单程损耗因子
I 0 I1 2I 0 1 I0 ln 2 I1
光在腔内单程渡越时光强的平均衰减百分数 指数单程损耗因子
β
3.总损耗


1.曲率半径R1>0,R2<0的腔能否成为稳定腔,如果能, 请求出其稳定性条件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 能
LL 0(1 )1( )1
R1 R2
LL
(1 )(1 )1
R1
R2
0(1 L)(1 L)
R1
R2
LR1R2 L R1
稳定性条件为: R1LR1R2
2.要制作一个腔长L=60cm的对称稳定腔,反射镜 的曲率半径取值范围如何?设稳定腔的一块反射镜的 曲率半径R1=4L,求另一面镜的曲率半径取值范围。
远场发散角 mn m2n10
附加相移
mn(m2n1)arc
z tan
zR
二、高斯光束的q参数 1.高斯光束的特征参数
ω0(或zR)的 大小及位置
ω(z)R(z)
2.q参数
00(x,
y,
z)
C00
(z)
ex22(yz)2
i[kzarctgz
e
zR
k(x2y2) 2R(z)
C00
ikx2y2[ 1 i

qm
Aqm Cqm
B D
由于是自再现模
qm
Aqm Cqm
B D
解得
1 DA 4(AD)2 1
i qm 2B
2B Ri02
R 2B DA
2
2B
4 (A D)2
z B(D A) 2(1 AD)
02
B
4(DA)2 2(1AD)
所以稳定性条件
(A D)2 4 0 即:-1 1 (A D) 1
2.8 高斯光束
一、高斯光束的基本性质
1.基模高斯光束
沿z轴方向传播的基模高斯光束为
0(0 x,y,z)C (0z)0 ex 22 (y z)2ei[k za
r c z tk g(x2y2)] zR 2R(z)
其中
(z) 0
1
(
z
2 0
)
2
0
1 ( z )2 zR
R(z) z[1 (02 )2 z[1 ( zR )2 ]
且是薄透镜 2 1
11i 11i q2 R2 2 2 R1 F 1 2
1 11 q2 q1 F
四、ABCD定律在谐振腔中的应用
用q参数的ABCD定律可以很方便地求出自再现模、
曲率半径、光斑尺寸、束腰位置、腰斑半径,并且
可以导出谐振腔的稳定性条件。

谐振腔的往返矩阵为
A C
B D
q参数开始时为qm,往返一次后为qm
2
作 业(第一次)
1.热平衡时,原子能级E2的数密度为n2,下能级E1的
数密度为n1,设g1=g2,求:(1)当原子跃迁时相应频率
为ν=3000MHz,T=300K时,n2/n1=? (2)若原子跃迁时发
光波长λ=1μ, n2/n1=0.1时,温度T=?
解:(1)
nm / gm
(EmEn)
e kT
2.高阶高斯光束
方形镜稳定腔中高阶
高斯光束是厄米—高
斯光束;圆形镜中是
拉盖尔—高斯光束.
(1).厄米—高斯光束
m (x ,n y ,z ) C ( m z )H n m [( 2 z )x ] H n [( 2 z )y ] e x 2 2 (y z ) 2 e i[k ( z m n 1 )arz z R c k t ( 2 x R 2 a (z y ) 2 n )]
2.已知氢原子第一激发态(E2)与基态(E1)之间能 量差为1.64×10-18J,设火焰(T=2700K)中含有
1020个氢原子.原子按玻尔兹曼分布,且4g1=g2.求:(1) 能级E2上的原子数n2=?(2)设火焰中每秒发射的光 子数为108n2,求光功率为多少瓦?
解:(1)n n 1 2 g g 2 1 e h k T n n 1 2 4 ex 1 .3 p 1 .6 1 8 [ 2 1 4 0 3 1 2 0 8] 7 3 .1 0 1 1 0 1

n1n2 1020
可求出 n2 31
(2)功率= 1 8 3 0 1 .1 6 1 4 1 0 8 5 .0 1 8 9 W 0 4
作 业(第二次)
1.(1)一质地均匀的材料对光的吸收为 0.01mm-1、光通过10cm长的该材料后,出射光强 为入射光强的百分之几?(2)一光束通过长度为 1m的均匀激活工作物质,如果出射光强为入射光 强的2倍,求该物质的增益系数。
解:
(a) (b)
R1 R2 R
0(1L)1 (L)1 R3c0m RR
0 ( 1 R L 1 ) 1 ( R L 2 ) 1 0 4 3 ( 1 R L 2 ) 1 R 2 L 或 R 2 3 L
作 业 (第五次)
1.考虑一用于氩离子激光器的稳定球面腔,波长
λ=0.5145μm,腔长L=1m,腔镜曲率半径R1=1.5m, R2=4m.试计算光腰尺寸和位置及两镜面上的光斑尺寸. 解:(1)束腰半径
r2
2
R1 θ1
r1
P1
r2
θ2 R2
P2
R2
AR1 CR1
B D
球面波的ABCD规律
2.q参数的ABCD定律
q2
Aq1 B Cq1 D
(1).高斯光束在自由空间的传播规律
1
1
q(z) z[1(zzR)2]i02(1zzR)2
q(z)zi02 q0z
(2).高斯光束经过薄透镜的变换规律
1 1 1 R2 R1 F
mn(r,)C(mz)n( 2(rz))mLm n(2r2(2z))e2r(2z)csionm ms
i[kz(m2n1)arctzan k2r ]
e
zR 2R(z)
相位因子
振幅因子
拉盖尔-高斯光束的横向场分布由振幅因子决定.沿半径
方向m(n z)m2n1(z)
[1 ( .061 06)22(254.9112)]1 42.73m4m
1.试利用往返矩阵证明对称共焦腔为稳定 腔,即任意傍轴光线在其中可以往返无 限多次,而且两次往返即自行闭合。
证明:
2.试求平凹、双凹、凹凸共轴球面镜 腔的稳定性条件。
解:
3.今有一平面镜和一R=1m的凹面镜,问: 应如何构成一平凹稳定腔以获得最小 的基模远场角
nn / gn
则有: n2eh kT ex 6 p .6[ 3 1 3 0 43 190 ]1
(2) n 1
1.3 8 1 2 0 3300
n n 1 2 e h k T e x 1 .3 6 .6 p 1 8 1 2 3 [ 0 3 3 1 0 4 3 1 1 6 8 0 T 0 ] 0 .1 T 6 .2 1 6 3 K 0
2.欲设计一对称光学谐振腔,波长λ=10.6μm, 两反射镜间距L=2m,如选择凹面镜曲率半径R=L, 试求镜面上的光斑尺寸。若保持L不变,选择R>>L, 并使镜面上的光斑尺寸为0.3cm,问此时镜的曲率半 径和腔中心光斑尺寸多大?
解:(1)镜面光斑尺寸(此时可把它看作对称共焦腔)
s1s2 L1.6 0 1 6 022.59m 7m 7
z
z
zR
2 0
高斯光束的 瑞利长度
瑞利长度
zR
2 0
它表示从束腰到光斑半径增加到腰斑半径的 2 倍处的 位置.在 z zR 范围内,高斯光束可近似为平行,所以 应用中常把 2zR 叫做高斯光束的准直距离.
高斯光束性质 高斯光束既不是平面波,也不是球面波,但在其
传输轴线附近可近似看作是一种非均匀球面波。传 播中曲率中心和曲率半径不断改变, 其振幅和强度 在横截面内始终保持高斯分布特性,且其等相位面始 终保持为球面.
解:
(1)
I(z)I(0)eA z I(z)e0.01 10 010.368
I(0)
e
(2)
I(z) I(0 )e G zI(z) e G 1 2 G l2 n 0 .6m 9 13 I(0 )
2.设氖原子静止时发出0.6328μm红光的中心频率 为4.74×1014Hz,室温下氖原子的平均速率设为 560m/s。求此时接收器接收频率与中心频率相差多少?
e
2 R(z)
2(z)]ei(kzarctgzzR
)

(z)
11
q(z) R(z) i2(z)
参数q(z)相当于球面波的曲率半径R叫 做高斯光束的复曲率半径,简称q参数.
一个q参数包含了ω(z)和R(z),它可以确定整个高斯光
束的结构,是表征高斯光束的特征参数.
三、q参数的变换规律 1.普通球面波R的变换规律
解:
0(1 c)0(135 16 80 ) 0(11.86 1 6 6 0 7 )0 1.86 1 6 6 0 7 4.7 4 110 4 8.84 18 8H 0 z
作 业 (第三次)
红宝石激光器是一个三能级系统,设Cr3+的 N=1019/cm3,τ21=3×10-3s,今以波长λ=0.5100μm 的光泵激励。试估算单位体积的阈值抽运功率。 解:
厄米-高斯光束的横向场分布由高斯函数与厄米多
项式的乘积决定.沿x方向有m条节线,沿y方向有n条节
线; 光斑半径
m(z) 2m1(z) n(z) 2n1(z)
远场发散角 m 2m 10
n 2n 10
沿传输轴线相对于几何相移的附加相位超前为
m
n(mn1)arct
z an zR
(2).拉盖尔--高斯光束
z2
Lz1
161m 77
(3)两镜面上的光斑尺寸分别为:
s 1L [L (R 1 R 1 L 2 ( )R R 2 1 ( L R ) 2 L )]1 40 .51 1 4 60 [0 2 5 ..5 2 4 .3 5 5 ]1 4 0 .53m 2m 59
s 2L [L (R 2 R L 2 2 ( )R R 1 1 ( L R )2 L )]1 40 .51 1 4 60 [1 5 3 4 0 6 ..5 5 ]1 4 0 .35m 5
相关文档
最新文档