函数与函数的零点知识点总结

合集下载

函数与函数的零点知识点总结

函数与函数的零点知识点总结

函数与函数的零点知识点总结函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数一般用f(x)或者y来表示,其中x称为自变量,y称为因变量。

函数的定义域是自变量可能取值的集合,值域是函数可能取值的集合。

零点,也称为函数的根或者零,是指函数在一些特定的自变量值下,对应的函数值为0的情况。

即f(x)=0时的x值。

零点是函数图像与x轴的交点。

知识点一:线性函数的零点线性函数的一般形式为y = kx + b,其中k和b为常数。

线性函数的零点可以通过给定y=0来求解方程kx + b = 0,解方程可得x的值,即为线性函数的零点。

知识点二:二次函数的零点二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数且a ≠ 0。

二次函数的零点可以通过求解方程ax^2 + bx + c = 0来得到,解方程的方法一般有因式分解、配方法和求根公式等。

知识点三:多项式函数的零点多项式函数是由一系列单项式相加或相减而得到的函数。

多项式函数的零点是使得函数值等于0的自变量值。

求多项式函数的零点可以通过因式分解,然后将每个因子设置为0,解出自变量的值。

知识点四:无理函数的零点无理函数是指具有无理指数或无理根的函数,常见的无理函数有开方函数、分式函数等。

求无理函数的零点一般通过化简为二次方程或者其他方程,然后求解方程得到。

知识点五:幂函数的零点幂函数是指以幂指数函数为自变量的函数,形如y=x^a,其中a为常数。

幂函数的零点可以通过将幂指数函数设置为0来求解。

当a为偶数时,幂函数的零点只有一个,即x=0;当a为奇数时,幂函数的零点有两个,即x=0和x=-0。

知识点六:三角函数的零点三角函数是一类基本的数学函数,包括正弦函数、余弦函数、正切函数等。

三角函数的零点是指函数值等于0的自变量的值。

求三角函数的零点一般通过观察三角函数图像的周期性,找到函数值为0的自变量区间。

综上所述,函数与函数的零点是高中数学中的重要内容。

一次函数、二次函数、函数的零点

一次函数、二次函数、函数的零点

一次函数、二次函数、函数的零点(一)基本知识回顾及应用举例1. 一次函数.当时,叫做正比例函数,其图象是直线.当时,直线上升,函数为增函数;当时,直线下降,函数为减函数2. 二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式3. 二次函数的图象是抛物线.当时,抛物线开口向上;当时,抛物线开口向下.抛物线的顶点坐标为,对称轴方程为.抛物线与轴的交点的横坐标是方程的根,它在轴上截得的线段的长为=.4. 二次方程实根的分布情况,常常根据二次函数的图象与轴的交点的位置来确定.当二次方程在区间内只有一个实根时,有,或;有两个不等实根时,有;在两个区间各有一个实根即时,,.5. 二次函数与一元二次不等式有紧密的联系.图1 图2 图36. 函数零点的概念:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x ∈D)的零点。

函数零点的意义:函数y=f(x)的零点就是方程f(x)=0的实数根,亦即函数y=f(x)的图象与x 轴交点的横坐标。

即方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点。

例:问:二次函数f(x)=ax2+bx+c(a≠0)在什么条件下有两个零点?一个零点?没有零点?7. 例:观察下面函数f(x)=0的图象(如图4)。

图4①在区间[a,b]上______(有/无)零点;f(a)·f(b)_____0(<或>=。

②在区间[b,c]上______(有/无)零点;f(b)·f(c)_____0(<或>=。

③在区间[c,d]上______(有/无)零点;f(c)·f(d)_____0(<或>=。

如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =.(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.422510152025oy=cosxy=lgxyx参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1,)22-,15(,1)22+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。

函数的单调性与零点的求解

函数的单调性与零点的求解

函数的单调性与零点的求解函数的单调性和零点的求解在数学中是非常重要的概念和技巧。

单调性描述了一个函数在某个区间内的增减趋势,而求解函数的零点则是求出函数取零的x值。

本文将对函数的单调性和零点的求解进行详细的讨论。

一、函数的单调性函数的单调性指的是函数在定义域内增减的趋势。

一个函数可以是递增的,也可以是递减的,还可以是常数函数或者不单调的函数。

下面是一些常用的判断函数单调性的方法:1. 导数法:对于连续可导的函数,通过求导可以得到函数的导函数,即函数的变化率。

如果导函数在某个区间内恒正,那么函数在该区间内是递增的;如果导函数在某个区间内恒负,则函数在该区间内是递减的。

2. 增减表法:对于不连续的函数或者无法求导的函数,可以通过增减表来判断函数的单调性。

增减表是一个表格,将函数的定义域分成若干个区间,然后确定每个区间上函数的增减性。

在每个区间内选择一个x值,代入函数中求得函数值,然后观察函数值的增减情况,从而确定函数的单调性。

二、函数零点的求解函数的零点指的是函数取零的x值,即满足函数f(x) = 0的x值。

求解函数的零点在许多数学问题中都是非常重要的:1. 列方程法:对于一元函数,可以通过列方程来求解函数的零点。

将函数等于零的方程列出,然后通过解方程的方法来求得函数的零点。

例如,对于函数f(x) = x^2 - 4x + 3,我们可以将f(x) = 0化为方程x^2 -4x + 3 = 0,然后通过因式分解、配方法或者求根公式等方法解方程,得到函数的零点为x = 1和x = 3。

2. 图像法:对于一元函数,可以通过观察函数的图像来估计函数的零点。

将函数的图像绘制在坐标系中,然后通过观察图像与x轴的交点来估计函数的零点。

这种方法在函数比较简单、对称性较明显的情况下比较有效。

3. 数值解法:对于一些复杂的函数,或者求解精度要求较高的情况,可以使用数值解法来求解函数的零点。

常用的数值解法包括二分法、牛顿迭代法、割线法等。

导数与函数的零点

导数与函数的零点

仅有一个交点,即f(x)=2x-6+ln x在(0,+∞)上
有故且函仅 数f有(x有)共1有个2零个点零,
点.
高二数学名师 课程
3.已知函数f(x)=ex-2x+a有零点,则a的取值,2l范n 2围 2
是解:函数f(x)=e.x-2x+a有零点即ex-2x+a=0有根,即 a=2令x-gex(有x)=根2x, -ex,则a的范围即为函数g(x
只有一个零点,求实数 k 的值. [解析] 解法一:f(x)=kx-ln x-1,f′(x)=k-1x=kx-x 1(x>0,k>0), 当 x=1k时,f′(x)=0;当 0<x<1k时,f′(x)<0; 当 x>1k时,f′(x)>0.
∴f(x)在(0,1k)上单调递减,在(1k,+∞)上单调递增, ∴f(x)min=f(1k)=ln k, ∵f(x)有且只有一个零点, ∴ln k=0,∴k=1. 解法二:由题意知方程 kx-ln x-1=0 仅有一个实根, 由 kx-ln x-1=0 得 k=ln xx+1(x>0), 令 g(x)=ln xx+1(x>0),g′(x)=-xln2 x, 当 x=1 时,g′(x)=0;当 0<x<1 时,g′(x)>0;
当x∈(1,+∞)时,u′(x)>0, 所以u(x)在(1,+∞)上单调递增, 所以x=1时,u(x)取得极小值u(1)=-e, 又x→+∞时,u(x)→+∞; x<2时,u(x)<0,所以-e<m<0.
方法二:g(x)=f(x)-3ex-m=ex(x-2)-m, g′(x)=ex·(x-2)+ex=ex(x-1), 当x∈(-∞,1)时,g′(x)<0,所以g(x)在(-∞,1)上单调递减, 当x∈(1,+∞)时,g′(x)>0,所以g(x)在(1,+∞)上单调递增, 所以x=1时,g(x)取得极小值g(1)=-e-m, 又x→-∞时,g(x)→-m,

高考数学《函数零点的个数问题》知识点讲解与分析

高考数学《函数零点的个数问题》知识点讲解与分析

高考数学《函数零点的个数问题》知识点讲解与分析一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。

(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫ ⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

函数的零点

函数的零点

函数的零点零点这一块内容知识点比较少,但我相信本文引用的例题对于高一新生来说有较大的参考价值。

【零点】设有一函数f(x),我们把能够使f(x)=0的实数x_0称为函数f(x)的一个“零点”。

显然,函数的零点和它的图像与x轴交点横坐标对应(零点并非几何意义上的点,而是数字,但在不关心数值,只关心零点个数的时候,我们不必强调“横坐标”这件事,因为这并不影响“对应”一词的正确性)。

零点可以通过解方程f(x)=0得到,但零点个数不一定与对应方程的实根个数相同。

例如f(x)=(x-1)^2(x-2)(x^2+1),我们说对应方程有三个实根:x_1=x_2=1,x_3=2,但说函数的零点只有1,2两个。

不难理解,对于函数F(x)=f(x)-g(x),它的零点对应函数f(x)与g(x)图像的交点。

特别地,如果g(x)=c,从而是一个常数函数,那么F(x)的零点就对应函数f(x)的图像与直线y=c的交点。

【例】【2020-2021学年嘉兴市高一上期末统考】(多选)若定义在\bold{R} 上的函数 f(x) 满足 f(-x)+f(x)=0 ,当 x<0 时,f(x)=x^2+2ax+\dfrac 32a ( a \in \bold{R} ),则下列说法正确的是:A. 若方程 f(x)=ax+\dfrac a2 有两个不同的实数根,则 a<0 或4<a<8 ;B. 若方程 f(x)=ax+\dfrac a2 有两个不同的实数根,则 4<a<8 ;C. 若方程 f(x)=ax+\dfrac a2 有4个不同的实数根,则 a>8 ;D. 若方程 f(x)=ax+\dfrac a2 有4个不同的实数根,则 a>4 。

解:首先,由题意, f(x) 是奇函数,这样就可以根据已知的 x<0时的解析式写出函数在 \bold{R} 上的解析式:f(x)=\begin{cases} -x^2+2ax-\dfrac 32a& (x>0)\\ 0& (x=0)\\x^2+2ax+\dfrac 32a& (x<0) \end{cases}根据选项,设 g(x)=ax+\dfrac a2 。

高一数学必修一函数知识点总结

高一数学必修一函数知识点总结

二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

数学必修一函数的零点知识点

数学必修一函数的零点知识点

数学必修一函数的零点知识点
数学必修一中,函数的零点是一个重要的知识点。

以下是关于函数的零点的基本知识点:
1. 零点的定义:对于函数 f(x),如果存在某个实数 a,使得 f(a) = 0,那么 a 就是 f(x) 的零点。

换句话说,就是函数图像与 x 轴相交的点。

2. 方程的根:函数的零点也可以理解为方程 f(x) = 0 的根。

解方程 f(x) = 0 可以求得函数的零点。

3. 判断零点的方法:
- 通过图像:可以通过绘制函数的图像,找到函数与 x 轴相交的点来确定零点。

- 通过方程:可以将函数 f(x) 置为零,即 f(x) = 0,然后解方程来求得零点。

4. 零点的性质:
- 零点可能有重根:即某个 x 值对应的函数值可能为 0 的次数大于 1。

- 零点的奇偶性:如果 f(x) 有一个零点 a,则 f(-x) 也有一个零点 -a。

即零点是关于原点对称的。

5. 零点与图像的关系:函数的零点与函数图像的交点有着紧密的关系。

例如,函数上方和下方零点的个数的差别可以用来分析函数的增减性。

6. 零点的应用:零点在数学中应用广泛,可以用来求方程的根、函数的解析式等。

这些是关于函数的零点的一些基本知识点,希望对你有帮助!。

高一数学函数的零点存在定理及其应用分析总结

高一数学函数的零点存在定理及其应用分析总结
在判断函数单调性中的应用
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则f(x)在区间(a, b)内有零点。
单调性判断:根据零点存在定理,如果函数f(x)在区间[a, b]上有零点,则f(x)在区间(a, b)上至少有一个单调区间。
应用实例:例如,判断函数f(x)=x^3-x在区间[-1, 1]上的单调性,可以通过零点存在定理来判断。
结合实际应用:结合实际例子,理解定理的应用方法和技巧
注意定理的局限性:了解定理的局限性和适用条件
掌握定理的应用范围:了解定理的应用条件和适用范围
感谢您的观看
注意事项:在使用零点存在定理判断函数单调性时,需要注意函数的连续性和零点的存在性。
在研究函数图像中的应用
求解函数方程:通过零点存在定理,可以求解函数方程,得到函数的解析式
确定函数图像的零点:通过零点存在定理,可以确定函数图像的零点位置
判断函数图像的性质:通过零点存在定理,可以判断函数图像的连续性、单调性等性质
研究函数图像的极限:通过零点存在定理,可以研究函数图像的极限,得到函数的极限值
在解决实际问题中的应用
零点存在定理在解决实际问题中的应用广泛,如求解方程、优化问题等
零点存在定理在解决实际问题时,需要注意定理的适用条件和范围,避免错误应用
零点存在定理在解决实际问题时,需要结合实际问题的具体情况,灵活运用
零点存在定理的数学表达
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则函数f(x)在区间(a, b)内至少有一个零点。
零点:函数f(x)的零点是指使得f(x)=0的x值。
பைடு நூலகம்
连续函数:如果函数f(x)在区间[a, b]上每一点x都有定义,且对于任意的ε>0,存在δ>0,使得当|x-x0|<δ时,|f(x)-f(x0)|<ε,则称f(x)在区间[a, b]上是连续的。

函数的零点与方程的解讲义

函数的零点与方程的解讲义

新教材必修第一册4.5.1:函数的零点与方程的解课标解读:1. 函数零点的概念.(理解)2. 0)(=x f 有解与)(x f y =有零点的关系.(理解)3. 函数零点的判断.(理解)学习指导:在熟练掌握基本初等函数(幂函数、指数函数、对数函数等)的图像与性质的基础上,提炼方程0)(=x f 的解与函数)(x f y =的图像与x 轴交点的关系,进而理解并准确把握函数零点的概念,以及函数零点、方程的实数解、函数图像与x 轴交点三者之间的关系,并能从“形”(函数图像)与“数”(函数零点存在定理)两个角度分析解决函数零点有关问题.知识导图知识点1:函数的零点1.函数零点的概念对于一般函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点.即函数的零点就是使函数值为零的自变量的值.2.函数的零点与方程的解的关系函数)(x f y =的零点就是方程0)(=x f 的实数解,也就是函数)(x f y =的图像与x 轴的公共点的横坐标.所以方程0)(=x f 有实数解⇔函数)(x f y =有零点⇔函数)(x f y =的图像与x 轴有公共点.3.几种常见函数的零点(1)二次函数的零点一元二次方程)(002≠=++a c bx ax 的实数根也称为函数)(02≠++=a c bx ax y 的零点.当0>a 时,一元二次方程02=++c bx ax 的实数根、二次函数c bx ax y ++=2的零点之间的关系如下表所示: ac b 42-=∆0>∆ 0=∆ 0<∆ 02=++c bx ax 的实数根a acb b x 2422,1-±-=(其中21x x <)a b x x 221-== 方程无实数根 c bx ax y ++=2的图像c bx ax y ++=2的零点 aac b b x 2422,1-±-= a b x x 221-== 函数无零点 类似可得当0<a 的情形.(2)正比例函数)0(≠=k kx y 仅有一个零点0.(3)一次函数)0(≠+=k b kx y 仅有一个零点.kb -(4)反比例函数)0(≠=k x k y 没有零点.(5)指数函数)10(≠>=a a a y x 且没有零点.(6)对数函数)且(00log ≠>=a a x y a 仅有一个零点1.(7)幂函数,a x y =当0>a 时仅有一个零点0;当0≤a 时,没有零点.例1-1:观察如图所示的四个函数图像,指出在)0,(-∞上哪个函数有零点.例1-2:判断下列说法是否正确:(1)函数)102(1)(≤≤-=x x x f 的零点为1;(2)函数x x x f 2)(2-=的零点为(0,0),(2,0).例1-3:函数x x x f -=3)(的零点个数是( )A. 0B. 1C. 2D. 3例1-4:”“1<m 是“函数m x x x f ++=2)(有零点”的( ) A. 充分不必要条件 B.充要条件C.必要不充分条件D.既不充分也不必要条件知识点2:函数零点存在定理1.函数零点存在定理如果函数)(x f y =在区间],[b a 上的图像是一条连续不断的曲线,且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内至少有一个零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程0)(=x f 的解.2.函数零点存在定理的几何意义.在闭区间],[b a 上有连续不断的曲线)(x f y =,且曲线的起点))(,(a f a 与终点))(,(b f b 分别在x 轴的两侧,则连续曲线与x 轴至少有一个交点.3.函数零点的性质如果函数图像通过零点时穿过x 轴,则称这样的零点为变号零点.如图(1)所示,210,,x x x 都是变号零点;如果没有穿过x 轴,则称这样的零点为不变号零点,如图(2)所示,二次函数2x y =有一个不变号零点(或叫二重零点).对于任意函数)(x f y =,只要它的图像是连续不断的,则有:(1)当它的图像听过零点且穿过x 轴时,零点两侧的函数值异号;(2)相邻两个零点之间的所有函数值保持同号.例2-5:若函数)(x f y =在区间],[b a 上的图像是一条连续不断的曲线,则下列说法正确的是( )A.若0)()(>⋅b f a f ,则不存在实数),(b a c ∈,使得0)(=c fB.若0)()(<⋅b f a f ,则只存在实数),(b a c ∈,使得0)(=c fC.若0)()(>⋅b f a f ,则有可能在实数),(b a c ∈,使得0)(=c fD.若0)()(<⋅b f a f ,则有可能不存在实数),(b a c ∈,使得0)(=c f。

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

函数与方程【知识梳理】1、函数零点的定义(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。

(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。

因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。

函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。

②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。

【③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、函数零点的判定(1)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有()()0f a f b ⋅<,那么,函数)(x f y =在区间(),a b 内有零点,即存在),(0b a x ∈,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。

(2)函数)(x f y =零点个数(或方程0)(=x f 实数根的个数)确定方法① 代数法:函数)(x f y =的零点⇔0)(=x f 的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点。

(3)零点个数确定0∆>⇔)(x f y =有2个零点⇔0)(=x f 有两个不等实根; {0∆=⇔)(x f y =有1个零点⇔0)(=x f 有两个相等实根;0∆<⇔)(x f y =无零点⇔0)(=x f 无实根;对于二次函数在区间[],a b 上的零点个数,要结合图像进行确定.1、 二分法(1)二分法的定义:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤:① 确定区间[,]a b ,验证()()0f a f b ⋅<,给定精确度ε;②求区间(,)a b 的中点c ; ③计算()f c ;…(ⅰ)若()0f c =,则c 就是函数的零点;(ⅱ) 若()()0f a f c ⋅<,则令b c =(此时零点0(,)x a c ∈); (ⅲ) 若()()0f c f b ⋅<,则令a c =(此时零点0(,)x c b ∈);④判断是否达到精确度ε,即a b ε-<,则得到零点近似值为a (或b );否则重复②至④步.【经典例题】1.函数3()=2+2x f x x -在区间(0,1)内的零点个数是 ( )A 、0B 、1C 、2D 、3】2.函数 f (x )=2x +3x 的零点所在的一个区间是 ( )A 、(-2,-1)B 、(-1,0)C 、(0,1)D 、(1,2)3.若函数=)(x f x a x a -- (0a >且1a ≠)有两个零点,则实数a 的取值范围是 .4.设函数f (x )()x R ∈满足f (x -)=f (x ),f (x )=f (2-x ),且当[0,1]x ∈时,f (x )=x 3.又函数g (x )= |x cos ()x π|,则函数h (x )=g (x )-f (x )在13[,]22-上的零点个数为 ( ) A 、5 B 、6 C 、7 D 、8 5.函数2()cos f x x x =在区间[0,4]上的零点个数为 ( )A 、4B 、5C 、6D 、76.函数()cos f x x x =-在[0,)+∞内 ( ))A 、没有零点B 、有且仅有一个零点C 、有且仅有两个零点D 、有无穷多个零点7.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是 ( )A 、(-∞,-2]∪⎝⎛⎭⎫-1,32B 、(-∞,-2]∪⎝⎛⎭⎫-1,-34C 、⎝⎛⎭⎫-1,14∪⎝⎛⎭⎫14,+∞D 、⎝⎛⎭⎫-1,-34∪⎣⎡⎭⎫14,+∞ 8.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .9.求下列函数的零点:(1)32()22f x x x x =--+; (2)4()f x x x=-.>10.判断函数y =x 3-x -1在区间[1,]内有无零点,如果有,求出一个近似零点(精确度./【课堂练习】1、在下列区间中,函数()43xf x e x =+-的零点所在的区间为 ( )A 、1(,0)4-B 、1(0,)4C 、11(,)42D 、13(,)242、若0x 是方程lg 2x x +=的解,则0x 属于区间 ( ) A 、(0,1) B 、(1,1.25) C 、(1.25,1.75) D 、(1.75,2)3、下列函数中能用二分法求零点的是 ( )?4、函数f ()x =2x+3x 的零点所在的一个区间是 ( )A .(-2,-1)B 、(-1,0)C 、(0,1)D 、(1,2)5、设函数f ()x =4sin (2x+1)-x ,则在下列区间中函数f ()x 不存在零点的是 ( ) A 、[-4,-2] B 、[-2,0] C 、[0,2] D 、[2,4]6、函数()x f =x -cos x 在[0,∞+﹚内 ( )A 、没有零点B 、有且仅有一个零点C 、有且仅有两个零点D 、有无穷多个零点 7、若函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过,则()f x 可以是( )A 、()41f x x =-B 、2()(1)f x x =-C 、()1xf x e =- D 、1()ln()2f x x =- #8、下列函数零点不宜用二分法的是 ( )A 、3()8f x x =-B 、()ln 3f x x =+C 、2()2f x x =++D 、2()41f x x x =-++9、函数f(x)=log 2x+2x-1的零点必落在区间 ( )A 、⎪⎭⎫ ⎝⎛41,81B 、⎪⎭⎫⎝⎛21,41C 、⎪⎭⎫⎝⎛1,21D 、(1,2)10、01lg =-xx 有解的区域是 ( ) A 、(0,1] B 、(1,10]C 、(10,100]D 、(100,)+∞11、在下列区间中,函数()e 43x f x x =+-的零点所在的区间为 ( )A 、1(,0)4-B 、 1(0,)4C 、11(,)42D 、13(,)24!12、函数2()log f x x x π=+的零点所在区间为( )A 、1[0,]8B 、11[,]84C 、11[,]42D 、1[,1]213、设()833-+=x x f x,用二分法求方程()2,10833∈=-+x x x在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间( )A 、(1,1.25)B 、(1.25,1.5)C 、(1.5,2)D 、不能确定 14、设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是( ) A 、[]4,2-- B 、 []2,0- C 、[]0,2 D 、[]2,415、函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩, 零点个数为( )A 、3 B 、2 C 、1 D 、016、若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程32220x x x +--=的一个近似根(精确到)为 ( )A 、B 、1.3C 、D 、 ^17、方程223xx -+=的实数解的个数为 .18、已知函数22()(1)2f x x a x a =+-+-的一个零点比1大,一个零点比1小,求实数a 的取值范围。

完整版)高一数学必修一函数知识点总结

完整版)高一数学必修一函数知识点总结

完整版)高一数学必修一函数知识点总结二、函数的概念和相关概念函数是从一个非空数集A到另一个非空数集B的一个确定的对应关系f,使得集合A中的每个数x都有唯一的数f(x)与之对应。

我们把f:A→B称为从集合A到集合B的一个函数,记作y=f(x),其中x是自变量,A是函数的定义域,而与x对应的y值是函数值,其集合{f(x)| x∈A }是函数的值域。

需要注意的是,在求函数的定义域时,我们需要注意分式的分母不等于零,偶次方根的被开方数不小于零,对数式的真数必须大于零,指数、对数式的底必须大于零且不等于1,以及函数是由一些基本函数通过四则运算结合而成的。

同时,指数为零底不可以等于零,实际问题中的函数的定义域还要保证实际问题有意义。

相同函数的判断方法有两种:表达式相同(与表示自变量和函数值的字母无关)和定义域一致。

在考虑函数的值域时,我们可以使用观察法、配方法或代换法。

函数图象是指在平面直角坐标系中,以函数y=f(x)。

(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C。

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。

我们可以使用描点法或图象变换法来画函数图象,其中常用的变换方法有平移变换、伸缩变换和对称变换。

区间是指数轴上的一段连续的区域,可以分为开区间、闭区间和半开半闭区间。

同时,还有无穷区间。

我们可以使用数轴来表示区间。

映射是指两个非空集合A和B之间的确定对应关系f,使得集合A中的每个元素x都有唯一的元素y与之对应。

我们把对应f:A→B称为从集合A到集合B的一个映射,记作“f (对应关系):A(原象)→B(象)”。

对于映射f:A→B来说,应该满足集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个。

3.分段函数分段函数是指在定义域的不同部分上有不同的解析表达式的函数。

函数的零点知识点总结

函数的零点知识点总结

函数的零点知识点总结一、函数零点的定义函数零点:对于函数f(x)f(x)f(x),如果存在某个实数ccc使得f(c)=0f(c) = 0f(c)=0,则称ccc为函数f(x)f(x)f(x)的零点。

二、函数零点与方程根的关系函数零点与方程的关系:函数f(x)f(x)f(x)的零点就是方程f(x)=0f(x) = 0f(x)=0的实数根。

方程的根与函数图像的关系:方程的根对应于函数图像与xxx轴的交点的横坐标。

三、函数零点的求法直接法:对于简单的函数或方程,可以直接通过代数运算求得零点。

图形法:通过绘制函数的图像,观察图像与xxx轴的交点来确定函数的零点。

数值法:对于复杂函数,可以利用数值方法(如二分法、牛顿法等)来近似求解函数的零点。

四、函数零点的性质零点存在性定理:如果函数f(x)f(x)f(x)在区间[a,b][a, b][a,b]上连续,且f(a)⋅f(b)<0f(a) \cdot f(b) < 0f(a)⋅f(b)<0,则函数f(x)f(x)f(x)在区间(a,b)(a, b)(a,b)内至少存在一个零点。

零点个数定理:根据函数的单调性、奇偶性、周期性等性质,可以判断函数零点的个数。

五、函数零点与函数图像的关系函数零点与函数图像的变化趋势:函数在零点处的取值由正变负或由负变正,反映了函数图像在零点处的穿越xxx轴的情况。

六、应用实例通过求解函数的零点来解决实际问题,如求解物理、化学等领域中的方程或不等式。

综上所述,函数的零点知识点涉及定义、与方程根的关系、求法、性质以及与函数图像的关系等多个方面。

掌握这些知识点有助于深入理解函数的性质和行为,并应用于实际问题的求解中。

函数的最值与零点

函数的最值与零点

函数的最值与零点函数是数学中的一个重要概念,它描述了两个变量之间的关系。

在函数中,我们经常涉及到两个重要的概念:最值和零点。

最值指的是函数的取值范围中的最大值或最小值,而零点则是函数的取值为零的点。

本文将从理论和实践两个方面探讨函数的最值与零点。

一、函数的最值函数的最值是指在特定的区间内,函数取值的上界或下界。

通过求解函数在该区间内的一阶导数和二阶导数,我们可以找到函数的最值。

在数学中,我们通常将函数的最值分为两种情况:一是函数在闭区间内的最值,二是函数在开区间内的最值。

1. 函数在闭区间内的最值闭区间指的是一个区间,包含了两个端点。

在这种情况下,我们只需要将函数的导数等于零的点和区间的两个端点进行比较,即可确定函数在该闭区间内的最值。

举个例子,考虑函数f(x) = x^2 - 2x + 1在闭区间[0, 2]上的最值。

首先,我们计算出函数的导数f'(x) = 2x - 2,然后令其等于零,解得x = 1。

接下来,我们计算出函数在区间的两个端点x = 0和x = 2处的取值,分别为f(0) = 1和f(2) = 1。

比较这三个点的函数值,可以得出函数在闭区间[0,2]上的最小值为1,即f(1) = 0。

2. 函数在开区间内的最值开区间指的是一个区间,不包含端点。

在这种情况下,我们需要将函数的导数等于零的点和开区间的端点进行比较,以确定函数在该开区间内的最值。

举个例子,考虑函数g(x) = x^2 - 2x + 1在开区间(0, 2)上的最值。

同样地,我们首先计算出函数的导数g'(x) = 2x - 2,然后令其等于零,得到x = 1。

接下来,我们计算出函数在区间的两个端点x = 0和x = 2处的取值,分别为g(0) = 1和g(2) = 1。

由于这两个端点不在开区间内,我们只需要比较g(1)与g(0)、g(1)与g(2)这两对函数值的大小,即可得出函数在开区间(0, 2)上的最小值为0,即g(1) = 0。

导数与函数的零点问题考点与题型归纳

导数与函数的零点问题考点与题型归纳

导数与函数的零点问题考点与题型归纳且f(1)=0,所以当x≥1时,f(x)≥XXX成立。

2)解:由题可知,x--f(x)=x3-2ex2+tx,即f(x)=x--x3+2ex2-tx。

设g(x)=f'(x)=1-2x+2ex-t,求g(x)的零点。

当x1时,g(x)>0.所以f(x)在[0,1)上是单调减函数,在(1,+∞)上是单调增函数。

又因为f(0)=0,当x→+∞时,f(x)→+∞,所以方程x--f(x)=x3-2ex2+tx的根有且只有一个。

给定函数$f(x)=e^x-ax^2$,其中$a>0$。

1) 当$a=1$时,证明对于$x\geq 0$,有$f(x)\geq 1$。

证明:当$a=1$时,$f(x)\geq 1$等价于$(x^2+1)e^{-x}-1\leq 0$。

设$g(x)=(x^2+1)e^{-x}-1$,则$g'(x)=-e^{-x}(x^2-2x+1)=-e^{-x}(x-1)^2$。

当$x\neq 1$时,$g'(x)<0$,因此$g(x)$在$(0,1)$上单调递增,在$(1,+\infty)$上单调递减。

而$g(0)=0$,因此对于$x\geq 0$,有$g(x)\leq 0$,即$f(x)\geq 1$。

2) 若$f(x)$在$(0,+\infty)$只有一个零点,求$a$。

设$h(x)=1-ax^2e^{-x}$。

由于$f(x)$在$(0,+\infty)$只有一个零点,因此$h(x)$在$(0,+\infty)$只有一个零点。

i) 当$a\leq \frac{1}{e}$时,$h(x)>0$,因此$h(x)$没有零点。

ii) 当$a>\frac{1}{e}$时,$h'(x)=a(x-2)e^{-x}$。

当$x\in(0,2)$时,$h'(x)0$。

因此$h(x)$在$(0,2)$上单调递减,在$(2,+\infty)$上单调递增。

人教版高中数学必修一第三章知识点总结

人教版高中数学必修一第三章知识点总结

第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数(0)y kx k =≠仅有一个零点。

②反比例函数(0)k y k x=≠没有零点。

③一次函数(0)y kx b k =+≠仅有一个零点。

④二次函数)0(2≠++=a c bx ax y . (1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象与x 轴无交点,二次函数无零点. ⑤指数函数(0,1)x y a a a =>≠且没有零点。

⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1.⑦幂函数y x α=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。

5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另个函数图像的交点个数就是函数()f x 零点的个数。

函数的零点知识点总结

函数的零点知识点总结

函数的零点知识点总结一、函数的定义与性质1.1 函数的定义在数学中,函数是一种将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则或方法。

形式上,函数可以表示为f: X → Y,其中 X 是自变量的集合,Y 是因变量的集合,f 是一个特定的规则或方法。

1.2 函数的性质(1)定义域和值域:对于函数f: X → Y,定义域是指所有可能的自变量的取值集合,而值域是指所有可能的因变量的取值集合。

(2)单调性:函数在其定义域上的单调性描述了函数的增减规律。

一个函数可能是增函数、减函数或者不变函数。

(3)奇偶性:对于函数 f(x),如果 f(-x) = f(x),则称该函数为偶函数;如果 f(-x) = -f(x),则称该函数为奇函数。

(4)周期性:如果存在一个正数 T,使得对于任意的 x,有 f(x+T)=f(x),则称函数具有周期性,T 称为该函数的周期。

(5)连续性:如果一个函数在某个区间上具有连续性,即在该区间内任意两点 x 和 y 之间都存在一点 z,使得 f(z) 介于 f(x) 和 f(y) 之间,那么该函数在这个区间上是连续的。

(6)可导性:如果一个函数在某一点处具有导数,那么称该函数在该点可导。

二、零点的概念与方法2.1 零点的定义函数的零点是指使得函数取值为零的自变量。

形式上,如果 f(a) = 0,那么 a 就是函数 f 的一个零点。

2.2 求解零点的方法对于一般的函数,其零点通常需要通过特定的方法来求解,以下是一些常用的方法:(1)代数法:对于一些简单的函数,可以通过代数运算将函数转化成方程,然后直接求解方程来得到零点。

(2)图像法:通过绘制函数的图像,可以直观地看出函数的零点。

(3)数值法:对于复杂的函数,可以通过数值计算的方法来逼近函数的零点,如二分法、牛顿迭代法等。

(4)分析法:对于一些特殊函数,可以通过数学分析的方法来得到函数的解析解。

三、常见函数的零点3.1 一次函数的零点一次函数的一般形式为 f(x) = ax + b,其中 a 和 b 是实数且a ≠ 0。

函数与函数的零点知识点总结

函数与函数的零点知识点总结

函数及函数的零点有关概念函数的概念:设A 、B 是非空的数集;如果按照某个确定的对应关系f;使对于集合A 中的任意一个数x;在集合B 中都有唯一确定的数fx 和它对应;那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=fx;x ∈A .其中;x 叫做自变量;x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值;函数值的集合{fx| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 一函数三要素1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域.. 1.1求函数的定义域时从以下几个方面入手:1分式的分母不等于零; 2偶次方根的被开方数不小于零;3对数式的真数必须大于零;4指数、对数式的底必须大于零且不等于1. 5指数为零底不可以等于零.. 6如果函数是由一些基本函数通过四则运算结合而成的.那么;它的定义域是使各部分都有意义的x 的值组成的集合即交集.7三角函数正切函数tan y x =中()2x k k Z ππ≠+∈.8实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义;还要保证实际问题或几何问题有意义.9以上这些在题目中都没出现;则函数的定义域为R. 1.2复合函数定义域的求法:复合函数:如果y=fuu ∈M;u=gxx ∈A;则 y=fgx=Fxx ∈A 称为f 、g 的复合函数.. 1已知fx 的定义域是a;b;求fgx 的定义域;是指满足()a g x b ≤≤的x 的取值范围;2已知fgx 的定义域是a;b;求fx 的定义域;是指在[,]x a b ∈的条件下;求gx 的值域;3 已知fgx 的定义域是a;b;求fhx 的定义域;是指在[,]x a b ∈的条件下;求gx 的值域;gx 的值域就是hx 的值域;再由hx 的范围解出x 即可.. 2.求函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法3.值域 : 先考虑其定义域 3.1求函数值域的常用方法1、图像法;2、层层递进法;3、分离常数法;4、换元法;5、单调性法;6、判别式法;7、有界性;8、奇偶性法;9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域 二分段函数问题1:已知定义域求值域问题代入法 2:已知定义域求值域问题代入法 3.分段函数解析式的求法 要点2.函数的性质 一函数的单调性局部性质: 1.函数单调性的判定A 定义法:定义1:设函数y=fx 的定义域为I;如果对于定义域I 内的某个区间D 内的任意两个自变量x 1;x 2;当x 1<x 2时;都有fx 1<fx 2;那么就说fx 在区间D 上是增函数.区间D 称为y=fx 的单调增区间.. 等价定义:设[]2121,,x x b a x x ≠∈⋅那么:[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.定义2.设函数)(x f y =在某个区间内可导;如果0)(>'x f ;则)(x f 为增函数;如果0)(<'x f ;则)(x f 为减函数. B 图象法从图象上看升降2.函数单调区间与单调性的判定方法 A 定义法:错误! 任取x 1;x 2∈D;且x 1<x 2;错误! 作差fx 1-fx 2;错误! 变形通常是因式分解和配方;错误! 定号即判断差fx 1-fx 2的正负;错误! 下结论指出函数fx 在给定的区间D 上的单调性.B 图象法从图象上看升降C 复合函数的单调性复合函数fgx 的单调性与构成它的函数u=gx ;y=fu 的单调性密切相关;其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ;不能把单调性相同的区间和在一起写成其并集. D 导数法2函数的单调区间3利用函数单调性解不等式;比较大小;求参数的值或取值范围及最值问题1. 比较大小2.最值3.参数范围问题4.解不等式4抽象函数的单调性5.函数单调性的常用结论:1、若(),()+在这个区间上也为增减函f xg xf xg x均为某区间上的增减函数;则()()数2、若()-为减增函数f x为增减函数;则()f x3、若()f x与()g x的单调性f x与()=是增函数;若()y f g xg x的单调性相同;则[()]不同;则[()]=是减函数..y f g x4、奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反..5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象..二函数的奇偶性整体性质:紧扣函数奇偶性的定义和函数的定义域区间关于坐标原点对称、函数图象的对称性等对问题进行分析转化;特别注意“奇函数若在x=0处有定义;则一定有f0=0;偶函数一定有f|x|=fx”在解题中的应用.1函数奇偶性的判断1.1一般函数奇偶性的判断1.定义:偶函数一般地;对于函数fx的定义域内的任意一个x;都有f-x=fx;那么fx就叫做偶函数.奇函数一般地;对于函数fx的定义域内的任意一个x;都有f-x=—fx;那么fx就叫做奇函数.2.性质:奇函数的图象关于原点对称;偶函数的图象关于y轴对称;反过来;如果一个函数的图象关于原点对称;那么这个函数是奇函数;如果一个函数的图象关于y轴对称;那么这个函数是偶函数.3.利用定义判断函数奇偶性的步骤:错误!首先确定函数的定义域;并判断其是否关于原点对称;错误!确定f-x与fx的关系;错误!作出相应结论:若f-x = fx 或 f-x-fx = 0;则fx是偶函数;若f-x =-fx 或 f-x+fx = 0;则fx是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称;若不对称则函数是非奇非偶函数.若对称;1再根据定义判定; 2由 f-x±fx=0或fx/f-x=±1来判定; 3利用定理;或借助函数的图象判定 .1.2分段函数奇偶性的判断方法:图像法、定义法注意带人2利用奇偶性求函数的解析式注意带入3抽象函数奇偶性的证明4函数奇偶性的常用结论:1、如果一个奇函数在0x=处有定义;则(0)0=既是奇函y f xf=;如果一个函数()数又是偶函数;则()0f x=反之不成立2、两个奇偶函数之和差为奇偶函数;之积商为偶函数..3、一个奇函数与一个偶函数的积商为奇函数..4、两个函数()y f u =和()u g x =复合而成的函数;只要其中有一个是偶函数;那么该复合函数就是偶函数;当两个函数都是奇函数时;该复合函数是奇函数..5、若函数)(x f y =是偶函数;则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数;则)()(a x f a x f +-=+.6、若函数()f x 的定义域关于原点对称;则()f x 可以表示为11()[()()][()()]22f x f x f x f x f x =+-+--;该式的特点是:右端为一个奇函数和一个偶函数的和.. 三函数的周期性几个函数方程的周期约定a>0 1)()(a x f x f +=;则)(x f 的周期T=a ; 20)()(=+=a x f x f ;或)0)(()(1)(≠=+x f x f a x f ;或1()()f x a f x +=-(()0)f x ≠;或[]1(),(()0,1)2f x a f x +=+∈;则)(x f 的周期T=2a ; 3)0)(()(11)(≠+-=x f a x f x f ;则)(x f 的周期T=3a ;4)()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<;则)(x f 的周期T=4a ;5()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++;则)(x f 的周期T=5a ;6)()()(a x f x f a x f +-=+;则)(x f 的周期T=6a.要点3.函数的图象1.解决该类问题要熟练掌握基本初等函数的图象和性质;善于利用函数的性质来作图;要合理利用图象的三种变换.2.在研究函数性质特别是单调性、最值、零点时;要注意用好其与图象的关系、结合图象研究. 一图像变换问题 1 画法 A 、描点法:B 、图象变换法常用变换方法有三种:1平移变换;2伸缩变换;3对称变换; 二图像识别问题 要点4.二次函数一闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得;具体如下:1当a>0时;若[]q p a bx ,2∈-=;则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=;{}max max ()(),()f x f p f q =;{}min min ()(),()f x f p f q =. 2当a<0时;若[]q p a b x ,2∈-=;则{}min ()min (),()f x f p f q =;若[]q p abx ,2∉-=;则{}max ()max (),()f x f p f q =;{}min ()min (),()f x f p f q =. 二二次函数的移轴问题 1定区间动轴 2定轴动区间 3轴动区间动三一元二次方程的实根分布依据:若()()0f m f n <;则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(;则1方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;2方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;3方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .四.定区间上含参数的二次不等式恒成立的条件依据1在给定区间),(+∞-∞的子区间L 形如[]βα,;(]β,∞-;[)+∞,α不同上含参数的二次不等式(,)0f x t ≥t 为参数恒成立的充要条件是min (,)0()f x t x L ≥∉.2在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≤ t 为参数恒成立的充要条件是(,)0()man f x t x L ≤∉.30)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.五二次函数的奇偶性 要点5.基本初等函数 一、指数函数一指数与指数幂的运算1.根式的概念:一般地;如果a x n =;那么x 叫做a 的n 次方根;其中n >1;且n ∈N *.◆ 负数没有偶次方根;0的任何次方根都是0;记作00=n ..当n 是奇数时;a a n n =;当n 是偶数时;⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义;规定:)1,,,0(*>∈>=n N n m a a an m nm ;)1,,,0(11*>∈>==-n N n m a a aanmnm nm◆ 0的正分数指数幂等于0;0的负分数指数幂没有意义3.实数指数幂的运算性质1ra ·s r r a a += ),,0(R s r a ∈>; 2rs s r a a =)( ),,0(R s r a ∈>;3s r r a a ab =)(),,0(R s r a ∈>.二指数函数及其性质1、指数函数的概念:一般地;函数)1,0(≠>=a a a y x 且叫做指数函数;其中x 是自变量;函数的定义域为R .注意:指数函数的底数的取值范围;底数不能是负数、零和1. 2、指数函数的图象和性质注意:利用函数的单调性;结合图象还可以看出:1在a;b 上;)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; 2若0x ≠;则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; 3对于指数函数)1a 0a (a )x (f x ≠>=且;总有a )1(f =; 二、对数函数 一对数1.对数的概念:一般地;如果N a x =)1,0(≠>a a ;那么数x 叫做以.a 为底..N 的对数;记作:N x a log =a — 底数;N — 真数;N a log — 对数式 说明:错误! 注意底数的限制0>a ;且1≠a ; 错误! x N N a a x =⇔=log ;错误! 注意对数的书写格式. 两个重要对数:错误! 常用对数:以10为底的对数N lg ;错误! 自然对数:以无理数 71828.2=e 为底的对数的对数N ln .指数式与对数式的互化幂值 真数b a = N ⇔log a N = b底数指数 对数二对数的运算性质如果0>a ;且1≠a ;0>M ;0>N ;那么:错误! M a (log ·=)N M a log +N a log ;错误! =NM a log M a log -N a log ; 错误! n a M log n =M a log )(R n ∈.注意:换底公式a b b c c a log log log = 0>a ;且1≠a ;0>c ;且1≠c ;0>b .利用换底公式推导下面的结论 1b mn b a n a m log log =;2a b b a log 1log =. 二对数函数1、对数函数的概念:函数0(log >=a x y a ;且)1≠a 叫做对数函数;其中x 是自变量;函数的定义域是0;+∞.注意:错误! 对数函数的定义与指数函数类似;都是形式定义;注意辨别..如:x y 2log 2=;5log 5x y = 都不是对数函数;而只能称其为对数型函数. 错误! 对数函数对底数的限制:0(>a ;且)1≠a .2、对数函数的性质:函数图象都过定点1;0函数图象都过定点1;0三幂函数 1、幂函数定义:一般地;形如αx y =)(R a ∈的函数称为幂函数;其中α为常数.2、幂函数性质归纳.1所有的幂函数在0;+∞都有定义并且图象都过点1;1;20>α时;幂函数的图象通过原点;并且在区间),0[+∞上是增函数.特别地;当1>α时;幂函数的图象下凸;当10<<α时;幂函数的图象上凸;30<α时;幂函数的图象在区间),0(+∞上是减函数.在第一象限内;当x 从右边趋向原点时;图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于∞+时;图象在x 轴上方无限地逼近x 轴正半轴.要点6.函数模型的实际应用解决函数模型的实际应用题;首先应考虑该题考查的是何种函数;并要注意定义域;然后结合所给模型;列出函数关系式;最后结合其实际意义作出解答.明确下面的基本解题步骤是解题的必要基础:错误!→错误!→错误!→错误!要点7.函数零点 1.函数零点方程的根的确定问题;常见的类型有1零点或零点存在区间的确定;2零点个数的确定;3两函数图象交点的横坐标或有几个交点的确定;解决这类问题的常用方法有:解方程法、利用零点存在的判定或数形结合法;尤其是那些方程两端对应的函数类型不同的方程多以数形结合法求解..检验 收集数画散点选择函数求函数模用函数模型解释实际符合实际不符合实2.函数零点方程的根的应用问题;即已知函数零点的存在情况求参数的值或取值范围问题;解决该类问题关键是利用函数方程思想或数形结合思想;构建关于参数的方程或不等式求解..3.用二分法求函数零点近似值;用二分法求函数零点近似值的步骤1确定区间a;b;验证fa ·fb<0;给定精确度ε;2求区间a;b 的中点1x ;3计算f 1x ;①当f 1x =0;则1x 就是函数的零点;②若fa ·f 1x <0;则令b=1x 此时零点01(,)x a x ∈;③若f 1x ·fb<0;则令a=1x 此时零点01(,)x x b ∈..4判断是否达到其精确度ε;则得零点近似值;否则重复以上步骤..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及函数的零点有关概念函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。

1.1求函数的定义域时从以下几个方面入手:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。

(6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2x k k Z ππ≠+∈.(8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义.(9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法:复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。

(1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围;(2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域;(3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。

2).求函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法3).值域 : 先考虑其定义域 3.1求函数值域的常用方法1、图像法;2、层层递进法;3、分离常数法;4、换元法;5、单调性法;6、判别式法;7、有界性;8、奇偶性法;9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域 (二)分段函数问题1:已知定义域求值域问题(代入法) 2:已知定义域求值域问题(代入法) 3.分段函数解析式的求法 要点2.函数的性质(一)函数的单调性(局部性质):1).函数单调性的判定(A) 定义法:定义1:设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.区间D 称为y=f(x)的单调增区间。

等价定义:设[]2121,,x x b a x x ≠∈⋅那么:[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.定义2.设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. (B)图象法(从图象上看升降) 2.函数单调区间与单调性的判定方法 (A) 定义法:○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2);○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x 1)-f(x 2)的正负);○5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.(D) 导数法2)函数的单调区间3)利用函数单调性解不等式,比较大小,求参数的值或取值范围及最值问题1. (比较大小)2.(最值)3.(参数范围问题)4.(解不等式)4)抽象函数的单调性5).函数单调性的常用结论:1、若(),()+在这个区间上也为f xg xf xg x均为某区间上的增(减)函数,则()()增(减)函数2、若()-为减(增)函数f xf x为增(减)函数,则()3、若()f x与()g x的单调=是增函数;若()g x的单调性相同,则[()]f x与()y f g x性不同,则[()]y f g x=是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

(二)函数的奇偶性(整体性质):紧扣函数奇偶性的定义和函数的定义域区间关于坐标原点对称、函数图象的对称性等对问题进行分析转化,特别注意“奇函数若在x=0处有定义,则一定有f(0)=0,偶函数一定有f(|x|)=f(x)”在解题中的应用.1)函数奇偶性的判断1.1一般函数奇偶性的判断1.定义:偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.2.性质:奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.3.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .1.2分段函数奇偶性的判断方法:图像法、定义法(注意带人)2)利用奇偶性求函数的解析式(注意带入)3)抽象函数奇偶性的证明4)函数奇偶性的常用结论:1、如果一个奇函数在0x =处有定义,则(0)0f =,如果一个函数()y f x =既是奇函数又是偶函数,则()0f x =(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数()y f u =和()u g x =复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.6、若函数()f x 的定义域关于原点对称,则()f x 可以表示为11()[()()][()()]22f x f x f x f x f x =+-+--,该式的特点是:右端为一个奇函数和一个偶函数的和。

(三)函数的周期性几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2))()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 要点3.函数的图象1.解决该类问题要熟练掌握基本初等函数的图象和性质,善于利用函数的性质来作图,要合理利用图象的三种变换.2.在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究. (一)图像变换问题 (1) 画法 A 、描点法:B 、图象变换法常用变换方法有三种:1)平移变换;2)伸缩变换;3)对称变换; (二)图像识别问题 要点4.二次函数(一)闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.(二)二次函数的移轴问题1)定区间动轴 2)定轴动区间 3)轴动区间动(三)一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q pm ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨-<⎪⎩ . (四).定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≤ (t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.(五)二次函数的奇偶性 要点5.基本初等函数 一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. ◆负数没有偶次方根;0的任何次方根都是0,记作00=n 。

相关文档
最新文档