九年级数学上册第一章反比例函数 教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(此文档为word 格式,下载后您可任意编辑修改!)

教学内容:1.1反比例函数

教学目标:

1. 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.

2. 能根据实际问题中的条件确定反比例函数的关系式.

3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关

系,体

会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点. 教学重点:反比例函数的概念

教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。 教学方法:类比 启发

教学辅助:多媒体 投影片 教学过程:

一、 创设情景 探究问题

汽车从南京出发开往上海(全程约300km ),全程所用时间t ()求这个函数的解析式和n 的值。

(3)y 与x+1成反比例,当x =2时,y =-1,求函数解析式和自变量x 的取值范围。 (4) 已知y 与x-2成反比例,并且当x =3时,y =2.求x =1.5时y 的值. (5)如果是的反比例函数,是的反比例函数,那么是的( )

A .反比例函数

B .正比例函数

C .一次函数

D .反比例或正比例函数

三、练习:P21 1——4 四、小结

随着速度的变化,全程所用时间发生怎样的变化? 情境1: 当路程一定时,速度与时间成什么关系?(s =vt ) 当一个长方形面积一定时,长与宽成什么关系? [备注]

这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy =m (m 为一个定值),则x 与y 成反比例。

这一情境为后面学习反比例函数概念作铺垫。 情境2:

五、布置作业:另见练习卷

板书设计:

例1 例2 例2

解:解:解

练习练习

1.3反比例函数的应用(1)

教学目标:

1、经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建

模思想。

2、会综合运用反比例函数的解析式,函数的图像以及性质解决实际问题。

3、体验数形结合的思想。

教学重点、难点:运用反比例函数的解析式和图像表示问题情景中成反比例的量之间的关系,进而利用反比例函数的图像及性质解决问题。

教学方法:讲练法

教学辅助:投影片

教学过程:

一、忆一忆

1、什么是反比例函数?它的图像是什么?具有哪些性质?

2、小明家离学校3600米,他骑自行车的速度是x(米分)与时间y(分)之间的关

系式是

,若他每分钟骑450米,需分钟到达学校。

二、想一想

例1、设△ABC中BC的边长为x(cm) ,BC 边上的高AD为y(cm),△ABC的面积为常数。已知y关于x 的函数图像过点(3,4)。

(1)求y关于x的函数解析式和△ABC的面积。

(2)画出函数的图像,并利用图像,求当时y 的值。

小结:1、根据实际问题中变量之间的数量关系建立函数解析式。

2、根据给定的自变量的值或范围求函数的值或范围,可以应用函数的性质,也可以应用函数的图像;根据已知函数的值或范围求相应的自变量的值或范围,可以

应用函数的性质和图像,也可以把问题转化为解方程或不等式。

三、练一练

设每名工人一天能做某种型号的工艺品x 个。若某工艺厂每天要生产这种工艺品60个,则需工人y名。

(1)求y关于x的函数解析式。

(2)若一名工人每天能做的工艺品个数最少6个,最多8个,估计该工艺品厂每天需要做这种工艺品的工人多少人?

四、说一说:

请你说一说本节课自己的收获并对自己参与学习的程度做出简单的评价.

五、作业:

见作业本

板书设计:

例1

解:练习

教学反思:

本节课学生对增减性质掌握很好。学生对函数值的取值掌握很好。表达格式较好。

1.3反比例函数的应用(2)

教学目标:

1、经历分析实际问题中变量之间的关系建立反比例函数模型,进而解决实际问题的过程

2、体会数学与现实生活的紧密性,培养学生的情感、态度,增强应用意识,体会

数形结合的数学思想。

3、培养学生自由学习、运用代数方法解决实际问题的能力。

教学重难点:

重点是运用反比例函数的解析式和图像表示问题情景中成反比例的量之间的关系,进而利用反比例函数的图像及性质解决问题。

难点是例2中变量的反比例函数关系的确定建立在对实验数据进行有效的分析、整合的基础之上,过程较为复杂。

教学方法:启发法

教学辅助:投影片

教学过程:

一、创设情境、引入新课

例2、在温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积和气体对气缸壁所产生的压强。

(1)请根据表中的数据求出压强p(kpa)关于体积V(ml)函数解析式。

(2)当压力表读出的压强为72 kpa时,气缸内的气体压缩到多少ml?

分析:(1)对于表中的实验数据你将作怎样的分析、处理?

(2)能否用图像描述体积V与压强p的对应值?

(3)猜想压强p 与体积V之间的函数类别?

师生一起解答此题。并引导学生归纳此种数学建模的方法与步骤:

(1)由实验获得数据

(2)用描点法画出图像

(3)根据图像和数据判断或估计函数的类别

(4)用待定系数法求出函数解析式

(5)用实验数据验证

指出:由于测量数据不完全准确等原因,这样求得的反比例函数的解析式可能只是近似地刻画了两个变量之间的关系。

二、巩固练习

课本第20页第5题

三、说一说:

请你说一说本节课自己的收获

四、作业

板书设计:

例2

解:练习

教学反思:

本节课学生对建模思想不是掌握很好,有待于今后教学多给予渗透。

第一章反比例函数复习(复习课)

相关文档
最新文档