(易错题精选)初中数学相交线与平行线难题汇编及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(易错题精选)初中数学相交线与平行线难题汇编及答案

一、选择题

1.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )

A .35°

B .37.5°

C .45°

D .40° 【答案】B

【解析】

【分析】

根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.

【详解】

解:∵//AD BC ,30C ∠=︒

∴18030015ADC ∠=︒-︒=︒

∵:1:3ADB BDC ∠∠= ∴115037.513

ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒

故选:B .

【点睛】

本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.

2.如图,点D 在AC 上,点F 、G 分别在AC 、BC 的延长线上,CE 平分∠ACB 交BD 于点O ,且∠EOD+∠OBF =180°,∠F =∠G ,则图中与∠ECB 相等的角有( )

A .6个

B .5个

C .4个

D .3个

【答案】B

【解析】

【分析】 由对顶角关系可得∠EOD=∠COB ,则由∠COB+∠OBF=180°可知EC ∥BF ,再结合CE 是角平

分线即可判断.

【详解】

解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,

故选择B.

【点睛】

本题综合考查了平行线的判定及性质.

3.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()

A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补

C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等

【答案】D

【解析】

【分析】

【详解】

解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;

因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.

4.如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()

A.∠D=∠DCE B.∠D+∠ACD=180° C.∠1=∠2 D.∠3=∠4

【答案】C

【解析】

【分析】

根据平行线的判定方法逐项进行分析即可得.

【详解】

A.由∠D=∠DCE,根据内错角相等,两直线平行可得BD//AE,故不符合题意;

B. 由∠D +∠ACD =180°,根据同旁内角互补,两直线平行可得BD//AE ,故不符合题意;

C.由∠1=∠2可判定AB//CD ,不能得到BD//AE ,故符合题意;

D.由 ∠3=∠4,根据内错角相等,两直线平行可得BD//AE ,故不符合题意,

故选C.

【点睛】

本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.

5.如图,直线a ∥b ,直角三角开的直角顶点在直线b 上,一条直角边与直线a 所形成的∠1=55°,则另外一条直角边与直线b 所形成的∠2的度数为( )

A .25°

B .30°

C .35°

D .40°

【答案】C

【解析】

如图所示:

∵直线a ∥b ,

∴∠3=∠1=55°,

∵∠4=90°,∠2+∠3+∠4=180°,

∴∠2=180°-55°-90°=35°.

故选C .

6.如图,OC 平分AOB ∠,//CD OB .若3DC =,C 到OB 的距离是2.4,则ODC ∆的面积等于( )

A .3.6

B .4.8

C .1.8

D .7.2

【答案】A

【解析】

【分析】 由角平分线的定义可得出∠BOC=∠DOC ,由CD ∥OB ,得出∠BOC=∠DCO ,进而可证出OD=CD=3.再由角平分线的性质可知C 到OA 的距离是2.4,然后根据三角形的面积公式可求ODC ∆的面积.

【详解】

证明:∵OC 平分∠AOB ,

∴∠BOC=∠DOC .

∵CD ∥OB ,

∴∠BOC=∠DCO ,

∴∠DOC=∠DCO ,

∴OD=CD=3.

∵C 到OB 的距离是2.4,

∴C 到OA 的距离是2.4,

∴ODC ∆的面积=13 2.4=3.62

⨯⨯. 故选A .

【点睛】

本题考查了等腰三角形的判定、角平分线的定义、平行线的性质、以及角平分线的性质,利用角平分线的性质得出C 到OA 的距离是2.4是解题的关键.

7.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )

A .y =x+z

B .x+y ﹣z =90°

C .x+y+z =180°

D .y+z ﹣x =90°

【答案】B

【解析】

【分析】 过C 作CM ∥AB ,延长CD 交EF 于N ,根据三角形外角性质求出∠CNE =y ﹣z ,根据平行线性质得出∠1=x ,∠2=∠CNE ,代入求出即可.

【详解】

解:过C 作CM ∥AB ,延长CD 交EF 于N ,

则∠CDE =∠E+∠CNE ,

即∠CNE =y ﹣z

∵CM ∥AB ,AB ∥EF ,

∴CM ∥AB ∥EF ,

∴∠ABC =x =∠1,∠2=∠CNE ,

∵∠BCD =90°,

∴∠1+∠2=90°,

∴x+y ﹣z =90°.

故选:B .

相关文档
最新文档