高中数学归纳推理测试题(有答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学归纳推理测试题(有答案)
选修2-22.1.1第1课时归纳推理
一、选择题
1.关于归纳推理,下列说法正确的是()
A.归纳推理是一般到一般的推理
B.归纳推理是一般到个别的推理
C.归纳推理的结论一定是正确的
D.归纳推理的结论是或然性的
[答案] D
[解析] 归纳推理是由特殊到一般的推理,其结论的正确性不一定.故应选D.
2.下列推理是归纳推理的是()
A.A,B为定点,动点P满足|PA|+|PB|=2a|AB|,得P的轨迹为椭圆
B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式
C.由圆x2+y2=r2的面积r2,猜出椭圆x2a2+y2b2=1的面积S=ab
D.科学家利用鱼的沉浮原理制造潜艇
[答案] B
[解析] 由归纳推理的定义知B是归纳推理,故应选B. 3.数列{an}:2,5,11,20,x,47,…中的x等于()
A.28
B.32
C.33
D.27
[答案] B
[解析] 因为5-2=31,11-5=6=32,20-11=9=33,猜测x-20=34,47-x=35,推知x=32.故应选B.
4.在数列{an}中,a1=0,an+1=2an+2,则猜想an是() A.2n-2-12
B.2n-2
C.2n-1+1
D.2n+1-4
[答案] B
[解析] ∵a1=0=21-2,
a2=2a1+2=2=22-2,
a3=2a2+2=4+2=6=23-2,
a4=2a3+2=12+2=14=24-2,
猜想an=2n-2.
故应选B.
5.某人为了观看2019年奥运会,从2019年起,每年5月10日到银行存入a元定期储蓄,若年利率为p且保持不变,并约定每年到期存款均自动转为新的一年定期,到2019年
将所有的存款及利息全部取回,则可取回的钱的总数(元)为()
A.a(1+p)7
B.a(1+p)8
C.ap[(1+p)7-(1+p)]
D.ap[(1+p)8-(1+p)]
[答案] D
[解析] 到2019年5月10日存款及利息为a(1+p).
到2019年5月10日存款及利息为
a(1+p)(1+p)+a(1+p)=a[(1+p)2+(1+p)]
到2019年5月10日存款及利息为
a[(1+p)2+(1+p)](1+p)+a(1+p)
=a[(1+p)3+(1+p)2+(1+p)]
所以到2019年5月10日存款及利息为
a[(1+p)7+(1+p)6+…+(1+p)]
=a(1+p)[1-(1+p)7]1-(1+p)
=ap[(1+p)8-(1+p)].
故应选D.
6.已知数列{an}的前n项和Sn=n2an(n2),而a1=1,通过计算a2,a3,a4,猜想an等于()
A.2(n+1)2
B.2n(n+1)
C.22n-1
D.22n-1
[答案] B
[解析] 因为Sn=n2an,a1=1,
所以S2=4a2=a1+a2a2=13=232,
S3=9a3=a1+a2+a3a3=a1+a28=16=243,
S4=16a4=a1+a2+a3+a4
a4=a1+a2+a315=110=254.
所以猜想an=2n(n+1),故应选B.
7.n个连续自然数按规律排列下表:
根据规律,从2019到2019箭头的方向依次为()
A.
B.
C.
D.
[答案] C
[解析] 观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由234可知从2019到2019为,故应选C. 8.(2019山东文,10)观察(x2)=2x,(x4)=4x3,(cosx)=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=() A.f(x)
B.-f(x)
C.g(x)
D.-g(x)
[答案] D
[解析] 本题考查了推理证明及函数的奇偶性内容,由例子可看出偶函数求导后都变成了奇函数,
g(-x)=-g(x),选D,体现了对学生观察能力,概括归纳推理的能力的考查.
9.根据给出的数塔猜测1234569+7等于()
19+2=11
129+3=111
1239+4=1111
12349+5=11111
123459+6=111111
A.1111110
B.1111111
C.1111112
D.1111113
[答案] B
[解析] 根据规律应为7个1,故应选B.
10.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),
试求第七个三角形数是()
A.27
B.28
C.29
D.30
[答案] B
[解析] 观察归纳可知第n个三角形数共有点数:1+2+3+4+…+n=n(n+1)2个,第七个三角形数为7(7+1)2=
28.
二、填空题
11.观察下列由火柴杆拼成的一列图形中,第n个图形由n 个正方形组成:
通过观察可以发现:第4个图形中,火柴杆有________根;第n个图形中,火柴杆有________根.
[答案] 13,3n+1
[解析] 第一个图形有4根,第2个图形有7根,第3个图形有10根,第4个图形有13根……猜想第n个图形有3n +1根.
12.从1=12,2+3+4=32,3+4+5+6+7=52中,可得一般规律是__________________.
[答案] n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2 [解析] 第1式有1个数,第2式有3个数相加,第3式有