管式换热器热力计算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这只是个模板,你还要自己修改数据,其中有些公式显示不出来。不明白的问我。

一.设计任务和设计条件

某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。已知混和气体的流量为227301㎏/h,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口温度为39℃,试设计一台列管式换热器,完成该生产任务。

物性特征:

混和气体在35℃下的有关物性数据如下(来自生产中的实测值):

密度

定压比热容=3.297kj/kg℃

热导率=0.0279w/m

粘度

循环水在34℃下的物性数据:

密度=994.3㎏/m3

定压比热容=4.174kj/kg℃

热导率=0.624w/m℃

粘度

二.确定设计方案

1.选择换热器的类型

两流体温的变化情况:热流体进口温度110℃出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2.管程安排

从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下贱,所以从总体考虑,应使循环水走管程,混和气体走壳程。

三.确定物性数据

定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为

T= =85℃

管程流体的定性温度为

t= ℃

根据定性温度,分别查取壳程和管程流体的有关物性数据。对混合气体来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。

混和气体在35℃下的有关物性数据如下(来自生产中的实测值):

密度

定压比热容=3.297kj/kg℃

热导率=0.0279w/m

粘度=1.5×10-5Pas

循环水在34℃下的物性数据:

密度=994.3㎏/m3

定压比热容=4.174kj/kg℃

热导率=0.624w/m℃

粘度=0.742×10-3Pas

四.估算传热面积

1.热流量

Q1=

=227301×3.297×(110-60)=3.75×107kj/h =10416.66kw

2.平均传热温差先按照纯逆流计算,得

=

3.传热面积由于壳程气体的压力较高,故可选取较大的K值。假设K=320W/(㎡k)则估算的传热面积为

Ap=

4.冷却水用量m= =

五.工艺结构尺寸

1.管径和管内流速选用Φ25×2.5较高级冷拔传热管(碳钢),取管内流速u1=1.3m/s。2.管程数和传热管数可依据传热管内径和流速确定单程传热管数

Ns=

按单程管计算,所需的传热管长度为

L=

按单程管设计,传热管过长,宜采用多管程结构。根据本设计实际情况,采用非标设计,现取传热管长l=7m,则该换热器的管程数为

Np=

传热管总根数Nt=612×2=1224

3.平均传热温差校正及壳程数平均温差校正系数按式(3-13a)和式(3-13b)有R=

P=

按单壳程,双管程结构,查图3-9得

平均传热温差℃

由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取单壳程合适。

4.传热管排列和分程方法采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。见图3-13。

取管心距t=1.25d0,则t=1.25×25=31.25≈32㎜

隔板中心到离其最.近一排管中心距离按式(3-16)计算

S=t/2+6=32/2+6=22㎜

各程相邻管的管心距为44㎜。

管数的分成方法,每程各有传热管612根,其前后关乡中隔板设置和介质的流通顺序按图3-14选取。

5.壳体内径采用多管程结构,壳体内径可按式(3-19)估算。取管板利用率η=0.75 ,则壳体内径为

D=1.05t

按卷制壳体的进级档,可取D=1400mm

6.折流板采用弓形折流板,去弓形之流板圆缺高度为壳体内径的25%,则切去的圆缺高度为

H=0.25×1400=350m,故可取h=350mm

取折流板间距B=0.3D,则B=0.3×1400=420mm,可取B为450mm。

折流板数目NB=

折流板圆缺面水平装配,见图3-15。

7.其他附件

拉杆数量与直径按表3-9选取,本换热器壳体内径为1400mm,故其拉杆直径为Ф12拉杆数量不得少于10。

壳程入口处,应设置防冲挡板,如图3-17所示。

8.接管

壳程流体进出口接管:取接管内气体流速为u1=10m/s,则接管内径为

圆整后可取管内径为300mm。

管程流体进出口接管:取接管内液体流速u2=2.5m/s,则接管内径为

圆整后去管内径为360mm

六.换热器核算

1.热流量核算

(1)壳程表面传热系数用克恩法计算,见式(3-22)

当量直径,依式(3-23b)得

=

壳程流通截面积,依式3-25 得

壳程流体流速及其雷诺数分别为

普朗特数

粘度校正

(2)管内表面传热系数按式3-32和式3-33有

管程流体流通截面积

管程流体流速

普朗特数

(3)污垢热阻和管壁热阻按表3-10,可取

管外侧污垢热阻

管内侧污垢热阻

管壁热阻按式3-34计算,依表3-14,碳钢在该条件下的热导率为50w/(m•K)。所以

(4)传热系数依式3-21有

(5)传热面积裕度依式3-35可得所计算传热面积Ac为

该换热器的实际传热面积为Ap

该换热器的面积裕度为

传热面积裕度合适,该换热器能够完成生产任务。

2.壁温计算

因为管壁很薄,而且壁热阻很小,故管壁温度可按式3-42计算。由于该换热器用循环水冷却,冬季操作时,循环水的进口温度将会降低。为确保可靠,取循环冷却水进口温度为15℃,出口温度为39℃计算传热管壁温。另外,由于传热管内侧污垢热阻较大,会使传热管壁温升高,降低了壳体和传热管壁温之差。但在操作初期,污垢热阻较小,壳体和传热管间壁温差可能较大。计算中,应该按最不利的操作条件考虑,因此,取两侧污垢热阻为零计算传热管壁温。于是,按式4-42有

相关文档
最新文档