高中数学解析几何解答题
分析错因_走出误区——高考解析几何解答题易错题归类剖析

ʏ江苏省无锡市第六高级中学 陈 敏ʏ江苏省无锡市青山高级中学 张启兆解析几何是高中数学的重要内容,但有些同学由于对某些知识点理解不透彻,或考虑不周等原因,导致在解题过程中出现这样和那样的错误,下面对高考解析几何解答题的易错题型进行归类剖析,希望对同学们的复习备考能有所帮助㊂一、忽略直线斜率不存在的情形例1 已知F (2,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的焦点,且点P 2,55在椭圆上㊂(1)求椭圆的方程㊂(2)已知直线l 与椭圆交于M ,N 两点,且坐标原点O 到直线l 的距离为306,试问:øM O N 的大小是否为定值若是,求出该定值;若不是,请说明理由㊂错解:(1)由椭圆的定义得2a =(2-2)2+552+(2+2)2+552=25,解得a =5㊂因为c =2,所以b =1㊂故椭圆的方程为x 25+y 2=1㊂(2)设点M (x 1,y 1),N (x 2,y 2)㊂设直线l 的方程为y =k x +m ,由点到直线的距离公式得|m |k 2+1=306,则m 2=56(k 2+1)㊂联立y =k x +m ,x 2+5y 2=5,消去y 整理得(5k 2+1)x 2+10k m x +5m 2-5=0,Δ=100k 2m 2-20(m 2-1)(5k 2+1)=20(5k 2+1-m 2)>0,即m 2<5k 2+1㊂由韦达定理得x 1+x 2=-10k m5k 2+1,x 1x 2=5(m 2-1)5k 2+1,所以O M ң㊃O N ң=x 1x 2+y 1y 2=x 1x 2+(k x 1+m )(k x 2+m )=(k 2+1)㊃x 1x 2+k m(x 1+x 2)+m2=5(k 2+1)(m 2-1)-10k 2m25k 2+1+m2=6m 2-5(k 2+1)5k 2+1=0,所以O M ңʅO N ң,即øM O N =π2㊂剖析:第(1)问的解答正确,第(2)问的解答中忽略直线斜率不存在的情形㊂正解:(2)当直线l 的斜率存在时,同错解㊂当直线l 的斜率不存在时,则直线l 的方程为x =ʃ306,结合对称性不妨设直线l 的方程为x =306,联立x =306,x25+y 2=1,解得x =306,y =306,或x =306,y =-306,即得点M306,306,N 306,-306,此时O M ң㊃O N ң=0,故øM O N =π2㊂综上所述,øM O N =π2㊂易错提醒:本题的易错点有两个:一是忽略对直线斜率不存在的情形的讨论;二是øM O N =π2不是显性的,比较隐晦,识别出来有困难,但我们可以从特殊情况,即直线l 的斜率不存在入手,求出对应的定值,再利用82 解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.向量的数量积证明这个值与变量无关㊂二㊁盲目应用判别式例2 若圆(x -a )2+y 2=4与抛物线y 2=6x 没有公共点,求a 的取值范围㊂错解:由于圆(x -a )2+y 2=4与抛物线y 2=6x 没有公共点,所以联立方程组(x -a )2+y 2=4,y2=6x ,消去y 得方程x 2-(2a -6)x +a 2-4=0无解,所以Δ=(2a -6)2-4a 2-4<0,解得a >136,故a 的取值范围为136,+ɕ ㊂剖析:这属于知识性错误,产生错误的原因是没有理解判别式Δ只适用于直线与二次曲线的位置关系的判断,而不适用于两个二次曲线之间的位置关系的判断㊂正解:由于圆的半径为2,当圆与抛物线外切时,a =-2,于是当a <-2时,圆与抛物线没有公共点㊂当圆与抛物线内切时,联立(x -a )2+y 2=4,y 2=6x ,消去y 整理得x 2-(2a -6)x +a 2-4=0㊂①Δ=(2a -6)2-4a 2-4=0,解得a =136,代入方程①得3x 2+5x +2512=0,解得x =-56,是负根,显然圆与抛物线不能内切,所以当x ȡ0时,问题等价于圆心(a ,0)到抛物线的距离d 的最小值大于2,求a 的取值范围㊂设P (x ,y )为抛物线上一点,则d 2=(x -a )2+y 2=(x -a )2+6x =[x -(a -3)]2+6a -9㊂设f (x )=[x -(a -3)]2+6a -9(x ȡ0),当a -3>0,即a >3时,f (a -3)最小,所以d m i n =6a -9>2,解得a >136,又a >3,所以a >3;当a -3ɤ0,即a ɤ3时,f (0)最小,所以d m i n =a >2,此时2<a ɤ3㊂综上可得,a >2㊂故a 的取值范围为a <-2或a >2㊂易错提醒:二次曲线与二次曲线的交点问题不能完全类比直线与二次曲线位置关系的探讨,仅用判别式法是不够的,这是因为二次曲线是有范围限制的,并且一般情况下具有对称性,要结合起来一起讨论㊂由于我们研究的是曲线与曲线之间的位置关系,图形未必能把细微处的走向描述清楚,必须与代数运算结合起来,即以数助形,数形结合㊂三㊁求取值范围时,未考虑直线与圆锥曲线的公共点的个数例3 已知双曲线C :x 2a2-y 2b2=1与椭圆x 24+y23=1的离心率互为倒数,且双曲线的右焦点到C 的一条渐近线的距离为3㊂(1)求双曲线C 的方程;(2)直线y =2x +m 与双曲线C 交于A ,B 两点,点M 在双曲线C 上,且O M ң=2O Aң+λO B ң,求λ的取值范围㊂错解:(1)因为椭圆x 24+y 23=1的离心率为12,所以a 2+b 2a =2,即a 2=b 23㊂因为双曲线的右焦点到C 的一条渐近线的距离为3,所以b =3,所以a =1,故双曲线C 的方程为x 2-y 23=1㊂(2)设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),联立方程y =2x +m ,3x 2-y 2=3,消去y 整理得x 2+4m x +m 2+3=0,则x 1+x 2=-4m ,x 1x 2=m 2+3㊂因为O M ң=2O A ң+λO B ң,所以x 0=2x 1+λx 2,y 0=2y 1+λy 2㊂因为点M 在双曲线C 上,所以2x 1+λx 22-2y 1+λy 223=1,即4㊃x 21-y 213+λ2x 22-y 223+4λx 1x 2-43㊃λy 1y 2=1,所以4λx 1x 2-43λy 1y 2+λ2+3=4λx 1x 2-43λ(2x 1+m )(2x 2+m )+λ2+3=0,即λ2-4λ+3+8m 2λ=0,显然λʂ0,于是8m 2=-λ2-4λ+3λȡ0 (*),所以λ(λ2-92解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.4λ+3)ɤ0,λʂ0,解得λ<0,或1<λ<3㊂综上所述,λ的取值范围为-ɕ,0 ɣ1,3㊂剖析:第(1)问的解答正确,第(2)问的解答中未考虑直线与圆锥曲线的公共点的个数对m 的限制,故最后求λ的取值范围时出现错误㊂正解:(2)前面同错解㊂考虑Δ=16m 2-4(m 2+3)>0⇒m 2>1,将(*)式改为8m 2=-λ2-4λ+3λ>8㊂当λ>0时,得λ2+4λ+3<0,解得-3<λ<-1,与λ>0矛盾;当λ<0时,得λ2+4λ+3>0,解得λ>-1,或λ<-3,所以λ<-3,或-1<λ<0㊂综上所述,λ的取值范围为-ɕ,-3 ɣ-1,0㊂易错提醒:审题不仔细,马虎大意,忽视条件 直线与双曲线有两个交点 隐含着判别式Δ=16m 2-4m 2+3>0㊂四、恒成立意义不明导致定点问题错误例4 如图1,M 是圆A :x +32+y 2=16上的动点,点B 3,0,线段M B 的垂直平分线交半径A M 于点P ㊂图1(1)求点P 的轨迹E 的方程㊂(2)N 为轨迹E 与y 轴负半轴的交点,不过点N 且不垂直于坐标轴的直线l 交轨迹E 于S ,T 两点,直线N S ,N T 分别与x 轴交于C ,D 两点㊂若C ,D 的横坐标之积是2,试问:直线l 是否过定点?如果是,求出定点坐标;如果不是,请说明理由㊂易错分析:本题易错点有三个:一是在用参数表示直线S N 的方程时计算错误;二是不会利用 同构 的方法直接写出点D 的横坐标;三是在得到直线系S T 的方程后,对直线恒过定点的意义不明,找错方程的常数解㊂正解:(1)由题意可知|A P |+|P M |=|A M |=4,所以|P A |+|P B |=4>23=|A B |,所以点P 的轨迹是以A ,B 为焦点,长轴为4的椭圆㊂所以2a =4,c =3,所以b =a 2-c 2=1,所以椭圆的方程为x 24+y 2=1,即点P 的轨迹E 的方程为x 24+y 2=1㊂(2)由题意可知点N (0,-1),设直线S T 的方程为y =k x +m (m ʂ-1),设S (x 1,y 1),T (x 2,y 2),联立y =k x +m ,x 2+4y 2=4,消去y 整理得(1+4k 2)x 2+8k m x +4m 2-4=0,所以x 1+x 2=-8k m 1+4k 2,x 1x 2=4m 2-41+4k2,由Δ>0,得4k 2-m 2+1>0㊂所以直线S N 的方程为y +1=y 1+1x 1(x -0),令y =0,得x C =x 1y 1+1㊂同理x D =x 2y 2+1㊂因为x C x D =x 1y 1+1ˑx 2y 2+1=2,所以x 1x 2=2(y 1+y 2+y 1y 2+1)=2[k x 1+m +k x 2+m +(k x 1+m )(k x 2+m )+1]=2[k (x 1+x 2)(m +1)+k 2x 1x 2+(m +1)2],所以4m 2-41+4k 2=2k ˑ-8k m1+4k2(m +1)+ k 2ˑ4m 2-41+4k2+(m +1)2㊂因为m ʂ-1,所以m +1ʂ0,则4(m -1)=-16k 2m +8k 2(m -1)+2(1+4k 2)㊃(m +1),解得m =3,所以直线S T 的方程为y =k x +3㊂所以直线S T 过定点(0,3)㊂规律与方法:(1)若确定动直线l 过定点问题,可设动直线方程(斜率存在)为y =k x +t ,由题设条件将t 用k 表示为t =m k ,得到y =k (x +m ),即可说明动直线过定点(-m ,0)㊂(2)若确定动曲线C 过定点问题,可引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出对应的定点㊂(3)先通过特定位置猜测结论后进行一般性证明㊂对于客观题,通过特殊值法探求定点能取得事半功倍的效果㊂(责任编辑 王福华)3 解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.。
高中数学期末备考:解析几何07椭圆第三定义含解析

第7讲:椭圆的第三定义1.基础知识:如图,椭圆22221(0)x y a b a b 上任意一点P 与过原点为中心的弦AB 的两端点A 、B 连线PA 、PB 与坐标轴不平行,则直线PA 、PB 的斜率之积PA PB k k 为定值22b a .证明设(,)P x y ,11(,)A x y ,则11(,)B x y .所以12222 b y a x ①1221221 b y a x ②由①-②得22122212b y y a x x ,所以22212212a b x x y y ,所以222111222111PA PBy y y y y y b k k x x x x x x a为定值.这条性质是圆的性质:圆上一点对直径所张成的角为直角在椭圆中的推广,它充分揭示了椭圆的本质属性.2.典例:(2019年高考数学课标全国Ⅱ卷理科)已知点2,0A , 2,0B ,动点 ,M x y 满足直线AM 与BM 的斜率之积为12.记M 的轨迹为曲线C .1求C 的方程,并说明C 是什么曲线;2过坐标原点的直线交C 于,P Q 两点,点P 在第一象限,PE x 轴,垂足为E ,连结QE 并延长交C 于点G .i 证明:POG △是直角三角形; ii 求POG △面积的最大值.【详解】(1)直线AM 的斜率为(2)2y x x ,直线BM 的斜率为(2)2y x x ,由题意可知:22124,(2)222y y x y x x x ,所以曲线C 是以坐标原点为中心,焦点在x 轴上,不包括左右两顶点的椭圆,其方程为 221,242x y x ;(2)(i)设直线PQ 的方程为y kx ,由题意可知0k ,直线PQ 的方程与椭圆方程2224x y联立,即22,2 4.x y kx x y y或x y,点P 在第一象限,所以P Q ,因此点E的坐标为直线QE 的斜率为2QE kk,可得直线QE方程:2k y x,与椭圆方程联立,2222 4.k y x x y,消去y得,22222128(2)021k k x k (*),设点11(,)G x y ,显然Q和1x 是方程(*)的解所以有222112128212k k x x k QE方程中,得31yG的坐标为23,直线PG的斜率为;3322222(2)1642(2)PGk k k k k k k,因为1(1,PQ PG k k k k所以PQ PG ,因此PQG 是直角三角形;(ii)由(i)可知:P Q ,G 的坐标为23,PQ ,PG ,34218()2252PQGk k S k k 42'4228(1)(1)(232)(252)k k k k S k k ,因为0k ,所以当01k 时,'0S ,函数()S k 单调递增,当1k 时,'0S ,函数()S k 单调递减,因此当1k 时,函数()S k 有最大值,最大值为16(1)9S.。
高中数学解析几何100题经典大题汇编

a-c=
2c 2 ,a
2 =2,
2 ∴a=1,b=c= 2
故 C 的方程为:y2+x2=1 1 2
…………………3 分 …………4 分
(2)当直线斜率不存在时: m = ± 1 2
…………5 分
当直线斜率存在时:设 l 与椭圆 C 交点为 A(x 1,y1),B(x2,y2)
=y kx + m
∴
2x2
(Ⅰ)推导双曲线 C 的离心率 e 与 λ 的关系式; (Ⅱ)当 λ = 1 时, 经过点 (1,0) 且斜率为 − a 的
直线交双曲线于 A, B 两点, 交 y 轴于点 D , 且
y
M
P
DA = ( 3 − 2)DB ,求双曲线的方程. 【答案】22: 解:(Ⅰ)Q MP = OF, ∴OFPM 为平行四边形.
【山东省苍山县 2014 届高三上学期期末检测理】22.(本题满分 14 分)
如图,斜率为 1 的直线 l 过抛物线 Ω : y=2 2 px( p > 0) 的焦点 F,与抛物线交于两点 A,
B。
(1)若|AB|=8,求抛物线 Ω 的方程; (2)设 P 是抛物线 Ω 上异于 A,B 的任意一点,直线 PA,PB 分别交抛物线的准线于 M,
m2 + 2m − 1 − 6m +14 ……10 分 3 3(3k 2 +1)
要使上式与 K 无关,则有 6m +14 = 0, ,解得 m = − 7 ,存在点 M (− 7 ,0) 满足题意。12 分
3
3
【山东省济宁市金乡二中 2014 届高三 11 月月考理】23、(本小题满分12 分)[来源:学科网] 已知曲线 C 上的动点 P 到点 F (2,0) 的距离比它到直线 x = −1的距离大1.
高中解析几何典型题

高中解析几何典型题全文共四篇示例,供读者参考第一篇示例:一、直线和平面的关系题目题目1:设直线L经过平面α和β两个平面的交点A和B,问直线L在平面α和平面β之间的位置关系是怎样的?解析:直线L在平面α和平面β之间的位置关系有三种情况,分别是直线L既不垂直于平面α,也不垂直于平面β;直线L既垂直于平面α,也垂直于平面β;直线L既不垂直于平面α,但垂直于平面β。
具体位置可根据直线和平面的垂直关系来确定。
解析:点P在平面α和平面β之间的位置关系根据两个平面的相交线和点P所在位置的具体情况来确定。
如果直线L和点P的位置不同,点P在两个平面之间;如果直线L和点P的位置相同,点P在两个平面外部;如果直线L和点P的位置重合,点P在两个平面上。
题目3:已知平面α和平面β相交于直线m,直线n与直线m相交于点A,平面α和平面β的交线分别为l1和l2,求证:∠l1An=∠l2An。
解析:根据已知条件可得到∠l1An=∠mAn,∠l2An=∠mAn,即∠l1An=∠l2An。
解析:根据已知条件可得到∠A和∠B垂直于直线m,因此∠A和∠B所成的角度为90度。
通过以上的几个典型题目及其解析,我们不难看出解析几何题目的解题思路主要是根据已知条件,运用几何知识和性质来推导出结论。
在解析几何的学习过程中,学生应该注重培养逻辑思维能力和数学运算能力,多进行几何图形的分析和推理,提高解题的能力和速度。
在解析几何的学习过程中,还需要注意以下几点:1、熟练掌握基本几何知识和性质,包括直线、角、三角形、四边形等几何图形的性质和计算方法。
2、善于画图分析,对于解析几何题目一定要画出清晰准确的图形,以便更直观地理解题意和计算。
3、多练习典型题目,通过多做题目来积累经验,查漏补缺,加深对解析几何知识的理解。
4、注意总结归纳,将解析几何的各种题目和性质进行分类和总结,形成自己的知识体系。
高中解析几何是一个非常重要的学科,学生在学习过程中要认真对待,多加练习,提高理解能力和解题能力,从而取得更好的学习成绩。
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
高中数学解析几何深度练习题及答案

高中数学解析几何深度练习题及答案1. 平面几何题目一:已知平面上三点A(1, -2),B(3, 4),C(7, 1),求证:三角形ABC为等腰三角形。
解答:首先计算AB、AC、BC的长度,分别利用两点之间的距离公式:AB = √[(3-1)^2 + (4-(-2))^2] = √[4 + 36] = √40AC = √[(7-1)^2 + (1-(-2))^2] = √[36 + 9] = √45BC = √[(7-3)^2 + (1-4)^2] = √[16 + 9] = √25由于AB的平方等于BC的平方,即AB^2 = BC^2,可以得出AB = BC。
因此,三角形ABC为等腰三角形。
题目二:已知平面上直线L1过点A(2, -1),斜率为k,与直线L2:3x + ky + 5 = 0 互相垂直,求k的值。
解答:首先计算直线L2的斜率:L2: 3x + ky + 5 = 0化简得:ky = -3x - 5因此,L2的斜率k2为 -3/k。
由于L1与L2互相垂直,根据垂直直线的特性可知斜率k1与k2之积为 -1。
即 k * (-3/k) = -1。
解上述方程可以得出:k^2 = 3,因此k的两个解为k = √3 和 k = -√3。
题目三:已知直线L1:4x + 3y - 2 = 0 与直线L2垂直,并且直线L2通过点A(5,-1),求直线L2的方程式。
解答:由于L1与L2垂直,它们的斜率之积为 -1。
L1的斜率为 -4/3,所以L2的斜率为 3/4。
通过点斜式可以得到L2的方程式:y - (-1) = (3/4)(x - 5)化简得到:y = (3/4)x + 2因此,直线L2的方程式为:y = (3/4)x + 2。
2. 空间几何题目一:已知直线L1:x = 3 - 2t,y = 5 + 3t,z = -1 + 4t,求直线L1的参数方程。
解答:直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中(a, b, c)为直线的方向向量。
解析几何 高中数学试题解析版

一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.若椭圆x2+y2a =1(a>0)的离心率为√ 22,则a的值为( )A. 2B. 12C. 2或√ 22D. 2或12【答案】D【解析】【分析】本题考查椭圆的性质的应用及分类讨论的思想,属于基础题.考虑a>1和0<a<1两种情况,根据离心率的公式计算得到答案.【解答】解:当a>1时,离心率为√ a−1√ a =√ 22,解得a=2;当0<a<1时,离心率为√ 1−a=√ 22,解得a=12.综上所述:a=2或a=12.故选:D2.把一个圆心角为120°的扇形卷成一个圆锥的侧面,则此圆锥底面圆的半径与这个圆锥的高之比是( )A. 1∶4B. √ 2∶2C. √ 2∶√ 3D. √ 2∶4【答案】D【解析】【分析】本题考查圆锥的计算,理解圆锥的展开图中扇形的弧长等于圆锥的底面周长是关键.设母线为l,半径为r,利用圆锥的展开图中扇形的弧长等于圆锥的底面周长得到半径与母线的关系,再根据勾股地理得到高,从而可以得出结果.【解答】解:设圆锥的母线为l,底面半径为r,高为ℎ则扇形的弧长为120180π×l=23πl,由圆锥的展开图中扇形的弧长等于圆锥的底面周长,得2πr=23πl,则r=13l,再由勾股定理得ℎ=√ l2−r2=2√ 23l,故r ℎ=13l 2√ 23l =√ 24,故选D .3.已知原点到直线l 的距离为1,圆(x −2)2+(y −√ 5)2=4与直线l 相切,则满足条件的直线l 有 ( ) A. 1条 B. 2条C. 3条D. 4条【答案】C 【解析】【分析】本题主要考查点到直线的距离,圆与圆位置关系,先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定公切线的直线条数. 【解答】解:∵(x −2)2+(y −√ 5 )2=4, ∴圆心坐标(2,√ 5),半径为2, ∵以坐标原点为圆心,以1为半径, ∴圆方程x 2+y 2=1, ∴两圆圆心距√ 5+22=3, ∴两圆相外切,∴两圆有三条公切线,(两条外公切线,一条内公切线). 故选C .4.已知PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A. 9 B. −9C. −3D. 3【答案】B 【解析】【分析】由共面向量定理得PC ⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ ,从而(7,6,λ)=x(2,1,−3)+y(−1,2,3),由此能求出λ的值. 本题考查实数值的求法,考查共面向量定理等基础知识,考查运算求解能力,是基础题. 【解答】解:∵PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ), P ,A ,B ,C 四点共面,∴存在一对实数x ,y ,PC⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ , ∴(7,6,λ)=x(2,1,−3)+y(−1,2,3),∴{7=2x−y6=x+2yλ=−3x+3y,解得λ=−9.故选:B.5.已知点A为圆(x+3)2+(y−2)2=1上的动点,点B的坐标为(1,1),P为x轴上一动点,则|AP|+|BP|的最小值是( )A. 3B. 4C. 5D.6【答案】B【解析】【分析】本题考查到圆上点的距离的最值及点关于线的对称点的求法,属于拔高题.根据三角形三边关系以及两点间距离公式求解即可.【解答】解:设圆心M(−3,2),半径为1,B关于x轴的对称点B1(1,−1),连接MB1交x轴于N点,则N即是P,因为这时|NB|=|NB1|,|NB|+|MN|=|MB1|,当P在x轴的其它位置F时,|FB|=|FB1|,借助图形可得|FB|+|FM|>|MB1|(三角形的两边和大于第三边),所以|AP|+|BP|的最小值是为|MB1|−1=√ 42+32−1=5−1=4,此时A为线段MB1与圆的交点.故选B.6.已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点,若AB的中点坐标为(1,−1),则E的方程为( )A. x245+y236=1 B. x236+y227=1 C. x227+y218=1 D. x218+y29=1【答案】D【解析】【分析】本题考查求椭圆的方程,考查直线与椭圆的位置关系,点差法的运用,考查学生的计算能力,属于中档题,设A(x1,y1),B(x2,y2),代入椭圆的方程,两式相减,根据线段AB的中点坐标为(1,−1),进而可得a,b的关系,根据右焦点为F(3,0),求出a,b的值,即可得出椭圆的方程.【解答】解:设A(x 1,y 1),B(x 2,y 2),代入椭圆方程得{x 12a 2+y 12b 2=1x 22a 2+y 22b2=1, 相减得x 12−x 22a 2+y 12−y 22b2=0, ∴x 1+x 2a 2+y 1−y 2x 1−x 2⋅y 1+y 2b2=0,∵x 1+x 2=2,y 1+y 2=−2,k AB =y 1−y2x 1−x 2=−1−01−3=12,∴2a 2+12×−2b2=0,化为a 2=2b 2,又c =3=√ a 2−b 2,解得a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.故选D .7.已知圆C:x 2+y 2=1,直线l:x +y +2=0,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B ,则直线AB 过定点 ( ) A. (−12,−12)B. (−1,−1)C. (−12,12)D. (12,−12)【答案】A 【解析】【分析】本题考查直线与圆的位置关系,涉及圆方程的综合应用,属于中档题.根据题意,设P 的坐标为(t,−2−t),由圆的切线性质可得PA ⊥AC ,PB ⊥BC ,则有点A 、B 在以PC 为直径的圆上,求出该圆的方程,与圆C 的方程联立可得直线AB 的方程,将其变形分析可得答案. 【解答】解:根据题意,P 为直线l :x +y +2=0上的动点,设P 的坐标为(t,−2−t), 过点P 作圆C 的两条切线,切点分别为A ,B ,则PA ⊥AC ,PB ⊥BC , 则点A 、B 在以PC 为直径的圆上,又由C(0,0),P(t,−2−t),则以PC 为直径的圆的方程为x(x −t)+y(y +2+t)=0, 变形可得:x 2+y 2−tx +(t +2)y =0,则有{x 2+y 2=1x 2+y 2−tx +(t +2)y =0,联立可得:1−tx +(t +2)y =0,变形可得:1+2y −t(x −y)=0, 即直线AB 的方程为1+2y −t(x −y)=0,则有{1+2y =0x −y =0,解可得{x =−12y =−12,故直线AB 过定点(−12,−12), 故选:A .8.已知F 1,F 2是椭圆与x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过左焦点F 1的直线与椭圆交于A ,B 两点,且满足|AF 1|=2|BF 1|,|AB|=|BF 2|,则该椭圆的离心率是( ) A. 12B. √ 33C. √ 32D. √ 53【答案】B 【解析】【分析】本题考查椭圆的简单性质的应用,考查数形结合以及转化思想的应用,属于中档题. 利用已知条件,画出图形,通过三角形的边长关系,结合余弦定理,求解椭圆的离心率即可. 【解答】解:作出图形,如下:由题意可得:|F 1B|+|BF 2|=2a ,|AB|=|BF 2|,可得|AF 1|=a ,|AF 2|=a ,|AB|=|BF 2|=32a ,|F 1F 2|=2c , 在△ABF 2中,由余弦定理得cos∠BAF 2=94a 2+a 2−94a 22×32a×a=13,在△AF 1F 2中,由余弦定理得cos∠BAF 2=a 2+a 2−4c 22×a×a =1−2(c a)2,所以13=1−2(ca )2,即e =c a =√ 33. 故选:B .二、多选题(本大题共4小题,共20.0分。
高中数学解析几何测试题(答案版)

解析几何练习题一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12- C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( )A.(x -2)2+(y+3)2=12B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( )A .2B .32C .12D .211.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( ) A .50x y --=B .50x y -+=C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值范围是( )A. 304⎡⎤-⎢⎥⎣⎦,B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,,C. ⎡⎢⎣⎦ D. 203⎡⎤-⎢⎥⎣⎦, 二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是 。
高中数学解析几何试题及答案

解析几何一.命题趋向与解题方法、技巧 1.圆锥曲线基础题 主要是考查以下问题:①圆锥曲线的两种定义、标准方程、焦点、常见距离及其p e c b a ,,,,五个参数的求解;②讨论圆锥曲线的几何性质;③曲线的交点问题,即直线与二次曲线和两圆的交点问题;④圆锥曲线的对称性,一是曲线自身的对称性,二是曲线间的对称性。
2.轨迹问题主要有三种类型:①曲线形状已知,求其方程;②曲线形状未定,求其方程;③由曲线方程讨论其形状(一般含参数)。
此类问题解题步骤通常是通过建立坐标系,设动点的坐标,依题意设条件,列出等式、代入化简整理即得曲线的轨迹方程。
基本方法有:直译法、定义法、代入法、交轨法、几何法、参数法。
3.参数取值范围问题通常依据题设条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围。
基本方法有定义法、函数法、方程法、不等式法及几何法。
4.位置关系常涉及直线与圆锥曲线交点的判定、弦长、弦中点、垂直、对称、共线等问题。
应注意充分利用圆锥曲线的基本性质及韦达定理、方程思想。
根据新教材的特点,常结合平面向量的基本知识进行考查。
5.最值问题通常是依题设条件,建立目标函数,然后用求最值的方法来处理;有时也可用数形结合思想,利用几何法分析。
6.韦达定理在解决解析几何问题中的主要应用韦达定理在解决解析几何问题中起着重要作用,特别是在解决有关弦长、两条直线互相垂直、弦中点、对称、轨迹、定点问题时能化难为易,化繁为简。
【专题训练】一 、选择题1.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是223,4b b ⎡⎤⎣⎦,则这一椭圆离心率e 的取值范围是( )A .]23,35[B .]22,33[C .]22,35[D .]23,33[ 2.已知A 、B 是抛物线px y 22=(0p >)上异于原点O 的两点,则“OA ·0OB =”是“直线AB 恒过定点(0,2p )”的( ) A .充分非必要条件 B .充要条件 C .必要非充分条件 D .非充分非必要条件3.设椭圆的两个焦点分别为12F F ,,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF △为等腰直角三角形,则椭圆的离心率是 ( )A BC .2D 14.已知椭圆22221(0)x ya b a b+=>>与x 轴的正半轴交于点A O ,是原点,若椭圆上存在一点M ,使MA MO ⊥,则椭圆的离心率的取值范围是 ( )A .1,12⎛⎫⎪⎝⎭ B .⎤⎥⎣⎦ C .⎫⎪⎪⎣⎭D .⎫⎪⎪⎝⎭ 5.已知3AB =, A 、B 分别在y 轴和x 轴上运动,O 为原点,1233OP OA OB =+,则动点P 的轨迹方程是( )A . 1422=+y xB . 1422=+y xC .1922=+y xD .1922=+y x 6.已知直线:2430l x y ++=,P 为l 上的动点,O 为坐标原点,点Q 分线段OP 为1:2两部分,则点Q 的轨迹方程为( )A .2410x y ++=B .2430x y ++=C .2420x y ++=D .210x y ++=二、填空题 7.过抛物线214y x =准线上任一点作抛物线的两条切线,若切点分别为,M N ,则直线MN 过定点 .8.过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于,A B 两点,交准线于点C .若2CB BF =,则直线AB 的斜率为 .9.河上有抛物线型拱桥,当水面距拱顶5m 时,水面宽为8m ,一小船宽4m ,高2m ,载货后船露出水面上的部分高34m ,当小船开始不能通航时,水面上涨到距抛物线拱顶相距 m .三、解答题10.椭圆C 的一个焦点F 恰好是抛物线24y x =-的焦点,离心率是双曲线224x y -=离心率的倒数.(1)求椭圆C 的标准方程; (2)设过点F 且不与坐标轴垂直的直线l 交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,当点G 的横坐标为14-时,求直线l 的方程.11.椭圆的对称中心在坐标原点,一个顶点为)2,0(A ,右焦点F 与点,B 的距离为2.(1)求椭圆的方程;(2)是否存在斜率0≠k 的直线l :2-=kx y ,使直线l 与椭圆相交于不同的两点N M ,满足||||AN AM =,若存在,求直线l 的倾斜角α;若不存在,说明理由.12.在ABC ∆中AC =B 是椭圆22154x y +=在x 轴上方的顶点,l 的方程是1y =-,当AC 在直线l 上运动时.(1)求ABC ∆外接圆的圆心P 的轨迹E 的方程;(2)过定点3(0,)2F 作互相垂直的直线12,l l ,分别交轨迹E 于,M N 和,R Q ,求四边形MRNQ 面积的最小值.【专题训练参考答案】1.解析:A 设椭圆方程为()222210x y a b a b+=>>,设矩形在第一象限的顶点坐标为(),x y ,根据对称性该矩形的面积为224422x y x y S xy ab ab ab a b a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==≤+=⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,即划出的矩形的最大面积是2ab ,根据已知22324b ab b ≤≤,即322b a b ≤≤,即1223b a ≤≤,故32c e a ===⎣⎦.2.解析:B3.解析:D 由题意,得1212PF F ===,又由椭圆的定义,得122PF PF a +=.即22c a +=,则1)a c =,得1ce a=,故选D.4.解析:D 设()M x y ,,则MA MO ⊥,得1y yx x a=-·.将其与椭圆方程联立,消去y 得222()()0x a b x a x b a --+=.由x a ≠,得22222ab ab x a b c==-.()M x y ,∵在椭圆上,[]x a a ∈-,∴, 又MA MO ⊥,则(0)x a ∈,,即220ab a c<<,2201b c <<∴,2222212a b c c +<=<,则2212c a >,e ∴.又01e <<∵,1e <<.5.解析:A 设()0,A a ,(),0B b ,则由3AB =得229a b +=.设(),P x y ,由1233OP OA OB =+得()()()12,0,,033x y a b =+,由此得32b x =,3a y =,代入229a b +=得2222999144x y x y +=⇒+=.6.解析:A 设点Q 的坐标为(),x y ,点P 的坐标为()11,x y .∵Q 分线段OP 为1:2,∴⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=+=211212112111y y x x ,即⎩⎨⎧==y y x x 3311 ∵点P 在直线l 上,∴112430x y ++=,把113,3x x y y ==代入上式并化简,得2410x y ++=,为所求轨迹方程.7.解析:()0,1.8.解析:3± 涉及抛物线的焦点弦的时候,常用应用抛物线的定义.注意本题有两解.9.解析:2 如图 建立适当的坐标系,设拱桥抛物线方程为)0(22>-=p py x ,由题意,将()4,5B -代入方程得58=p ,∴抛物线方程为y x 5162-=.∵ 当船的两侧和拱桥接触时船不能通航. 设此时船面宽为/AA , 则()2,A A y ,由A y 51622-=,得45-=A y ,又知船面露出水面上部分为34m ,324A h y m =+=.即水面上涨到距抛物线拱顶2m 时小船不能通航.10.解析:(1)根据已知该椭圆的一个焦点坐标是()1,0F -,即1c =,双曲线224x y -=2,2,即2c e a ==,故2a =从而1b =, 所以所求椭圆的标准方程是2212x y +=.(2)设直线l 的方程为(1)(0),y k x k =+≠代入221,2x y += 整理得2222(12)4220.k x k x k +++-=(6分)直线AB 过椭圆的左焦点F ,∴方程有两个不等实根. 记1122(,),(,),A x y B x y AB 中点00(,),N x y则21224,21k x x k +=-+故20122221k x x x k =+=-+,()002121ky k x k =+=+. (9分)又AB 的垂直平分线NG 的方程为001().y y x x k-=-- (10分) 令0,y =得22200222221112121212424G k k k x x ky k k k k =+=-+=-=-+=-++++,解得2k =±,故直线l的方程为()12y x =±+.11.解析:(1)依题意,设椭圆方程为)0(12222>>=+b a by a x ,则其右焦点坐标为22,)0,(b a c c F -=,由=||FB 2,得2=,即2(24c +=,解得22=c .又 ∵2=b ,∴ 12222=+=b c a ,即椭圆方程为141222=+y x . (2)由||||AN AM =知点A 在线段MN 的垂直平分线上, 由⎪⎩⎪⎨⎧=+-=1412222y x kx y 消去y 得12)2(322=-+kx x 即012)31(22=-+kx x k (*)由0≠k ,得方程(*)的0144)12(22>=-=∆k k ,即方程(*)有两个不相等的实数根.设),(11y x M 、),(22y x N ,线段MN 的中点),(00y x P ,则2213112k kx x +=+,∴22103162k k x x x +=+=, ∴ 22220031231)31(262k k k k kx y +-=++-=-=,即)312,316(22kk k P +-+ ,0≠k ,∴直线AP 的斜率为k k k k k k 6)31(2231623122221+--=+-+-=, 由AP MN ⊥,得16)31(222-=⨯+--k kk , ∴ 66222=++k ,解得:33±=k ,即33tan ±=α,又πα<≤0,故 6πα=,或65πα=,∴ 存在直线l 满足题意,其倾斜角6πα=,或65πα=.12.解析:(1)由椭圆方程22154x y +=得点(0,2),B 直线l 方程是1y =-AC ∴=且AC 在直线l 上运动.可设(1),(1),A m C m --则AC 的垂直平分线方程为x m = ①AB的垂直平分线方程为12y x -= ② P 是ABC ∆的外接圆圆心,∴点P 的坐标(,)x y 满足方程①和②由①和②联立消去m 得26x y =故圆心P 的轨迹E 的方程为26x y =(2)由图可知,直线1l 和2l 的斜率存在且不为零,设1l 的方程为32y kx =+, 12l l ⊥,2l ∴的方程为132y x k =-+.由23216y kx y x ⎧=+⎪⎪⎨⎪=⎪⎩得 2690x kx --= △=226360,k ∆=+>∴直线1l 与轨迹E 交于两点. 设1122(,),(,)M x y N x y ,则12126,9x x k x x +==.2||6(1).MN k ∴===+同理可得:21||6(1).RQ k=+∴四边形MRNQ 的面积2211||||18(2)18(272.2S MN RQ k k =•=++≥+= 当且仅当221k k=,即1k =±时,等号成立.故四边形MRNQ 的面积的最小值为72.。
2023年高考数学热点专题解析几何模型通关圆锥曲线中的定点问题(解析版)

圆锥曲线中的定点问题思路引导处理圆锥曲线中定点问题的方法:(1)探索直线过定点时,可设出直线方程为,然后利用条件建立,k m 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.母题呈现考法1参数法求证定点【例1】(2022·临沂、枣庄二模联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,其左、右焦点分别为F 1,F 2,点P 为坐标平面内的一点,且|OP →|=32PF 1→·PF 2→=-34,O 为坐标原点.(1)求椭圆C 的方程;(2)设M 为椭圆C 的左顶点,A ,B 是椭圆C 上两个不同的点,直线MA ,MB 的倾斜角分别为α,β,且α+β=π2.证明:直线AB 恒过定点,并求出该定点的坐标.【解题指导】【解析】(1)设P 点坐标为(x 0,y 0),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0).由题意得x 20+y 20=94,x 0+cx 0-c+y 20=-34,解得c 2=3,∴c = 3.又e =c a =32,∴a =2.∴b 2=a 2-c 2=1.∴所求椭圆C 的方程为x 24+y 2=1.(2)设直线AB 方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).y 2=1,kx +m ,消去y 得(4k 2+1)x 2+8kmx +4m 2-4=0.∴x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.又由α+β=π2,∴tan α·tan β=1,设直线MA ,MB 斜率分别为k 1,k 2,则k 1k 2=1,∴y 1x 1+2·y 2x 2+2=1,即(x 1+2)(x 2+2)=y 1y 2.∴(x 1+2)(x 2+2)=(kx 1+m )(kx 2+m ),∴(k 2-1)x 1x 2+(km -2)(x 1+x 2)+m 2-4=0,∴(k 2-1)4m 2-44k 2+1+(km -2)28()41kmk -++m 2-4=0,化简得20k 2-16km +3m 2=0,解得m =2k ,或m =103k .当m =2k 时,y =kx +2k ,过定点(-2,0),不合题意(舍去).当m =103k 时,y =kx +103k 10,0)3-,∴直线AB 恒过定点10(,0)3-【例2】(2022·福建·漳州三模)已知抛物线2:4C y x =的准线为l ,M 为l 上一动点,过点M 作抛物线C 的切线,切点分别为,A B .(1)求证:MAB ∆是直角三角形;(2)x 轴上是否存在一定点P ,使,,A P B 三点共线.【解题指导】【解析】(1)由已知得直线l 的方程为1x =-,设()1,M m -,切线斜率为k ,则切线方程为()1y m k x -=+,(2分)将其与24y x =联立消x 得244()0ky y m k -++=.所以1616()0k m k ∆=-+=,化简得210k mk +-=,(4分)所以121k k =-,所以MA MB ⊥.即MAB ∆是直角三角形.(6分)(2)由(1)知1616()0k m k ∆=-+=时,方程244()0ky y m k -++=的根为2y k=设切点221212,,,44y y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则121222,y y k k ==.因为121k k =-,所以121244y y k k ==-.(10分)设:AB l x ny t =+,【点拨】由M 点出发向抛物线作量条切线,则切点A,B 所在直线与抛物线有两个焦点且其斜率不为零与24y x =联立消x 得2440y ny t --=,则124y y t =-,所以44t -=-,解得1t =,所以直线AB 过定点()1,0P .即x 轴上存在一定点()1,0P ,使,,A P B 三点共线.(12分)【解题技法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【跟踪训练】(2020·新课标Ⅰ卷理科)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -,(),0B a ,()0,1G ∴(),1AG a = ,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭.同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.考法2先求后证法求证定点【例4】(2022·全国乙T21)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()0,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解题指导】(1)将给定点代入设出的方程求解即可;(2)斜率不存在时探究定点→设出直线方程→与椭圆C 的方程联立→求HN 的方程→是否过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得26(1,)3M ,26(1,3N-,代入AB方程223y x=-,可得263,3T+,由MT TH=得到265,)3H.求得HN方程:(223y x=--,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34ky ykk ky yk-+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【解题技法】(1)定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k=0或k不存在时.(2)以曲线上的点为参数,设点P(x1,y1),利用点在曲线f(x,y)=0上,即f(x1,y1)=0消参.【跟踪训练】模拟训练(2)方法一:设PQ 方程为x my =()2222234433x my m y my x y =-⎧⇒-+⎨-=⎩以PQ 为直径的圆的方程为(1x x -()(22121212x x x x x x y y y -+++-+由对称性知以PQ 为直径的圆必过()21212120x x x x x x y y -+++=,而()21212212431m x x m y y m +=+-=-()()212121222x x my my m y y =--=22222434931313m x x m m m --∴-++---()()22313510m x m x ⎡⎤⇒-+--=⎣⎦∴以PQ 为直径的圆经过定点(1,0方法二:设PQ 方程为2,x my P =-()22222311233x my m y my x y =-⎧⇒--⎨-=⎩由对称性知以PQ 为直径的圆必过设以PQ 为直径的圆过(),0E t ,()()1210EP EQ x t x t y ∴⋅=⇒--+ 而()()21212122x x my my m y =--=2229122431313m m m m m -=⋅-⋅+=--【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l过定点问题.解法:设动直线方程得y=k(x+m),故动直线过定点(-(2)动曲线C过定点问题.解法:引入参变量建立曲线等于零,得出定点.7.(2023·浙江·模拟预测)已知双曲线为双曲线E的左、右顶点,P为直线(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.理得1112,y y y y +(或1212,x x x x +),代入交点坐标后可得结论,如果是求动直线过定点,则可以引入参数求得动直线方程后,观察直线方程得定点.。
高中数学期末备考:解析几何03圆中最值问题含解析

3.圆最值问题一.重要结论1.圆中与距离最值有关的常见的结论:结论1.圆外一点A 到圆上距离最近为AO r ,最远为AO r ;结论2.过圆内一点的弦最长为圆的直径,最短的弦为与过该点的直径垂直的弦;结论3.直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r ,最近为d r ;2.圆中与面积有关的最值结论:结论4.圆的内接三角形面积最大当且仅当其为等边三角形;结论5.过圆外一点P 向圆O 引两条切线,切点记为B A ,,则四边形ABPO 面积的最值等价于圆心到点P 的距离最值.3.圆中与角度有关的最值问题.结论6.圆上两点与圆外一点的连线的夹角(圆外一点为顶点)中,以这两条直线为切线时最大.结论7.圆上一点、圆心与圆外一点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论8.圆上一点、圆外两点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论9.圆内两点,圆上一点(圆上点为顶点)的最大夹角问题(米勒圆问题).4.其他与圆有关的最值问题结论10.两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.二.强化练习1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.52.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.54.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.25.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.26.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.157.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.38.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN 的最大值为()11B.1711D.159.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()1110.(2021新高考1卷).已知点P 在圆 225516x y 上,点 4,0A , 0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA 最小时,PBD.当PBA 最大时,PB 参考答案1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.5【答案】A2.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.【答案】B3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.5【答案】A4.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.2【答案】B5.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.2【答案】D6.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.15【答案】B7.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.3【答案】C8.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN的最大值为()11 B.1711D.15【答案】C9.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()2112D.22【答案】D 10.ACD解析:圆 225516x y 的圆心为 5,5M ,半径为4,直线AB 的方程为142x y,即240x y ,圆心M 到直线AB4 ,所以,点P 到直线AB 的距离的最小值为425 ,最大值为4105,A 选项正确,B 选项错误;如下图所示:当PBA 最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ,BM4MP ,由勾股定理可得BP CD 选项正确.故选:ACD.多圆最值问题研究一.基本原理1.将军饮马模型:如图,动点C 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么CA CB 的最小值即为做点B 关于l 的对称点'B ,然后连接'BB 后其长度.2.三角不等式:任意两边之和大于等于第三边,任意两边之差小于等于第三边,取等条件当且仅当三点共线.如图动点P 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么P A PB 的最大值当且仅当B A P ,,三点共线.倘若B A ,在l 两侧,则需先利用对称将其搬到一侧再寻找最大值!此时,P A PB 的最小值为0,即P 为AB 中垂线与l 的交点.总结:“和最小,化异侧,差最大,转同侧”二.典例分析1.距离和的最小值(公众号:凌晨讲数学)例1.已知圆221:430C x y y ,圆222:6260C x y x y ,M N ,分别为圆1C 和圆2C 上的动点,P 为直线:1l y x 上的动点,则||MP NP 的最小值为A.3 B.333解析:由圆 221:21C x y ,圆 222314C x y ,可知圆1C 圆心为 0,2 ,半径为1,如图,圆2C 圆心为 3,1 ,半径为2,圆1C 关于直线:1l y x 的对称圆为圆 221':311C x y ,连结12'C C ,交l 于P ,则P 为满足使PM PN 最小的点,此时M 点为1'PC 与圆1'C 的交点关于直线l 对称的点,N 为2PC 与圆2C 的交点,最小值为 12'21C C ,而12'C C ,PM PN 的最小值为3 ,故选A.2.距离差的最大值(公众号:凌晨讲数学)例2.已知圆 221:111C x y ,圆 222:459C x y ,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM 的最大值是()A.4B.9C.7D.2解析:圆 221:111C x y 的圆心为 11,1C ,半径为1,圆 222:459C x y 的圆心为 24,5C ,半径为3.max min maxPN PM PN PM ∵,又2max 3PN PC ,1min1PMPC ,2121max314PN PMPC PC PC PC .点 24,5C 关于x 轴的对称点为24,5C ,2121125PC PC PC PC C C,所以,max549PN PM ,故选:B.3.逆用阿波罗尼斯圆1.阿氏圆定义:已知平面上两点B A ,,则所有满足1,|||| PB P A 的动点P 的轨迹是一个以定比为n m :内分和外分定线段AB 的两个分点的连线为直径的圆.若)0,(),0,(b B a A ,则圆的半径为|||1|2AB ,圆心为)0|,|11(22AB .(公众号:凌晨讲数学)2.结论:已知圆222)()(r b y a x 上任意一点P 和坐标轴上任意两点B A ,,求形如)(PB P A PB P A 的最值问题,可逆用阿氏圆转化为三点共线最值计算.例3.已知圆C 是以点 2,M 和点 6,N 为直径的圆,点P 为圆C 上的动点,若点2,0A ,点 1,1B ,则2PA PB 的最大值为()B.4C.8解析:由题设,知:(4,0)C 且||8MN ,即圆C 的半径为4,∴圆C :22(4)16x y ,如上图,坐标系中(4,0)D 则24OD AC CP OC ,∴12AC PC CP DC ,即△APC △PCD ,故12PA PD ,(亦可逆用阿氏圆,其实就是阿氏圆的几何推导).∴2||||PA PB PD PB ,在△PBD 中||||||PD PB BD ,∴要使||||PD PB 最大,,,P B D 共线且最大值为||BD 的长度.∴||BD 故选:A例4.在平面直角坐标系xOy 中,点P 在圆22:(8)16C x y -+=上运动,(6,0),(6,1),A B 则2PB PA 的最小值为()B.6C.D.2解析:P 为圆C 上任意一点,圆的圆心 8,0C ,半径4r ,如下图所示,4PC ∵,8OC ,2AC 12AC PC PC OC ,PAC OPC 12PA OP,即2OP PA ,2PB PA PB OP ,又PB OP OB (当且仅当P 为线段OB与圆C 的交点时取等号),2PB PA OB 2PB PA本题正确选项:A三.练习题(公众号:凌晨讲数学)1.已知,P Q 分别是直线:20l x y 和圆22:1C x y 上的动点,圆C 与x 轴正半轴交于点(1,0)A ,则PA PQ 的最小值为2B.251210122.已知P ,Q 分别是圆 22:48C x y ,圆 22:41D x y 上的动点,O 是坐标原点,则22PQ PO的最小值是______.3.平面直角坐标系中,点3,3A 、 3,3B 、23,0C ,动点P 在ABC 的内切圆上,则12PC PA 的最小值为_________.4.在平面直角坐标系xOy 中,若(0,1)A ,点B 是圆:C 22230x y x 上的动点,则2AB BO 的最小值为__________.。
高中数学解析几何基础复习 题集附答案

高中数学解析几何基础复习题集附答案高中数学解析几何基础复习题集附答案在高中数学中,解析几何是一个非常重要的内容。
解析几何是指在直角坐标系中,通过代数的方法来研究几何问题。
掌握解析几何的基础知识对于学习高中数学以及应用数学都非常有帮助。
为了帮助大家进行复习,下面将提供一些高中数学解析几何基础题目,并附上详细的答案解析。
1. 已知直线L1:2x + 3y = 5和L2: y = 4x - 1,求两直线的交点坐标。
解析:首先将直线L1和L2的方程组合,得到2x + 3(4x - 1) = 5,化简得到14x - 3 = 5,继续化简得到14x = 8,x = 8/14 = 4/7。
代入L2的方程求y的值,得到y = 4(4/7) - 1 = 16/7 - 7/7 = 9/7。
所以两直线的交点坐标为(4/7, 9/7)。
2. 已知直线L:x + y = 4和曲线C:x^2 + y^2 = 5,求直线与曲线的交点坐标。
解析:将直线L的方程代入曲线C的方程中,得到(x + y)^2 + y^2 = 5,展开得到x^2 + y^2 + 2xy + y^2 = 5,化简得到x^2 + 2xy + 2y^2 = 5。
由于直线L与曲线C有交点,所以存在某个x和y满足这个方程。
观察方程的左边,可以发现它可以写成(x + y)^2 + y^2 = 5,也就是(x +y)^2 = 5 - y^2。
由于(x + y)^2必须大于等于0,所以5 - y^2必须大于等于0,解这个不等式得到-√5 ≤ y ≤ √5。
将y的取值范围代入方程(x +y)^2 = 5 - y^2,解得x = 4 - y。
因此,两直线的交点坐标为(x, y) = (4 - y, y),其中-√5 ≤ y ≤ √5。
3. 已知平面内三点A(1, 2),B(3, -4),C(-2, 3),判断是否共线。
解析:判断三点是否共线可以利用向量的共线条件。
设有两个向量AB和AC,若这两个向量共线,则存在一个实数k,使得AB = kAC。
高中数学期末备考:解析几何05圆中的坐标方法含解析

5.圆中的坐标方法1.直线与圆位置关系:判定方法——代数法。
将直线方程与椭圆方程联立消去一个未知数,得到一个一元二次方程,判断方程解的情况:△>0,方程有两个不同的解,则直线与椭圆相交;△=0,方程有两个相等的解,则直线与椭圆相切;△<0,方程无解,则直线与椭圆相离.2.弦长的一般形式设A(11,y x ),B(22,y x )弦长221221)()(y y x x AB =2122124)(1x x x x k =2122124)(11y y y y k二.典例分析例1.已知直线l 过定点 0,2,且与圆22:20C x x y 交于M 、N 两点.(1)求直线l 的斜率的取值范围.(2)若O 为坐标原点,直线OM 、ON 的斜率分别为1k 、2k ,试问12k k 是否为定值?若是,求出该定值;若不是,请说明理由.解析:(2)设 11,M x y , 22,N x y ,设直线l 的方程为2y kx ,将该直线的方程与圆C 的方程联立,列出韦达定理,利用斜率公式结合韦达定理可计算得出12k k 的值.(1)圆C 的标准方程为 2211x y ,圆心为 1,0C ,半径为1.若直线l 的斜率不存在,此时直线l 与圆C 相切,不合乎题意.所以,直线l 的斜率存在,设直线l 的方程为2y kx ,1,解得34k .因此,直线l 的斜率的取值范围是3,4 .(2)设 11,M x y , 22,N x y ,设直线l 的方程为2y kx .联立22220y kx x x y,得 2214240k x k x ,其中34k ,所以122241k x x k ,12241x x k , 1221121212122112121212122222kx x kx x kx x x x y y y x y x k k x x x x x x x x2224212212141kk k k k k ,所以12k k 为定值1.例2.已知圆C 的圆心坐标为C (3,0),且该圆经过点A (0,4).(1)求圆C 的标准方程;(2)直线n 交圆C 于的M ,N 两点(点M ,N 异于A 点),若直线AM ,AN 的斜率之积为2,求证:直线n 过一个定点,并求出该定点坐标.解:(1)设圆的标准为222(3)x y r ,把(0,4)A 代入得=5r ,故圆的标准方程为22(3)25x y .(2)证明:当直线n 斜率不存在时,设(,)M a b , ,N a b ,∵直线AM ,AN 的斜率之积为2,(0,4)A ,442,0b b a a a ,即22162,0b a a ,∵点(,)M a b 在圆上, 22325a b ,联立2222162325b a a b ,04a b,舍去,当直线n 斜率存在时,设直线n :y kx t ,1(M x ,1)kx t ,2(N x ,2)kx t ,22121212124422440AM AN kx t kx t k k k x x k t x x t x x ①联立方程22222126160325y kx t k x kt x t x y ,122261kt x x k ,2122161t x x k ,代入①,得 2222216426410k t kt k kt t k ,化简得26t k或4t ,若4t ,则直线n 过 0,4,与题设矛盾,舍. 直线n 的方程为:26t y x t ,所以(+1)20,+1=066x x t x y 且20x y 所以6,12x y .所以过定点(6,12) .练习题已知圆C 过点 1,2,2,1A B ,且圆心C 在直线y x 上.P 是圆C 外的点,过点P 的直线l 交圆C 于,M N 两点.(1)求圆C 的方程;(2)若点P 的坐标为 0,3 ,求证:无论l 的位置如何变化PM PN 恒为定值;(3)对于(2)中的定值,使PM PN 恒为该定值的点P 是否唯一?若唯一,请给予证明;若不唯一,写出满足条件的点P 的集合(不必证明).解析:(1)B 两点的中点为33,22 ,斜率为12121AB k , AB 垂直平分线的斜率为1,垂直平分线的方程为:y =x ,联立方程y x y x,解得x =0,y =0, 圆心为(0,0),半径为r ,圆C 的方程为:225x y ;(2)如图:若MN 斜率不存在,则3PN ,3PM ,4PM PN ;若MN 斜率存在,设为k ,则MN 直线方程为y =kx -3,联立方程:2253x y y kx,解得: 221640k x kx ,设 1122,,,M x y N x y ,则12122264,11k x x x x k k,PM PN , 21214PM PN k x x ,即不论MN 斜率是否存在4PM PN ,为定值4;(3)不妨设P (a ,b ),当MN 斜率不存在时,联立方程:225x y x a ,解得:y ,225PM PN b b a b ;若MN 斜率存在,设为k ,则直线MN 的方程为 y kx b ak ,联立方程: 225x y y kx b ak ,解得:2221250k x k b ak x b ak , 212122225,11k b ak b ak x x x x k k ,2212121PM PN k x x a x x a 225a b ,即不论P 点在何处,MN 的斜率是否存在,225PM PN a b ,为定值;综上,圆C 的方程为225x y ,4PM PN ,P 点不唯一,其集合为 ,,P a b a b R .。
高中数学平面解析几何练习题(含解析)

高中数学平面解析几何练习题(含解析)一、单选题1.若曲线C :2224100x y ax ay a ++--=表示圆,则实数a 的取值范围为( ) A .()2,0- B .()(),20,-∞-⋃+∞ C .[]2,0-D .(][),20,-∞-+∞2.过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x =B .24y x =-C .212=-x yD .212x y =3.过 ()()1320A B --,,,两点的直线的倾斜角是( )A .45︒B .60︒C .120D .1354.已知()3,3,3A ,()6,6,6B ,O 为原点,则OA 与BO 的夹角是( ) A .0B .πC .π2D .2π35.已知抛物线2:4C y x =与圆22:(1)4E x y -+=交于A ,B 两点,则||AB =( )A .2B .C .4D .6.已知抛物线2x my =焦点的坐标为(0,1)F ,P 为抛物线上的任意一点,(2,2)B ,则||||PB PF +的最小值为( )A .3B .4C .5D .1127.动点P ,Q 分别在抛物线24x y =和圆228130+-+=x y y 上,则||PQ 的最小值为( )A .B C D 8.直线2360x y +-=关于点(1,1)对称的直线方程为( ) A .3220x y -+= B .2370x y ++= C .32120x y --=D .2340x y +-=9.已知椭圆2222:1()0x c bb y a a +>>=的上顶点为A ,左、右焦点分别为12,F F ,连接2AF 并延长交椭圆C 于另一点B ,若12:7:3F B F B =,则椭圆C 的离心率为( )A .14B .13C .12D 10.“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题11.直线2310x y -+=与5100x y +-=的夹角为________.12.已知圆:C 2220x y x ++=,若直线y kx =被圆C 截得的弦长为1,则k =_______. 13.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________. 14.写出与圆221x y +=和圆()()224316x y -++=都相切的一条切线方程___________.三、解答题15.已知△ABC 底边两端点(0,6)B 、(0,6)C -,若这个三角形另外两边所在直线的斜率之积为49-,求点A 的轨迹方程.16.已知1F 、2F 是椭圆()2222:10x yC a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F △的面积为9,求实数b 的值.17.已知圆C :22120x y Dx Ey +++-=关于直线x +2y -4=0对称,且圆心在y 轴上,求圆C 的标准方程.18.已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ λ⋅+⋅为定值?若存在,求出λ的值;若不存在,说明理由.参考答案:1.B【分析】根据圆的一般式变形为标准式,进而可得参数范围. 【详解】由2224100x y ax ay a ++--=, 得()()2222510x a y a a a ++-=+, 由该曲线表示圆, 可知25100a a +>, 解得0a >或2a <-, 故选:B. 2.C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C 3.D【分析】根据两点坐标求出直线的斜率,结合直线倾斜角的范围即可得出结果. 【详解】由已知直线的斜率为 ()03tan 1018021k αα--===-≤<--,,所以倾斜角135α=. 故选:D. 4.B【分析】求出OA 和BO ,利用向量关系即可求出.【详解】因为()3,3,3A ,()6,6,6B ,则()3,3,3OA =,()6,6,6BO =---, 则3cos ,1OA BO OA BO OA BO⨯⋅<>===-⋅,所以OA 与BO 的夹角是π. 故选:B. 5.C【分析】先联立抛物线与圆求出A ,B 横坐标,再代入抛物线求出纵坐标即可求解.【详解】由对称性易得A ,B 横坐标相等且大于0,联立()222414y xx y ⎧=⎪⎨-+=⎪⎩得2230x x +-=,解得123,1x x =-=,则1A B x x ==,将1x =代入24y x =可得2y =±,则||4AB =. 故选:C. 6.A【分析】先根据焦点坐标求出m ,结合抛物线的定义可求答案. 【详解】因为抛物线2x my =焦点的坐标为()0,1,所以14m=,解得4m =. 记抛物线的准线为l ,作PN l ⊥于N ,作BAl 于A ,则由抛物线的定义得||||||||||3PB PF PB PN BA +=+=,当且仅当P 为BA 与抛物线的交点时,等号成立.故选:A. 7.B【分析】设2001,4P x x ⎛⎫⎪⎝⎭,根据两点间距离公式,先求得P 到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设2001,4P x x ⎛⎫⎪⎝⎭,圆化简为22(4)3x y +-=,即圆心为(0,4)所以点P 到圆心的距离d = 令20t x =,则0t ≥, 令21()1616f t t t =-+,0t ≥,为开口向上,对称轴为8t =的抛物线, 所以()f t 的最小值为()812f =,所以min d所以||PQ的最小值为min d =故选:B 8.D【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,以(2,2)x y --代换原直线方程中的(,)x y 得()()223260x y -+--=,即2340x y +-=.故选:D. 9.C【分析】根据椭圆的定义求得12,F B F B ,在1ABF 中,利用余弦定理求得22cos F AF ∠,在12AF F △中,再次利用余弦定理即可得解.【详解】解:由题意可得122F B F B a +=, 因为12:7:3F B F B =, 所以1273,55F B a F B a ==, 因为A 为椭圆的上顶点,所以12AF AF a ==,则85AB a =,在1ABF 中,22222211221644912525cos 82225a a a AF AB BF F AF AF ABa a +-+-∠===⨯⨯,在12AF F △中,122212121222cos F F AF AF A F A F A F F =+∠-, 即222224c a a a a =+-=,所以12c a =,即椭圆C 的离心率为12. 故选:C.10.A【分析】根据给定直线方程求出12l l ⊥的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】依题意,12(4)(2)0l l m m m m ⊥⇔-++=,解得0m =或1m =,所以“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的充分不必要条件. 故选:A 11.4π##45︒ 【分析】根据直线方程可得各直线斜率,进而可得倾斜角之间的关系,从而得夹角. 【详解】直线2310x y -+=的斜率123k ,即倾斜角α满足2tan 3α=, 直线5100x y +-=的斜率215k =-,即倾斜角β满足1tan 5β=-,所以()12tan tan 53tan 1121tan tan 153βαβαβα----===-+⎛⎫+-⨯ ⎪⎝⎭, 所以34βαπ-=,又两直线夹角的范围为0,2π⎡⎤⎢⎥⎣⎦,所以两直线夹角为4π,故答案为:4π. 12.【分析】将圆C 一般方程化为标准方程,先求圆心到直线的距离,再由圆的弦长公式即可解出k 的值.【详解】解:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1;圆心()1,0-到直线y kx =,由弦长为1可得1=,解得k =故答案为:13.()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心) 设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒===22(2)(3)13x y -+-=; (2)若圆过A B D 、、三点, 设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==22(2)(1)5x y -+-=;(3)若圆过 A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程 为25y x =-+,联立得47,33x y r ==⇒,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =, 线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=. 故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.14.1y =或247250x y ++=或4350x y --=【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123,,l l l , 易得切线1l 的方程为1y =,因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=,可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上, 在1l 上任取一点()0,1,设其关于OC 的对称点为()00,x y , 则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=, 综上,切线方程为1y =或247250x y ++=或4350x y --=. 故答案为:1y =或247250x y ++=或4350x y --=.15.()22108136x y x +=≠【分析】设(,)A x y ,利用斜率的两点式列方程并整理可得轨迹方程,注意0x ≠. 【详解】设(,)A x y 且0x ≠,则22663649AB ACy y y k k x x x -+-=⋅==-, 整理得:A 的轨迹方程()22108136x y x +=≠. 16.3b =【分析】由题意以及椭圆的几何性质列方程即可求解. 【详解】因为12PF PF ⊥,所以1290F PF ∠=︒, 所以12F PF △为直角三角形,22212(2)PF PF c +=,122PF PF a +=, ()2221212122PF PF PF PF PF PF +=+-⋅,即()()221212242c a PF PF =-⨯⋅, 1212192F PF S PF PF =⋅=△, 所以2244490c a =-⨯=,所以2449b =⨯.所以3b =; 综上,b =3.17.22(2)16x y +-=. 【分析】由题设知圆心(,)22D EC --,且在已知直线和y 轴上,列方程求参数D 、E ,写出一般方程,进而可得其标准方程. 【详解】由题意知:圆心(,)22D EC --在直线x +2y -4=0上,即-2D -E -4=0. 又圆心C 在y 轴上,所以-2D=0. 由以上两式得:D =0, E =-4,则224120x y y +--=, 故圆C 的标准方程为22(2)16x y +-=.18.(1)2211222x y ⎛⎫+-= ⎪⎝⎭ (2)存在,1λ=【分析】(1)①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,利用点差法求解; ②当直线l 不存在斜率时,易知()0,0M ,验证即可;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,与椭圆方程联立,结合韦达定理,利用数量积运算求解; ②当直线l 不存在斜率时,直线l 的方程为:0x =,易得(P、(0,Q ,验证即可.【详解】(1)解:①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,则应用点差法:22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式联立作差得:12121212()()()()042x x x x y y y y -+-++=, ∴()()()()121200121212121212002122PQ PQ PQ OM y y y y y y y y y y k k k k x x x x x x x x x x -+-+=⋅=⋅=⋅=⋅=--+-+, 又∵001PQ MA y k k x -==, ∴0000112y y x x -⋅=-,化简得22000220x y y +-=(00x ≠), ②当直线l 不存在斜率时,()0,0M ,综上,无论直线是否有斜率,M 的轨迹方程为2211222x y ⎛⎫+-= ⎪⎝⎭;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,联立221142y kx x y =+⎧⎪⎨+=⎪⎩并化简得:22(21)420k x kx ++-=,∴0∆>恒成立,∴122421k x x k +=-+,122221x x k ⋅=-+,又AP ()11,x k x =⋅,AQ ()22,x k x =⋅,OP ()11,1x k x =⋅+,OQ ()22,1x k x =⋅+,∴AP AQ OP OQ λ⋅+⋅()()()22121212111k x x k x x k x x λ=+⋅⋅++⋅⋅+++,()()()222222211222141212121k k k k k k λλλ-+++++=-+=-+++, 若使AP AQ OP OQ λ⋅+⋅为定值, 只需()222121λλ++=,即1λ=,其定值为3-, ②当直线l 不存在斜率时,直线l 的方程为:0x =,则有(P、(0,Q , 又AP ()1=,AQ ()0,1=,OP (=,OQ (0,=, ∴2λλ⋅+⋅=--AP AQ OP OQ ,当1λ=时,AP AQ OP OQ λ⋅+⋅也为定值3-, 综上,无论直线是否有斜率,一定存在一个常数1λ=, 使AP AQ OP OQ λ⋅+⋅为定值3-.。
高中数学解析几何题型

解析几何题型考点 1.求参数的值求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手 ,构造方程解之 .例 1.假设抛物线 y 22 px 的焦点与椭圆 x 2 y 2 p 的值为〔〕 6 1的右焦点重合,那么2A . 2B . 2C . 4D . 4考查意图 : 此题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的根本几何性质 .解答过程:椭圆 x 2y 21的右焦点为 (2,0),所以抛物线 y 22 px 的焦点为 (2,0),那么 p 4,62考点 2. 求线段的长求线段的长也是高考题中的常见题型之一 ,其解法为从曲线的性质入手 ,找出点的坐标 ,利用距离公式解之 .例 2.抛物线 y-x 2+3 上存在关于直线x+y=0 对称的相异两点 A 、B ,那么 |AB| 等于22考查意图 : 此题主要考查直线与圆锥曲线的位置关系和距离公式的应用.解:设直线 AB 的方程为 yx b ,由 yx 2 3 x 2 x b 3 0x 1 x 2 1,yx b进而可求出 AB 的中点 M ( 1 ,1 b) ,又由 M ( 1 , 1 b) 在直线 x y 0 上可求出22 2 2b 1 ,∴ x 2x2 0 ,由弦长公式可求出 AB1 12 12 4 ( 2)3 2 .22例 3.如图,把椭圆x y1 的长轴25 16AB 分成 8 等份,过每个分点作x 轴的垂线交椭圆的上半部分于 1 23 45 67七个点, F 是椭圆的一个焦点,P ,P , P , P , P , P , P那么PF 1P 2 F P 3F P 4F P 5F P 6 F P 7 F ____________.考查意图 : 此题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆 x 2y 2 1 的方程知 a 2 25, a 5.25 16∴PF 1PF 2 P 3FP 4F P 5F P 6 F P 7 F 7 2a7 a 7 5 35.2考点 3. 曲线的离心率曲线的离心率是高考题中的热点题型之一,其解法为充分利用 :(1)椭圆的离心率 e=c∈(0,1) (e 越大那么椭圆越扁 );a (2) 双曲线的离心率 e=c∈(1, +∞ ) (e 越大那么双曲线开口越大). a例 4.双曲线的离心率为 2 ,焦点是 ( 4,0) , (4,0) ,那么双曲线方程为A. x2 y2 1 B. x2 y 2 1 C. x2 y2 1 D. x2 y 2 14 12 12 4 10 6 6 10考查意图 :此题主要考查双曲线的标准方程和双曲线的离心率以及焦点等根本概念.解答过程:Q e c 2,c 4, 所以a 2, b2 12. 应选(A).a例 5.双曲线3x 2 y 2 9 ,那么双曲线右支上的点P到右焦点的距离与点P 到右准线的距离之比等于〔〕A. 2B. 2 3C. 2 3考查意图 : 此题主要考查双曲线的性质和离心率 e=c∈ (1, +∞ ) 的有关知识的应用能力 . a解答过程:依题意可知 a 3, c a2 b 2 3 9 2 3.考点 4.求最大 (小 )值求最大 (小 )值 , 是高考题中的热点题型之一.其解法为转化为二次函数问题或利用不等式求最大 (小 )值 :特别是 ,一些题目还需要应用曲线的几何意义来解答.例 6.抛物线 y2=4x,过点 P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,那么 y12+y22的最小值是.考查意图 : 此题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小 )值的方法 . 解: 设过点 P(4,0)的直线为y k x 4 , k 2 x2 8x 16 4x,k 2 x2 8k 2 4 x 16 k2 0,y 2 y 2 4 x1 x2 4 8k 2 4 16 2 1 32.1 2k2 k2故填 32.考点 5 圆锥曲线的根本概念和性质例 7.在平面直角坐标系xOy 中 ,圆心在第二象限、半径为 2 2的圆 C 与直线 y=x 相切于坐标原点 O.椭圆x2 y2 =1 与圆 C 的一个交点到椭圆两焦点的距离之和为10.a2 9〔1〕求圆 C 的方程;〔2〕试探究圆 C 上是否存在异于原点的点Q,使 Q 到椭圆右焦点 F 的距离等于线段OF 的长.假设存在,请求出点Q 的坐标;假设不存在,请说明理由.[解答过程 ] (1) 设圆 C 的圆心为(m, n)那么mn, 解得m2,n 2 2 2, n 2.所求的圆的方程为(x 2) 2 ( y 2) 2 8 (2) 由可得2a 10 , a 5 .椭圆的方程为x2 y2右焦点为F( 4, 0) ;251 ,9假设存在 Q 点 2 2 2 cos ,2 2 2 sin 使QF OF ,2 2 2 cos22 2 2 sin2.4 4整理得sin 3cos 2 2 ,代入 sin2 cos2 1 .212 2 cos 7 0 , cos 12 2 8 12 2 2 2得:10cos 10 10 1.因此不存在符合题意的Q 点 .例 8.如图 ,曲线 G 的方程为y2 2 x( y 0) .以原点为圆心,以t (t 0)为半径的圆分别与曲线G 和 y 轴的正半轴相交于 A 与点 B.直线 AB 与 x 轴相交于点 C.〔Ⅰ〕求点 A 的横坐标 a 与点 C 的横坐标 c 的关系式;〔Ⅱ〕设曲线G 上点 D 的横坐标为 a 2 ,求证:直线CD的斜率为定值. [ 解答过程 ] 〔 I〕由题意知,A(a, 2a).因为 | OA | t,所以 a 2 2a t 2 .由于t 0,故有t a 2 2a . 〔1〕由点 B〔0, t 〕, C〔 c,0〕的坐标知,直线BC的方程为xy 1.c t又因点 A 在直线 BC上,故有a2a 1, c t将〔 1〕代入上式,得 a 2a 1,解得c a 2 2( a 2) .c a(a 2)(I I〕因为D(a 2 2(a 2) ),所以直线 CD 的斜率为kCD 2( a 2)2(a2)2(a 2)a 2 ca 2 ( a 22(a2) )2(a1,2)所以直线 CD 的斜率为定值 .22例 9.椭圆 E :x2y 21(ab 0) ,AB 是它的一条弦,M(2,1) 是弦 AB 的中点,假设以ab点 M(2,1) 为焦点,椭圆 E 的右准线为相应准线的双曲线C 和直线 AB 交于点 N(4, 1) ,假设椭圆离心率e 和双曲线离心率 e 1 之间满足 ee 1 1 ,求:〔1〕椭圆 E 的离心率;〔 2〕双曲线 C 的方程 .解答过程:〔 1〕设 A 、 B 坐标分别为 A(x 1 , y 1 ), B(x 2 , y 2 ) , 那么x 12 y 121 ,x 22y 22 1 ,二式相减得:a2b2a 2b2ky 1 y 2 (x 1x 2 )b 2 2b 2 kMN1 ( 1)ABx 1 x 2(y 1y 2 )a 2a 21,2 4所以 a 22b 2 2(a 2 c 2 ) , a 2 2c 2 ,那么ec2 ;a2〔2〕椭圆 E 的右准线为 xa 2 ( 2c) 22c ,双曲线的离心率 e 11 2 ,cce设 P(x, y) 是双曲线上任一点,那么:| PM | (x 2)2 (y 1)22,| x 2c || x 2c |两端平方且将 N(4, 1) 代入得: c 1或 c 3 ,当 c 1时,双曲线方程为: (x 2) 2 (y 1)20 ,不合题意,舍去;当 c 3时,双曲线方程为:(x 10)2 (y1) 2 32 ,即为所求 .考点 6利用向量求曲线方程和解决相关问题例 10.双曲线 C 与椭圆x 2y 21有相同的焦点,直线 y=3x 为 C 的一条渐近线 .8 4(1)求双曲线 C 的方程;(2)过点 P(0,4)的直线 l ,交双曲线C 于 A,B 两点,交 x 轴于 Q 点〔 Q 点与 C 的顶点不重合〕 .uuuruuuruuur8时,求 Q 点的坐标 .当PQ1QA2 QB,且123考查意图 : 此题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力 ,以及运用数形结合思想 ,方程和转化的思想解决问题的能力. 解答过程:〔Ⅰ〕设双曲线方程为x 2 y 2 1 ,a2b 2由椭圆 x2y 2 1,求得两焦点为 ( 2,0),(2,0) ,8 4对于双曲线 C : c 2 ,又 y3x 为双曲线 C 的一条渐近线b 3 解得 a 21,b 23 ,a双曲线 C 的方程为 x 2 y 2 13〔Ⅱ〕解法一:由题意知直线 l 的斜率 k 存在且不等于零 .设 l 的方程: y kx 4, A( x , y ) , B( x 2 , y 2 ) ,那么Q( 4,0) .11kuuuruuur 4 4Q PQ1 QA, ( 1( x 1, 4) , y 1).k k 44 )x 14 41 (x 1 k k1kk 44 1y 1 y 11Q A( x 1 , y 1) 在双曲线 C 上,162 (11 )216 10 .k1116 32 1 16 1216 k2k220.(16 k 2) 1232 11616k 2 0.33同理有: (16 k 2)2232 216 16 k 2 0.3假设16k 20, 那么直线l过顶点,不合题意 .16 k 20,1, 2 是二次方程(16k 2 )x 2 32x 16 16 k 2 0.的两根 .8 , 31232k 4 ,此时 0, k 2 .2k 2 163所求 Q 的坐标为 ( 2,0) .解法二:由题意知直线l 的斜率 k 存在且不等于零设 l 的方程, y kx 4, A( x , y ), B(x 2, y ) ,那么Q( 4,0) .112kuuuruuurQ uur1 . Q PQ1QA,分 PA 的比为由定比分点坐标公式得4 1x 1 x 14(1 1 ) k 1 1k 14 1y 14y 1111下同解法一解法三:由题意知直线l 的斜率 k 存在且不等于零设 l 的方程: y kx4, A( x 1, y 1 ), B( x 2 , y 2 ) ,那么Q(4,0) .kuuuruuuruuur( 4, 4)1( x 1 4, y 1)4, y 2 ) .Q PQ1 QA2QB ,2(x 2k kk41y1 2 y 2,14,24 ,y 1y 2又 128 , 1 1 2,即 3( y 1 y 2 ) 2 y 1 y 2 .3y 1 y 23将 y kx 4 代入 x2y 2 1得 (3 k 2 )y 224 y 48 3k 20 .3Q 3 k 20 ,否那么l与渐近线平行 .y 1 y 23 24 , y 1y 2 48 3k 2 .k 2 3 k 22448 3k 2 . k 2 3 3 k 2 23 k 2Q( 2,0) .解法四: 由题意知直线 l 得斜率 k 存在且不等于零, 设 l 的方程: y kx 4 , A( x 1 , y 1 ), B( x 2, y 2 ) ,那么Q(4 k ,0)uuuvuuuv(x 14, y 1 ) .Q PQ1 QA, ( 4, 4)1kk4 441k.同理1.4 kx 1 4kx 2 4x 1k12 44 8 .kx 1 4kx 2 43即2k 2 x x25k( xx ) 8.〔 * 〕1 1 2y kx 4又x2y 213消去 y 得 (3k 2 ) x 2 8kx 190 .当 3 k 20 时,那么直线 l 与双曲线得渐近线平行,不合题意,3 k 20 .x 1x 28kk 2由韦达定理有:319x 1 x 23 k 2代入〔 * 〕式得k 2 4, k2 .所求 Q 点的坐标为 ( 2,0) .例 11.设动点 P 到点 A(- l ,0)和 B(1, 0)的距离分别为 d 1 和 d 2,∠APB = 2θ,且存在常数λ (0<λ< 1= ,使得 d 1 d 2 sin 2θ=λ.( 1〕证明:动点 P 的轨迹 C 为双曲线,并求出 C 的方程;( 2〕过点 B 作直线交双曲线 C 的右支于 M 、 N 两点 ,试确定λ的范围 ,使 OM · ON = 0,其中点 O 为坐标原点.[解答过程 ] 解法 1:〔 1〕在 △PAB 中, AB2 ,即 22d 12 d 22 2d 1d 2 cos 2 ,4 (d 1 d 2 ) 2 4d 1d 2 sin 2,即d 1 d 244d 1d 2 sin 22 12 〔常数〕,点 P 的轨迹 C 是以 A ,B 为焦点,实轴长 2a2 1 的双曲线.方程为: x 2y 211.(2〕设M (x 1,y 1),N (x 2,y 2)①当 MN 垂直于 x 轴时, MN 的方程为 x 1 , M (11), , N (1, 1) 在双曲线上.即11 1115,因为 01 ,所以5 1 .2122②当 MN 不垂直于 x 轴时,设 MN 的方程为 y k( x1) .x 2 y 21 得:(1 )k 2 x22(1 )k 2x (1)( k2),由1yk( x 1)由题意知:(1)k 2,所以x 1x 2 2k 2 (1) ,x 1x 2(1 )( k 2) .(1 )k 2(1 )k 2于是:y 1 y 2k 2 (x 1 1)(x 2 1)k 2 2.(1) k 2因为 OM ON0,且 M ,N 在双曲线右支上,所以x 1x 2x 1x 1x 2y 1y 2 0 k 22(1 )(1 )5 1 2.x 2 012 1 12223k1 01由①②知,5 12 .2≤3解法 2:〔 1〕同解法 1(2〕M ( x1,y1),N( x2,y2),MN的中点E(x0,y0).①当 x1 x22121 0,1,MB 1因 0 1 ,所以 5 1 ;2x 2 y 21 1 1②当 x1 x2, 1 x0 .kMNx22 y22 1 y011又k MN kBE y0 .所以(1 ) y02 x02 x 0;x0 1MN 2MN2 2由∠ MON 得x02 y02 ,由第二定得e(x1 x2 ) 2a22 2 2121x0 1 x02 (1 ) 2x0.1 1所以 (1 ) y02 x02 2(1 ) x0 (1 ) 2.于是由(1 ) y02 x02 x0, 得x (1 ) 2 .(1 ) y02 x02 2(1 )x0 (1 ) 2, 0 2 3因 x0 1,所以(1)2 1,又0 1,2 3解得: 5 1 2.由①②知 5 1 ≤ 2 .2 3 2 3 考点 7 利用向量理曲中的最例 12. E 的中心在坐原点O,焦点在 x 上,离心率3,点 C( 1,0) 的直3uuur uuurAOB 的面到达最大直和 E 的方交 E 于 A、 B 两点,且 CA 2BC ,求当程.解答程:因的离心率3,故可方程2x 2 3y 2 t(t 0) ,直方程3my x 1,由2x2 3y2 t得: (2m 2 3)y 2 4my 2 t 0 ,A(x1, y1), B(x2, y2),my x 1y4my1 y2 ⋯⋯⋯⋯① A 2m 2 3CoxBuuur uuury 2) ,即 y 1 2y 2 ⋯⋯⋯⋯②又 CA2BC ,故 (x 1 1,y 1)2( 1 x 2,由①②得: y 18m,y 24m ,2m 22m 233S AOB1| y 1 y 2 | 6 | m 3 |=66 ,22m 2322| m || m |当 m 23,即m6,AOB 面 取最大 ,22此y 1y 22 t32m 2 ,即 t 10 ,2m 2 3(2m 2 3)2所以,直 方程 x6 y 1 0 , 方程 2x23y 210 .2uuur(xuuur(xuuuruuur6 ,求| 2x 3y 12 |的最大例 13. PA 5, y) , PB5, y) ,且 | PA | | PB |和最小 .解答 程:P(x, y) ,A( 5,0) , B( 5, 0) , uuur uuur6 ,且 | AB | 2 5 6 , 因 | PA | | PB |所以, 点 P 的 迹是以 A 、 B 焦点,6 的 ,方程 x 2y 2 1,令 x3cos , y 2sin,94| 2x3y 12 |= | 6 2 cos(4) 12 |,当cos() 1 , | 2x3y 12 |取最大4当cos() 1 , | 2x 3y 12 |取最小412 6 2 ,12 6 2 .考点 8 利用向量 理 曲 中的取 范例 14.〔 2006 年福建卷〕x 2y 21的左焦点 F ,2O 坐 原点 .y〔I 〕求 点 O 、 F ,并且与 的左准l 相切的 的方程;B〔II 〕 点 F 且不与坐 垂直的直 交 于 A 、 B 两点,FGOx段 AB 的垂直平分 与x 交于点 G ,求点 G 横坐 的取 范.lA考 意 :本小 主要考 直 、 、 和不等式等根本知 ,考平面解析几何的根本方法,考 运算能力和 合解 能力.解答 程:〔I 〕Q a 2 2,b 2 1, c 1,F ( 1,0), l : x2.Q 圆过点 O 、 F ,圆心 M 在直线 x1上 .2设M (1,t), 那么圆半径 r (1 ) ( 2)3 .222由OMr,得( 1 )2 t 2 3 ,2 2 解得 t2.所求圆的方程为 (x1)2 (y2) 2 9 .24 〔II 〕设直线 AB 的方程为 y k( x 1)(k 0),代入 x 2y 21,整理得(1 2k 2 )x 2 4k 2 x 2k 2 2 0.2Q 直线 AB 过椭圆的左焦点 F , 方程有两个不等实根 .记A( x 1, y 1), B( x 2, y 2), AB 中点 N (x 0, y 0),那么x 1x 24 k 2,2k 21AB 的垂直平分线 NG 的方程为 y y 01(x x 0 ).k令 y 0,得x G x 0ky 02k 2 k 2k 2 1 1.1 2k 212k 212 4k22k 22Q k 0,1 0,x G2点 G 横坐标的取值范围为 (1,0).222例 15.双曲线 C : x2y 21(a 0,b0) , B 是右顶点, F 是右焦点,点A 在 x 轴正半abuuuruuur uuur轴上, 且满足 | OA |,| OB |,| OF | 成等比数列, 过 F 作双曲线 C 在第一、 三象限的渐近线的垂线l ,垂足为 P ,uuur uuuruuur uur〔1〕求证: PA OP PA FP ;〔2〕假设 l 与双曲线 C 的左、右两支分别相交于点D,E ,求双曲线 C 的离心率 e 的取值范围 .uuur uuuruuuruuur uuura2a2解答过程:〔 1〕因| OB |2,0) ,| OA |,| OB |,| OF |成等比数列,故| OA |uuur,即 A(|OF |cc直线 l : ya(x c) ,ybDO PE FBx A由y a(x c) a2 abbP(,b x, )y c cauuur(0,ab uuur a2,ab uur b2 ab,故:PAc),OP ( ), FP (c, )c c c uuur uuur a2 b2 uuur uur uuur uuur uuur uur那么: PA OP c2 PA FP ,即PA OP PA FP ;uuur uuur uur uuur uur uuur uuur uuur uuur uuur uuur uur 〔或 PA (OP FP) PA (PF PO) PA OF 0 ,即PA OP PA FP 〕y a c) 4 4 4 2(x (b 2 a )x 2 2 a cx (a c a2 b2 ) 0 ,〔2〕由 bb2x 2 a2 y 2 a2 b2 b2 b2 b2( a4 c2 a2b2 )b2由 x1 x 22 a4bb2〔或由k DF k DO a br r 例 16.a (x,0) , b0 得: b4 a4 b2 c2 a2 a2 e2 2 e 2.b b2 c2 a2 a2 e2 2 e 2 〕ar r r r(1,y) , (a 3b) (a 3b) ,〔 1〕求点P(x, y) 的轨迹C的方程;〔 2〕假设直线y kx m(m 0) 与曲线 C 交于 A、 B 两点,D(0, 1) ,且 | AD | | BD | ,试求 m 的取值范围 .r r ,解答过程:〔〕 a 3b =(x,0) 3(1,y) (x 3, 3y)1r r(x,0) 3(1, y) (x 3, 3y)a 3b =,r r r r r r r r0 ,因 (a 3b) (a 3b) ,故 (a 3b) (a 3b)即 (x 3, 3y) (x 3, 3y) x 2 3y 2 3 0 ,故 P 点的轨迹方程为x2 y 2 1.3y kx m得: (1 3k 2 )x 2 6kmx 3m2 3 0 ,〔2〕由3y2 3x 2设 A(x 1 , y 1), B(x 2 , y 2 ) , A 、 B 的中点为 M(x 0 , y 0 )那么 (6km)24(1 3k 2 )( 3m 2 3) 12(m 2 1 3k 2 ) 0 ,x 1 x 26km , x 0 x 1 x 2 3km , y 0 kx 0 mm ,1 3k 22 1 3k 21 3k 2即 A 、 B 的中点为 (3km2 ,m 2 ) ,1 3k 1 3k m1)(x3km2 ) ,那么线段 AB 的垂直平分线为: y1 2(3kk 1 3k将 D(0, 1) 的坐标代入,化简得: 4m 3k 2 1 ,那么由m 2 1 3k 2得:m24m 0 ,解之得 m0 或 m 4 ,4m 3k 2 1又 4m3k 21 1,所以 m1 ,14 故 m 的取值范围是 () .,0) U (4,4考点 9 利用向量处理圆锥曲线中的存在性问题例 17. A,B,C 是长轴长为4 的椭圆上的三点,点A 是长轴的一个顶点, BC 过椭圆的中uuur uuur uuur uuur心 O ,且 AC BC 0 , | BC | 2 | AC |,〔1〕求椭圆的方程;〔 2 〕如果椭圆上的两点P,Q 使PCQ 的平分线垂直于 OA ,是否总存在实数,使得λuuur uuurPQ λAB ?请说明理由;yC解答过程:〔 1〕以 O 为原点, OA 所在直线为 x 轴建立平面直角坐标系,那么A(2,0) ,OAxx 2 y 2 BQ设椭圆方程为1,不妨设 C 在 x 轴上方,P4b2uuur uuur uuur uuur uuur由椭圆的对称性, | BC | 2 | AC | 2 | OC | | AC | | OC | ,uuur uuur AC OC ,即 OCA 为等腰直角三角形,又 AC BC 0由 A(2,0) 得: C(1,1) ,代入椭圆方程得:b 24,3即,椭圆方程为x 23y 241;42λuuuruuurAB// PQ〕假设总存在实数λAB ,即 ,〔 ,使得 PQ由 C(1,1) 得 B( 1, 1) ,那么 kAB0 ( 1) 1 ,2 ( 1) 3假设设 CP : y k(x 1) 1,那么 CQ :yk(x 1) 1 ,x 23y 21(1 3k 2 )x 2 3k 2 由 44 6k(k 1)x 6k 10 ,y k(x 1) 1由 C(1,1)得 x1 是方程 (1 3k2 )x 2 6k(k 1)x 3k 2 6k 1 0 的一个根,由韦达定理得: x Px P 1 3k 2 6k 1 ,以 k 代 k 得 x Q 3k26k 1 ,1 3k2 1 3k 2故k PQ y P y Qk(x Px Q ) 2k1,故 AB// PQ ,x P x Qx Px Q3uuur uuur即总存在实数 λ,使得 PQ λAB .考点 10 利用向量处理直线与圆锥曲线的关系问题例 18.设 G 、M 分别是 ABC 的重心和外心, A(0, a) , B(0,a)(auuuur uuur0) ,且 GM AB ,〔 1〕求点 C 的轨迹方程;uuur uuur?〔 2〕是否存在直线 m ,使 m 过点 (a,0) 并且与点 C 的轨迹交于 P 、Q 两点,且 OP OQ 假设存在,求出直线 m 的方程;假设不存在,请说明理由. 解答过程:〔 1〕设 C(x, y) ,那么 G( x,y) ,uuuuruuur3 3因为 GMAB ,所以 GM// AB ,那么 M( x,0) ,3由 M 为 ABC 的外心,那么 |MA| | MC | ,即( x )2a2(xx) 2 y 2 ,33整理得:x 2 y 2 1(x0) ;3a2a2〔2〕假设直线 m 存在,设方程为y k(x a) ,y k(x a)由 x 2y 2 1(x得: (1 3k 2 )x 2 6k 2 ax 3a 2 (k 2 1)0 ,3a 2 a 20)设 P(x 1, y 1 ),Q(x 2 , y 2 ) ,那么x 1x 26k 2 a ,x 1x 23a 2 (k 2 1) ,1 3k2 1 3k 2y 1 y 2 k 2 (x 1 a)(x 2 a) k 2[x 1 x 2a(x 1 x 2 ) a 2] =2k 2a 2,1 3k 2uuur uuur0 得: x 1x 2 y 1y 2 0 ,由 OP OQ3a 2 (k 2 1)2k 2a 2 0 ,解之得 k3 , 即1 3k21 3k2又点 (a,0) 在椭圆的内部,直线 m 过点 (a,0) ,故存在直线 m ,其方程为 y 3(xa) . 【专题训练与高考预测】 一、选择题1.如果双曲线经过点 (6, 3) ,且它的两条渐近线方程是y1x ,那么双曲线方程是〔〕3A . x 2y 2 1B . x 2y 21C . x 2y 2 1D . x 2y 2 136 981 9918 32.椭圆x 2y 2 1 和双曲线 x 2 y 21 有公共的焦点,那么双曲线的的渐近线方 5n 22m 2 3n 23m 2程为〔 〕A. x15 yB. y15 x C. x3 yD. y3 x42243.F, F为椭圆x 2 y 2的焦点, M 为椭圆上一点,MF12 a 2 b 2 1(a b 0)1 垂直于 x 轴,且 FMF 1 2 60 ,那么椭圆的离心率为〔 〕A.1B.2 C. 3D. 322324.二次曲线x 2y 2 1,当 m [ 2, 1] 时,该曲线的离心率 e 的取值范围是〔〕4mA. [ 2 , 3]B. [ 3 , 5]C.[ 5 , 6]D. [ 3 , 6 ]2 222 2 2 2 25.直线 m 的方程为 y kx1 ,双曲线 C 的方程为2 y 2 1,假设直线 m 与双曲线 C 的右支 x相交于不重合的两点,那么实数 k 的取值范围是〔 〕A. ( 2, 2)B. (1, 2)C.[ 2, 2)D.[1, 2)6.圆的方程为x 2 y 2 4 ,假设抛物线过点 A( 1,0) , B(1,0) ,且以圆的切线为准线,那么抛物线的焦点的轨迹方程为〔 〕A. x 2 y 21(y0)B. x 2y 2 1(y 0)3 44 3C. x 2 y 2 1(x0)D. x 2y 2 1(x 0)344 3二、填空题7 . 已 知 P 是 以 F 1 、 F 2 为 焦 点 的 椭 圆x 2y 21(a b 0) 上 一 点 , 假设 PF 1 PF 2a 2b 2tan PF 1 F 21,那么椭圆的离心率为______________ .28. 椭圆 x 2 +2y 2=12,A 是 x 轴正方向上的一定点,假设过点 A ,斜率为 1 的直线被椭圆截得的弦长为4 13,点 A 的坐标是 ______________ .39.P 是椭圆x 2y 21 上的点, F 1, F2 是椭圆的左右焦点,设 | PF | | PF | k ,那么 k 的最大值4 3 1 2与最小值之差是 ______________ . 10.给出以下命题:①圆 (x2) 2 (y 1)2 1关于点 M(1,2) 对称的圆的方程是 (x 3) 2(y3)2 1 ;②双曲线 x2y 2 1 右支上一点 P 到左准线的距离为 18,那么该点到右焦点的距离为29 ;16 92③顶点在原点,对称轴是坐标轴,且经过点( 4, 3) 的抛物线方程只能是y29x ;4④ P 、 Q 是椭圆 x 2 4y 216 上的两个动点, O 为原点,直线 OP,OQ 的斜率之积为1,那么4|OP |2 | OQ|2 等于定值 20 .把你认为正确的命题的序号填在横线上 _________________ .三、解答题11.两点 A( 2,0), B(2, 0) ,动点 P 在 y 轴上的射影为uuur uuur uuuur,Q , PA PB2PQ 2〔 1〕求动点 P 的轨迹 E 的方程;〔 2〕设直线 m 过点 A ,斜率为 k ,当 0 k 1时,曲线 E 的上支上有且仅有一点 C 到直线 m 的距离为2 ,试求 k 的值及此时点 C 的坐标 .12.如图, F ( 3,0) ,F2 (3,0) 是双曲线 C 的两焦点,直线x 4是双曲线 C的右准线,A1, A21 3是双曲线 C 的两个顶点,点P 是双曲线 C 右支上异于A2 的一动点,直线 A 1 P 、 A 2P 交双曲线 C 的右准线分别于 M,N 两点,y〔1〕求双曲线 C 的方程;MP〔2〕求证:uuuur uuuur是定值 .F1 F 2 FM F N A 1 o A 2x1 2N13.uuur uuurOFQ 的面积为 S,且OF FQ 1 ,建立如下图坐标系,y〔1〕假设S 1 ,uuur2 ,求直线FQ的方程;Q | OF |2uuur,S 3c,假设以 O 为中心, F 为焦点的椭圆过点uuurF〔2〕设| OF | c(c 2) Q,求当| OQ |取ox4得最小值时的椭圆方程 .14.点H( 3,0) ,点P在y轴上,点Q在x轴的正半轴上,点M 在直线 PQ 上,且满足uuur uuur uuur 3 uuuurHP PM 0 , PM MQ ,2〔1〕当点 P 在 y 轴上移动时,求点M 的轨迹 C;y〔2〕过点T( 1,0)作直线 m 与轨迹 C 交于 A、 B 两点,假设在 x 轴上存在一点PE(x 0 ,0) ,使得ABE 为等边三角形,求x0的值.o Q EHT M xAB15.椭圆x2 y 21(a b 0)的长、短轴端点分别为A、B,从此椭圆上一点M 向 x 轴a 2 b2作垂线,恰好通过椭圆的左焦点F1,向量AB与OM是共线向量.〔 1〕求椭圆的离心率e;〔 2〕设 Q 是椭圆上任意一点,F1、 F2分别是左、右焦点,求∠F1 QF2的取值范围;16.两点M〔 -1,0〕, N〔 1, 0〕且点 P 使MP MN , PM PN , NM NP 成公差小于零的等差数列,〔Ⅰ〕点 P 的轨迹是什么曲线?〔Ⅱ〕假设点P 坐标为 ( x 0 , y 0 ) ,为 PM 与 PN 的夹角,求tan θ .【参考答案】一. 1. C .提示,设双曲线方程为 ( 1 1x y),将点 (6, 3) 代入求出 即可 .x y)( 3 32 . D . 因 为双 曲线的 焦点 在 x 轴上 , 故椭 圆焦 点 为 ( 3m 22, 双 曲 线焦点 为5n ,0) ( 2m 23n 2 ,0) , 由 3m 25n 2 2m 2 3n 2 得 | m | 2 2 | n | , 所 以 , 双 曲 线 的 渐 近 线 为y6 | n | 3x .2 | m |43.C .设 | MF 1 | d ,那么 | MF 2 |2d ,1 2|3d ,| FFe c 2c| FF 12 | d 3d 3 .a 2a |MF 1 | | MF 2 |2d3曲线为双曲线,且 51,应选 C ;或用 a 2 4 , b 2m 来计算.4.C .25.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组.6.B .数形结合,利用梯形中位线和椭圆的定义 .二.7. 解: 设 c 为为椭圆半焦距,∵PFPF 0 ,∴ PFPF.12122PF 2221 PF 1(2c) ∴又tan PF 1 F 2PF 2 2a2PF 1PF 2 1PF 12c 2 5c 5解得: ( a)9 ,ea3 .选 D .8. 解: 设 A 〔x , 0〕〔 x > 0〕,那么直线 l 的方程为 y=x-x ,设直线l 与椭圆相交于 P 〔 x ,1y 〕, Q 〔 x 、y 〕,由 y=x-x可得 3x 2 -4x x+2x2,1220 0 0x 2+2y 2=12x 1x 24x 0,x 1x 22x 02 12 ,那么33| x 1 x 2 | ( x 1 x 2 ) 24x 1 x 2 16x 0 2 8x 0 2 48 22.9336 2 x 03∴ 4 141 x2 | x 1x 2 |,即4 142236 2 x 02 .333∴ x 02=4,又 x 0 > 0,∴ x 0=2,∴ A 〔2, 0〕.9.1; k | PF 1 | | PF 2 | (a ex)(a ex) a 2 e 2x 2.10.②④ .uuuruuur( 2 x,y) ,三. 11.解〔 1〕 点 P 的坐 (x, y) , 点 Q(0, y) , PQ (x,0) ,PAuuur (2 x,uuur uuurx 2 2y 2 , PB y) , PA PBuuur uuuruuuur2 y 22x 2 ,因 PA PB2PQ2,所以 x 2即 点 P 的 迹方程 : y 2 x 22 ;〔 2〕 直 m : yk(x2)(0 k 1) ,依 意,点 C 在与直 m 平行,且与m 之 的距离2 的直 上,此直 m : y kxb ,由|2k b | 2 ,即 b 22 2kb 2 ,⋯⋯①1k21把 ykx b 代入 y 2 x 22 ,整理得: (k 2 1)x 2 2kbx (b 22) 0 ,4k 2b 24(k 2 1)(b 2 2) 0 ,即 b 2 2k 22 ,⋯⋯⋯⋯②由①②得: k25, b10 , 55此 ,由方程y2 5 x1010).5 5C(2 2,y 2 x 2 212.解:〔 1〕依 意得: ca 24a 225 ,3 ,,所以, bc 3所求双曲C 的方程x 2 y 21 ;45〔2〕 P(x 0 , y 0 ) , M(x 1 , y 1 ) , N(x 2 , y 2 ) , A 1 (2,0) , A 2 (2,0) ,uuuur2,y uuuur(x2, y), uuuur 10, uuuur2 ,A P (x) ,A P0 A 1M ( , y 1)A 2N ( , y 2 )1233uuuur uuuur(x 02)y 110y 0 ,y 110y 0,同理: y 22y 0 因 A 1P 与 A 1M 共 ,故3(x 03(x 0 ,32)2)uuuur 13 uuuur ( 5 2 )FM 1 ( , y 1 ) ,F 2 N , y ,3 3uuuuruuuur 656520y 0265 205(x 02 4)y 1y 2 ==410.所以 FM 1F 2 N =9924) 99(x 0 9(x 024)uuuruuuruuur13.解:〔 1〕因 | OF | 2, F(2,0) , OF (2,0), Q(x 0 , y 0 ) , FQ(x 0 2,y 0 ) ,uuur uuur 5 , OF FQ 2(x 0 2) 1,解得 x 01 uuur12 151由 S|,得 y 0| OF | | y 0 | | y 02,故 Q( , ) ,22 2 2所以, PQ 所在直 方程y x 2 或 yx2 ;uuuruuur〔 2〕 Q(x 0 , y 0 ) ,因 | OF |c(c2), FQ(x 0 c,y 0 ),uuur uuur 1由 OF FQ c(x 0 c) 1 得: x 0 c ,c又 S1c | y 0 |3c , y 03 ,242Q(c1 3 uuur2 (c1 2 9,,) ,| OQ |)4c2uuurc3) ,易知,当 c2, | OQ | 最小,此 Q( 5,22方程x22a 2b 2 4210 ,y 1,(a b 0) ,259 ,解得 aa2b 21 b 264a 24b 2所以, 方程x 2y 2 1 .10614.解:〔 1〕 M(x,uuur3 uuuuryx,y) ,由 PMMQ 得: P(0,) , Q(,0)uuur uuur223得: (3, y )(x, 3y ) 0 ,即 y 2 4x由 HP PM ,22由点 Q 在 x 的正半 上,故 x 0 ,即 点 M 的 迹 C 是以 (0,0) 点,以 (1,0)焦点的抛物 ,除去原点;〔2〕 m : yk(x 1)(k0) ,代入 y 2 4x 得:k 2x 2 2(k 2 2)x k 20 ⋯⋯⋯⋯①A(x 1 , y 1) , B(x 2 , y 2 ) , x 1 , x 2 是方程①的两个 根,x 1 x 22(k 22) , x 1x 21,所以 段AB 的中点 (2 k2 , 2) , k 2k 2k线段 AB 的垂直平分线方程为y21 2 k 2k(xk 2),k令 y0 ,x 02 1,得E( 2 1,0),k 2k 2因为 ABE 为正三角形,那么点E 到直线 AB 的距离等于3| AB | ,2又| AB|(x 1 x 2 )2(y 1 y2 )2=41 k 2k 2,k 21所以,23 1 k 421 k 2,解得: k3, x 011 .k 2| k |2315.解:〔 1〕∵ F ( c,0), 那么 xMc, yMb 2 ,∴ k OMb 2 .1a ac∵ k ABb,OM 与 AB 是共线向量,∴b 2b,∴ b=c,故 e2 .aaca2〔 2〕设 FQr 1, F 2Q r 2 , F 1 QF 2,1r 1 r 2 2a, F 1 F 2 2c,cosr 12 r 22 4c 2(r 1 r 2 )2 2r 1r 2 4c 2a 2 1a 21 02r 1r 22r 1r 2r 1r 2( r 1 r 2 ) 22当且仅当 r 1r 2 时, cos θ =0,∴θ [ 0, ] .216. 解:〔Ⅰ〕记 P 〔 x,y 〕,由 M 〔 -1, 0〕N 〔1 ,0〕得uuuuruuur( 1 x, y), PN NP ( 1 x, y) , MNNM (2,0) .PMMP 所以 MP MN2(1 x) . PM PN x 2 y 21, NM NP 2(1 x) .于是, MP MN , PM PN , NMNP 是公差小于零的等差数列等价于x 2 y 2 1 1 [2(1 x) 2(1 x)]即x 2y 23.2x 02(1 x) 2(1 x) 0所以,点 P 的轨迹是以原点为圆心,3 为半径的右半圆 .〔Ⅱ〕点 P 的坐标为 ( x , y ) 。
数学 解析几何 经典例题 附带答案

数学解析几何经典例题~一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线x 22-y 21=1的焦点坐标是( ) A .(1,0),(-1,0) B .(0,1),(0,-1)C .(3,0),(-3,0)D .(0,3),(0,-3)解析: c 2=a 2+b 2=2+1,∴c = 3.∴焦点为(3,0),(-3,0),选C.答案: C2.“a =1”是“直线x +y =0和直线 x -ay =0互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 当a =1时,直线x +y =0与直线x -y =0垂直成立;当直线x +y =0与直线x -ay =0垂直时,a =1.所以“a =1”是“直线x +y =0与直线x -ay =0互相垂直”的充要条件.答案: C3.(2010·福建卷)以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( )A .x 2+y 2+2x =0B .x 2+y 2+x =0C .x 2+y 2-x =0D .x 2+y 2-2x =0解析: 抛物线y 2=4x 的焦点坐标为(1,0),故以(1,0)为圆心,且过坐标原点的圆的半径为r =12+02=1,所以圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0,故选D.答案: D4.方程mx 2+y 2=1所表示的所有可能的曲线是( )A .椭圆、双曲线、圆B .椭圆、双曲线、抛物线C .两条直线、椭圆、圆、双曲线D .两条直线、椭圆、圆、双曲线、抛物线解析: 当m =1时,方程为x 2+y 2=1,表示圆;当m <0时,方程为y 2-(-m )x 2=1,表示双曲线;当m >0且m ≠1时,方程表示椭圆;当m =0时,方程表示两条直线.答案: C5.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是( ) A .-x +2y -4=0 B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=0解析: 由题意知所求直线与直线2x -y -2=0垂直.又2x -y -2=0与y 轴交点为(0,-2).故所求直线方程为y +2=-12(x -0), 即x +2y +4=0.答案: D6.直线x -2y -3=0与圆C :(x -2)2+(y +3)2=9交于E 、F 两点,则△ECF 的面积为( )A.32B.34C .2 5 D.355解析: 圆心(2,-3)到EF 的距离d =|2+6-3|5= 5. 又|EF |=29-5=4,∴S △ECF =12×4×5=2 5. 答案: C 7.若点P (2,0)到双曲线x 2a 2-y 2b2=1的一条渐近线的距离为2,则该双曲线的离心率为( )A. 2B. 3C .2 2D .2 3解析: 由于双曲线渐近线方程为bx ±ay =0,故点P 到直线的距离d =2b a 2+b2=2⇒a =b ,即双曲线为等轴双曲线,故其离心率e =1+⎝⎛⎭⎫b a 2= 2.答案: A8.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=0解析: 由条件知M 点在圆内,故当劣弧最短时,l 应与圆心与M 点的连线垂直,设圆心为O ,则O (2,0),∴k OM =2-01-2=-2. ∴直线l 的斜率k =12, ∴l 的方程为y -2=12(x -1), 即x -2y +3=0.答案: D9.已知a >b >0,e 1,e 2分别为圆锥曲线x 2a 2+y 2b 2=1和x 2a 2-y 2b2=1的离心率,则lg e 1+lg e 2的值( )A .大于0且小于1B .大于1C .小于0D .等于0解析: 由题意,得e 1=a 2-b 2a ,e 2=a 2+b 2a (a >b >0), ∴e 1e 2=a 4-b 4a 2=1-b 4a4<1, ∴lg e 1+lg e 2=lg(e 1e 2)=lga 4-b 4a 2<0. 答案: C10.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM |+|BM |为最短,那么点M 的坐标为( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎫225,0D.⎝⎛⎭⎫0,225 解析: 点B (2,2)关于x 轴的对称点为B ′(2,-2),连接AB ′,易求得直线AB ′的方程为2x +y -2=0,它与x 轴交点M (1,0)即为所求.答案: B11.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95B .3 C.977 D.94解析: 设椭圆短轴的一个端点为M .由于a =4,b =3,∴c =7<b .∴∠F 1MF 2<90°,∴只能∠PF 1F 2=90°或∠PF 2F 1=90°.令x =±7得y 2=9⎝⎛⎭⎫1-716=9216, ∴|y |=94. 即P 到x 轴的距离为94. 答案: D12.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若AF →=FB →,BA →·BC →=48,则抛物线的方程为( )A .y 2=8xB .y 2=4xC .y 2=16xD .y 2=42x解析: 由AF →=FB →及|AF →|=|AC →|知在Rt △ACB 中,∠CBF =30°,|DF |=p 2+p 2=p , ∴AC =2p ,BC =23p ,BA →·BC →=4p ·23p ·cos 30°=48,∴p =2. 抛物线方程为y 2=4x .答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.若抛物线y 2=2px 的焦点与双曲线x 2-y 23=1的右焦点重合,则p 的值为________. 解析: 双曲线x 2-y 23=1的右焦点为(2,0), 由题意,p 2=2,∴p =4.答案: 414.两圆(x +1)2+(y -1)2=r 2和(x -2)2+(y +2)2=R 2相交于P 、Q 两点,若点P 坐标为(1,2),则点Q 的坐标为______.解析: ∵两圆的圆心分别为(-1,1),(2,-2),∴两圆连心线的方程为y =-x .∵两圆的连心线垂直平分公共弦,∴P (1,2),Q 关于直线y =-x 对称,∴Q (-2,-1).答案: (-2,-1)15.设M 是椭圆x 24+y 23=1上的动点,A 1和A 2分别是椭圆的左、右顶点,则MA 1→·MA 2→的最小值等于________.解析: 设M (x 0,y 0),则MA 1→=(-2-x 0,-y 0),MA 2→=(2-x 0,-y 0)⇒MA 1→·MA 2→=x 20+y 20-4=x 20+⎝⎛⎭⎫3-34x 20-4=14x 20-1, 显然当x 0=0时,MA 1→·MA 2→取最小值为-1.答案: -116.已知双曲线x 216-y 29=1的左、右焦点为F 1、F 2,P 是双曲线右支上一点,且PF 1的中点在y 轴上,则△PF 1F 2的面积为________.解析: 如图,设PF 1的中点为M ,则MO ∥PF 2,故∠PF 2F 1=90°.∵a =4,b =3,c =5,∴|F 1F 2|=10,|PF 1|=8+|PF 2|.由|PF 1|2=|PF 2|2+|F 1F 2|2得(8+|PF 2|)2=|PF 2|2+100,∴|PF 2|=94,S △PF 1F 2=12·|F 1F 2|·|PF 2|=454. 答案: 454三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)双曲线的两条渐近线方程为x +y =0和x -y =0,直线2x -y -3=0与双曲线交于A ,B 两点,若|AB |=5,求此双曲线的方程.解析: ∵双曲线渐近线为x ±y =0,∴双曲线为等轴双曲线.设双曲线方程为x 2-y 2=m (m ≠0),直线与双曲线的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧2x -y -3=0,x 2-y 2=m , 得3x 2-12x +m +9=0,则x 1+x 2=4,x 1x 2=m +93. 又|AB |2=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+[(2x 1-3)-(2x 2-3)]2=(x 1-x 2)2+4(x 1-x 2)2=5(x 1-x 2)2=5[(x 1+x 2)2-4x 1x 2], ∴(5)2=5⎣⎢⎡⎦⎥⎤42-4·⎝ ⎛⎭⎪⎫m +93, 解得m =94. 故双曲线的方程为x 2-y 2=94. 18.(12分)已知圆C 的方程为(x -m )2+(y +m -4)2=2.(1)求圆心C 的轨迹方程;(2)当|OC |最小时,求圆C 的一般方程(O 为坐标原点).解析: (1)设C (x ,y ),则⎩⎪⎨⎪⎧x =m ,y =4-m .消去m ,得y =4-x ,∴圆心C 的轨迹方程为x +y -4=0.(2)当|OC |最小时,OC 与直线x +y -4=0垂直,∴直线OC 的方程为x -y =0. 由⎩⎪⎨⎪⎧x +y -4=0,x -y =0,得x =y =2. 即|OC |最小时,圆心的坐标为(2,2),∴m =2.圆C 的方程为(x -2)2+(y -2)2=2.其一般方程为x 2+y 2-4x -4y +6=0.19.(12分)(盐城市三星级高中20XX 届第一次联考)已知圆C 1的方程为(x -2)2+(y -1)2=203,椭圆C 2的方程为x 2a 2+y 2b 2=1(a >b >0),且C 2的离心率为22,如果C 1、C 2相交于A 、B 两点,且线段AB 恰好为C 1的直径,求直线AB 的方程和椭圆C 2的方程.解析: 设A (x 1,y 1)、B (x 2,y 2).A 、B 在椭圆上,∴b 2x 21+a 2y 21=a 2b 2,b 2x 22+a 2y 22=a 2b 2. ∴b 2(x 2+x 1)(x 2-x 1)+a 2(y 2+y 1)(y 2-y 1)=0.又线段AB 的中点是圆的圆心(2,1),∴x 2+x 1=4,y 2+y 1=2,∴k AB =-b 2(x 2+x 1)a 2(y 2+y 1)=-2b 2a 2, 椭圆的离心率为22,∴b 2a 2=1-e 2=12, k AB =-2b 2a2=-1, 直线AB 的方程为y -1=-1(x -2),即x +y -3=0.由(x -2)2+(y -1)2=203和x +y -3=0得 A ⎝⎛⎭⎫2+103,1-103. 代入椭圆方程得:a 2=16,b 2=8,∴椭圆方程为:x 216+y 28=1. 20.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为e . (1)若半焦距c =22,且23、e 、43成等比数列,求椭圆C 的方程; (2)在(1)的条件下,直线l :y =ex +a 与x 轴、y 轴分别交于M 、N 两点,P 是直线l 与椭圆C 的一个交点,且M P →=λMN →,求λ的值;(3)若不考虑(1),在(2)中,求证:λ=1-e 2.【解析方法代码108001121】解析: (1)∵e 2=23×43,∴e =223, ∴a =3,b =1,∴椭圆C 的方程为x 29+y 2=1. (2)设P (x ,y ),则⎩⎨⎧ y =223x +3x 29+y 2=1,解得P ⎝⎛⎭⎫-22,13. ∵M ⎝⎛⎭⎫-924,0,N (0,3),M P →=λMN →, ∴λ=19. (3)证明:∵M 、N 的坐标分别为M ⎝⎛⎭⎫-a e ,0,N (0,a ), 由⎩⎪⎨⎪⎧ y =ex +ax 2a 2+y 2b 2=1, 解得⎩⎪⎨⎪⎧x =-cy =b 2a (其中c =a 2-b 2),∴P ⎝⎛⎭⎫-c ,b 2a . 由M P →=λMN →得⎝⎛⎭⎫-c +a e ,b 2a =λ⎝⎛⎭⎫a e ,a , ∴⎩⎨⎧ a e -c =λ·a eb 2a =λa ,∴ λ=1-e 2. 21.(12分)设椭圆C :x 2a 2+y 22=1(a >0)的左、右焦点分别为F 1、F 2,A 是椭圆C 上的一点,且AF 2→·F 1F 2→=0,坐标原点O 到直线AF 1的距离为13|OF 1|. (1)求椭圆C 的方程;(2)设Q 是椭圆C 上的一点,过Q 的直线l 交x 轴于点P (-1,0),交y 轴于点M ,若M Q →=2QP →,求直线l 的方程.解析: (1)由题设知F 1(-a 2-2,0),F 2(a 2-2,0),由于AF 2→·F 1F 2→=0,则有AF 2→⊥F 1F 2→,所以点A 的坐标为⎝⎛⎭⎫a 2-2,±2a , 故AF 1所在直线方程为y =±⎝ ⎛⎭⎪⎫x a a 2-2+1a , 所以坐标原点O 到直线AF 1的距离为a 2-2a 2-1(a >2), 又|OF 1|=a 2-2,所以a 2-2a 2-1=13a 2-2,解得a =2(a >2),所求椭圆的方程为x 24+y 22=1. (2)由题意知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则有M (0,k ),设Q (x 1,y 1),由于M Q →=2QP →,∴(x 1,y 1-k )=2(-1-x 1,-y 1),解得x 1=-23,y 1=k 3. 又Q 在椭圆C 上,得⎝⎛⎭⎫-2324+⎝⎛⎭⎫k 322=1, 解得k =±4,故直线l 的方程为y =4(x +1)或y =-4(x +1),即4x -y +4=0或4x +y +4=0.22.(14分)已知椭圆y 2a 2+x 2b 2=1的一个焦点为F (0,22),与两坐标轴正半轴分别交于A ,B 两点(如图),向量A B →与向量m =(-1,2)共线.(1)求椭圆的方程;(2)若斜率为k 的直线过点C (0,2),且与椭圆交于P ,Q 两点,求△POC 与△QOC 面积之比的取值范围.【解析方法代码108001122】解析: (1)y 216+x 28=1. (2)设P (x 1,y 1),Q (x 2,y 2),且x 1<0,x 2>0.PQ 方程为y =kx +2,代入椭圆方程并消去y ,得(2+k 2)x 2+4kx -12=0,x 1+x 2=-4k 2+k 2,① x 1x 2=-122+k 2.② 设S △QOC S △POC =|x 2||x 1|=-x 2x 1=λ,结合①②得 (1-λ)x 1=-4k 2+k 2,λx 21=122+k 2. 消去x 1得λ(1-λ)2=34⎝⎛⎭⎫1+2k 2>34,解不等式λ(1-λ)2>34,得13<λ<3. ∴△POC 与△QOC 面积之比的取值范围为⎝⎛⎭⎫13,3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何解答题1、椭圆G :)0(12222>>=+b a by a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25(1)求此时椭圆G 的方程;(2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于过点P (0,33)、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由.2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆221x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y .(Ⅰ)求k 的取值范围,并求21x x -的最小值;(Ⅱ)记直线11PA 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ⋅是定值吗?证明你的结论.3、已知抛物线2:C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)求抛物线C 的方程。
(2)证明:点F 在直线BD 上;(3)设89FA FB ∙= ,求BDK ∆的面积。
.4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为12,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线.(I)求椭圆的方程及直线AB 的斜率;(Ⅱ)求PAB ∆面积的最大值.5、设椭圆)0(12222>>=+b a b y a x 的焦点分别为1(1,0)F -、2(1,0)F ,直线l :2a x = 交x 轴于点A ,且122AF AF = . (Ⅰ)试求椭圆的方程;(Ⅱ)过1F 、2F 分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),若四边形D M E N的面积为277,求DE 的直线方程.6、已知抛物线P :x 2=2py (p >0).(Ⅰ)若抛物线上点(,2)M m 到焦点F 的距离为3.(ⅰ)求抛物线P 的方程;(ⅱ)设抛物线P 的准线与y 轴的交点为E ,过E 作抛物线P 的切线,求此切线方程;(Ⅱ)设过焦点F 的动直线l 交抛物线于A ,B 两点,连接AO ,BO 并延长分别交抛物线的准线于C ,D两点,求证:以CD 为直径的圆过焦点F .7、在平面直角坐标系xOy 中,设点(,),(,4)P x y M x -,以线段PM 为直径的圆经过原点O .(Ⅰ)求动点P 的轨迹W 的方程;(Ⅱ)过点(0,4)E -的直线l 与轨迹W 交于两点,A B ,点A 关于y 轴的对称点为'A ,试判断直线'A B 是否恒过一定点,并证明你的结论.8、已知椭圆2222:1x y M a b +=(0)a b >>,且椭圆上一点与椭圆的两个焦点构成的三角形周长为246+.(Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆M 交于,A B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求ABC ∆面积的最大值.9、过抛物线C:22(0)y px p =>上一点2(,)p M p 作倾斜角互补的两条直线,分别与抛物线交于A 、B 两点。
(1)求证:直线AB 的斜率为定值;(2)已知,A B 两点均在抛物线C :()220y px y =≤上,若△MAB 的面积的最大值为6,求抛物线的方程。
10、已知椭圆22221(0)x y a b a b+=>>的左焦点(,0)F c -是长轴的一个四等分点,点A 、B 分别为椭圆的左、右顶点,过点F 且不与y 轴垂直的直线l 交椭圆于C 、D 两点,记直线AD 、BC 的斜率分别为12,.k k(1)当点D 到两焦点的距离之和为4,直线l x ⊥轴时,求12:k k 的值;(2)求12:k k 的值。
11、在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(a >b >0),其焦点在圆x 2+y 2=1上. (1)求椭圆的方程;(2)设A ,B ,M 是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使cos sin OM OA OB θθ=+ .(i)求证:直线OA 与OB 的斜率之积为定值;(ii)求OA 2+OB 2.12、已知圆22222251:(,:(1616M x y M N x y ++=+=的圆心为圆的圆心为N ,一动圆与圆M 内切,与圆N 外切。
(Ⅰ)求动圆圆心P 的轨迹方程;(Ⅱ)(Ⅰ)中轨迹上是否存在一点Q ,使得MQN ∠为钝角?若存在,求出Q 点横坐标的取值范围;若不存在,说明理由.13、已知点F 是椭圆)0(11222>=++a y ax 的右焦点,点(,0)M m 、(0,)N n 分别是x 轴、y 轴上的动点,且满足0=⋅NF MN .若点P 满足PO ON OM +=2.(Ⅰ)求点P 的轨迹C 的方程;(Ⅱ)设过点F 任作一直线与点P 的轨迹交于A 、B 两点,直线OA 、OB 与直线a x -=分别交于点S 、T (O 为坐标原点),试判断FS FT ⋅ 是否为定值?若是,求出这个定值;若不是,请说明理由.14、在平面直角坐标系xOy 中,已知圆B :22(1)16x y -+=与点(1,0)A -,P 为圆B 上的动点,线段PA 的垂直平分线交直线PB 于点R ,点R 的轨迹记为曲线C 。
(1)求曲线C 的方程;(2)曲线C 与x 轴正半轴交点记为Q ,过原点O 且不与x 轴重合的直线与曲线C 的交点记为M ,N ,连结QM ,QN ,分别交直线(x t t =为常数,且2x ≠)于点E ,F ,设E ,F 的纵坐标分别为12,y y ,求12y y ⋅的值(用t 表示)。
答案:1、解:(1)根据椭圆的几何性质,线段F 1F 2与线段B 1B 2互相垂直平分,故椭圆中心即为该四点外接圆的圆心…………………1分故该椭圆中,22c b a ==即椭圆方程可为22222b y x =+ ………3分设H (x,y )为椭圆上一点,则b y b b y y x HN ≤≤-+++-=-+=其中,182)3()3(||22222…………… 4分若30<<b ,则2||,HN b y 时-=有最大值962++b b …………………5分 由25350962±-==++b b b 得(舍去)(或b 2+3b+9<27,故无解)…………… 6分 若182||,3,322+-=≥b HN y b 有最大值时当…………………7分 由165018222==+b b 得∴所求椭圆方程为1163222=+y x ………………… 8分 (1) 设),(),,(),,(002211y x Q y x F y x E ,则由 ⎪⎪⎩⎪⎪⎨⎧=+=+116321163222222121y x y x 两式相减得 0200=+ky x ……③又直线PQ ⊥直线m ∴直线PQ 方程为331+=x k y 将点Q (00,y x )代入上式得,33100+-=x k y ……④…………………11分 由③④得Q (33,332-k )…………………12分 而Q 点必在椭圆内部116322020<+∴y x , 由此得29400294,0,2472<<<<-∴≠<k k k k 或又,故当 )294,0()0,294(⋃-∈k 时,E 、F 两点关于点P 、Q 的直线对称 14分2、解:(Ⅰ)l 与圆相切,1∴= 221m k ∴=+ ……① 由221y kx m x y =+⎧⎨-=⎩ , 得 222(1)2(1)0k x mkx m ---+=,222222*********(1)(1)4(1)80101k m k k m m k m x x k ⎧⎪-≠⎪⎪∴∆=+-+=+-=>⎨⎪+⎪⋅=<⎪-⎩, 21,k ∴<11k ∴-<<,故k 的取值范围为(1,1)-.由于1221221mk x x x x k +=∴-===- 201k ≤< ∴当20k =时,21x x -取最小值. 6分(Ⅱ)由已知可得12,A A 的坐标分别为(1,0),(1,0)-, 121212,11y y k k x x ∴==+-, 121212(1)(1)y y k k x x ∴⋅=+-1212()()(1)(1)kx m kx m x x ++=+- 2212121221()()1k x x mk x x m x x x x +++=+--22222221211m mk k mk m k k +⋅-⋅+=--22222222=22=, 由①,得 221m k -=,12(3k k ∴⋅==-+为定值. 12分 3、解:(1) 24y x =设11(,)A x y ,22(,)B x y ,11(,)D x y -,l 的方程为1(0)x my m =-≠.(2)将1x my =-代人24y x =并整理得2440y my -+=,从而 12124, 4.y y m y y +== 直线BD 的方程为 212221()y y y y x x x x +-=⋅--, 即 222214()4y y y x y y -=⋅--令120, 1.4y y y x ===得所以点(1,0)F 在直线BD 上(3)由①知,21212(1)(1)42x x my my m +=-+-=-1212(1)(1) 1.x x my my =--=因为 11(1,),FA x y =-uu r 22(1,)FB x y =-uu r ,212121212(1)(1)()1484FA FB x x y y x x x x m ⋅=--+=-+++=-uu r uu r 故 28849m -=,解得 43m =± 所以l 的方程为3430,3430x y x y ++=-+=又由①知 121643y y m +== 故1211161622233S KF y y ∆=∙+=∙∙= 4、解:(I )设椭圆的方程为22221(0)x y a b a b+=>>,则2212491a b =⎨⎪+=⎪⎩,得216a =,212b =. 所以椭圆的方程为2211612x y +=.…………………3分 设直线AB 的方程为y kx t =+(依题意可知直线的斜率存在),设1122(,),(,)A x y B x y ,则由2211612x y y kx t ⎧+=⎪⎨⎪=+⎩,得()2223484480k x ktx t +++-=,由0∆>,得221216b k <+,122212283444834kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,设()00,T x y 002243,3434kt t x y k k =-=++,易知00x ≠,由OT 与OP 斜率相等可得0032y x =,即12k =-, 所以椭圆的方程为2211612x y +=,直线AB 的斜率为12-.……………………6分 (II )设直线AB 的方程为12y x t =-+,即220x y t +-=,由2212 1.1612y x t x y ⎧=-+⎪⎪⎨⎪+=⎪⎩, 得22120x tx t -+-=,224(12)0t t ∆=-->,44t -<<.………………8分12212,12.x x t x x t +=⎧⎨⋅=-⎩.||AB === 点P 到直线AB的距离为d =于是PAB ∆的面积为122PAB S ∆==10分 设3()(4)(123)f t t t =-+,2'()12(4)(2)f t t t =--+,其中44t -<<.在区间(2,4)-内,'()0f t <,()f t 是减函数;在区间(4,2)--内,'()0f t >,()f t 是增函数.所以()f t 的最大值为4(2)6f -=.于是PAB S ∆的最大值为18.…………………12分5、解:(Ⅰ)由题意,212||22,(,0)FF c A a ==∴ -------1分1222 A F A F F =∴为1AF的中点------------2分2,322==∴b a即:椭圆方程为.12322=+y x ------------3分 (Ⅱ)当直线DE 与x 轴垂直时,342||2==a b DE ,此时322||==a MN , 四边形DMEN 的面积||||42DE MN S ⋅==不符合题意故舍掉;------------4分 同理当MN 与x 轴垂直时,也有四边形DMEN 的面积||||42DE MN S ⋅==不符合题意故舍掉; ------------5分当直线DE ,MN 均与x 轴不垂直时,设DE :)1(+=x k y ,代入消去y 得:.0)63(6)32(2222=-+++k x k x k ------------6分设⎪⎪⎩⎪⎪⎨⎧+-=+-=+,3263,326),,(),,(222122212211k k x x k k x x y x E y x D 则 ------------7分所以 231344)(||222122121++⋅=-+=-k k x x x x x x , ------------8分 所以 2221232)1(34||1||kk x x k DE ++=-+=, ------------9分同理222211)1]1)||.1323()2k k MN k k -++==+-+ ------------11分所以四边形的面积222232)11(3432)1(34212||||k k k k MN DE S ++⋅++⋅=⋅=13)1(6)21(242222++++=k k k k由22727S k k =⇒=⇒= ------------12分所以直线0DE l y -+=或0DE l y +=或20DE l y -=或20DE l y += ---------13分6、解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点(,2)M m 到焦点F 的距离与到准线距离相等,即(,2)M m 到2py =-的距离为3; ∴ 232p-+=,解得2p =. ∴ 抛物线P 的方程为24x y =. 4分 (ⅱ)抛物线焦点(0,1)F ,抛物线准线与y 轴交点为(0,1)E -,显然过点E 的抛物线的切线斜率存在,设为k ,切线方程为1y kx =-.由241x y y kx ⎧=⎨=-⎩, 消y 得2440x kx -+=, 6分 216160k ∆=-=,解得1k =±. 7分∴切线方程为1y x =±-. 8分(Ⅱ)直线l 的斜率显然存在,设l :2p y kx =+, 设11(,)A x y ,22(,)B x y ,由222x py p y kx ⎧=⎪⎨=+⎪⎩ 消y 得 2220x pkx p --=. 且0∆>. ∴ 122x x pk +=,212x x p ⋅=-;∵ 11(,)A x y , ∴ 直线OA :11y y x x =, 与2p y =-联立可得11(,)22px pC y --, 同理得22(,)22px pD y --. 10分 ∵ 焦点(0,)2pF , ∴ 11(,)2px FC p y =-- ,22(,)2px FD p y =-- , 12分∴ 1212(,)(,)22px px FC FD p p y y ⋅=--⋅-- 22212121212224px px p x x p p y y y y =+=+2442221222212120422p x x p p p p p x x x x p p p=+=+=+=- ∴ 以CD 为直径的圆过焦点F . 14分7、解:(I )由题意可得OP OM ⊥, 2分所以0OP OM ⋅=,即(,)(,4)0x y x -= 4分即240x y -=,即动点P 的轨迹W 的方程为24x y = 5分 (II )设直线l 的方程为4y kx =-,1122(,),(,)A x y B x y ,则11'(,)A x y -.由244y kx x y=-⎧⎨=⎩消y 整理得24160x kx -+=, 6分 则216640k ∆=->,即||2k >. 7分12124,16x x k x x +==. 9分直线212221':()y y A B y y x x x x --=-+212221222212212222121222112()1()4()41444 y 44y y y x x y x x x x y x x x x x x x x x x y x x x x x x x -∴=-++-∴=-++--∴=-+-∴=+12分即2144x x y x -=+ 所以,直线'A B 恒过定点(0,4). 13分8、解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为246+,所以24622+=+c a , 1分又椭圆的离心率为3,即3c a =,所以3c a =, 2分所以3a =,c =分所以1b =,椭圆M 的方程为1922=+y x . 5分 (Ⅱ)方法一:不妨设BC 的方程(3),(0)y n x n =->,则AC 的方程为)3(1--=x ny . 由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得0196)91(2222=-+-+n x n x n , 6分 设),(11y x A ,),(22y x B ,因为222819391n x n -=+,所以19327222+-=n n x , 7分同理可得2219327nn x +-=, 8分 所以1961||22++=n n BC ,222961||nn n n AC ++=, 10分 964)1()1(2||||212+++==∆n n n n AC BC S ABC , 12分 设21≥+=nn t ,则2223899t S t t t==≤++, 13分当且仅当38=t 时取等号,所以ABC ∆面积的最大值为83. 14分方法二:不妨设直线AB 的方程x ky m =+.由22,1,9x ky m x y =+⎧⎪⎨+=⎪⎩ 消去x 得222(9)290k y kmy m +++-=, 6分 设),(11y x A ,),(22y x B ,则有12229km y y k +=-+,212299m y y k -=+. ① 7分因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=.由 1122(3,),(3,)CA x y CB x y =-=-,得 1212(3)(3)0x x y y --+=. 8分 将1122,x ky m x ky m =+=+代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍). 10分 所以125m =(此时直线AB 经过定点12(,0)5D ,与椭圆有两个交点),所以121||||2ABC S DC y y ∆=-12==分 设211,099t t k =<≤+,则ABC S ∆=所以当251(0,]2889t =∈时,ABC S ∆取得最大值83. 14分 9、解:(1)不妨设221212,),(,)22y y A y B y p p(211222212,122MA MB AB y y k k y y p k y y p p-=-⇒+=-∴==--…………………………………5分 (2)AB 的直线方程为:221111y-y (),022y y x x y y p p=--+--=即点M 到AB的距离d =。