高三数学数列求和PPT教学课件 (2)

合集下载

高考数学第五章数列求和-教学课件

高考数学第五章数列求和-教学课件

[冲关锦囊] 分组求和常见类型及方法
(1)an=kn+b,利用等差数列前n项和公式直接求解; (2)an=a·qn-1,利用等比数列前n项和公式直接求解; (3)an=bn±cn,数列{bn},{cn}是等比数列或等差数列,
采用分组求和法求{an}的前n项和.
[精析考题] [例2] (2011·辽宁高考)已知等差数列{an}满足a2=0,a6+a8=-10. (1)求数列{an}的通项公式; (2)求数列{2an-n 1}的前n项和.
解:(1)因为{an}是首项为a1=19,公差为d=-2的等差数列,所以an= 19-2(n-1)=-2n+21. Sn=19n+nn2-1·(-2)=-n2+20n. (2)由题意知bn-an=3n-1,所以bn=3n-1+an=3n-1-2n+21. Tn=Sn+(1+3+…+3n-1)=-n2+20n+3n-2 1.
解析:∵Sn=2+2·22+3·23+…+n·2n① ∴2Sn=22+2·23+3·24+…+(n-1)·2n+n·2n+1② ①-②得 -Sn=2+22+23+…+2n-n·2n+1 =211--22n-n·2n+1=2n+1-2-n·2n+1, ∴Sn=(n-1)·2n+1+2.
答案:(n-1)·2n+1+2
n C.n-1
n+1 D. n
解析:∵f′(x)=mxm-1+a,∴m=2,a=1. ∴f(x)=x2+x,f(n)=n2+n, ∴f1n=n2+1 n=nn1+1=n1-n+1 1, ∴Sn=f11+f12+f13+…+fn-1 1+f1n =1-12+12-13+13-14+…+n-1 1-n1+n1-n+1 1 =1-n+1 1=n+n 1.
[自主解答] (1)设数列{an}的公比为q.由a23=9a2a6得 a23=9a24,所以q2=19.由条件可知q>0,故q=13. 由2a1+3a2=1,得2a1+3a1q=1,得a1=13. 故数列{an}的通项公式为an=31n.

高三数学最新复习课件数列求和(共42张PPT)

高三数学最新复习课件数列求和(共42张PPT)

数列的通项的和,分别求出每个数列的和,从
而求出原数列的和.
例1
求下面数列的前 n 项和: 1 1 1 1+1,a+4, 2+7,…, n-1+3n-路点拨】
1 1 1 【解】 Sn= (1+ 1)+( + 4)+ ( 2+ 7)+…+ ( n-1+ 3n a a a - 2) 1 1 1 = (1+ + 2+…+ n-1)+ [1+4+ 7+…+(3n-2)]. a a a 1 1 1 令 Bn= 1+ + 2+…+ n-1, a a a an-1 ∴当 a= 1 时, Bn= n;当 a≠ 1 时, Bn= n n- 1, a -a 3n-1 n Cn= 1+ 4+ 7+…+(3n- 2)= . 2
【名师点评】
利用错位相减法求和时,转化为
等比数列求和.若公比是参数(字母),则应先对参
数加以讨论,一般情况下分等于1和不等于1两种
情况分别进行求和.
裂项相消法求和 裂项相消是将数列的项分裂为两项之差,通过
求和相互抵消,从而达到求和的目的.
例3 (2011 年博州质检 )已知数列 {an}中, a1= 1,
错位相减法求和 一般地,如果数列{an}是等差数列,{bn}是等比 数列,求数列{an· bn}的前n项和时,可采用错位 相减法.
例2
知数列{an}满足a1,a2-a1,a3-a2,…,an
-an-1,…是首项为1,公比为a的等比数列. (1)求an; (2)如果a=2,bn=(2n-1)an,求数列{bn}的前n项 和 S n.
等比数列,再求解.
4.裂项相消法 把数列的通项拆成两项之差求和,正负相消剩 下首尾若干项. 5.倒序相加法 把数列正着写和倒着写再相加(即等差数列求和
公式的推导过程的推广).

数列求和PPT课件

数列求和PPT课件

1 2n-1
-
1 2n+1
)]
=
3n 2n+1
.
11.已知 {an} 是 首 项 为 a1, 公 比 为 q 的 等 比 数 列. (1)求和: a1C20-a2C12+a3C22, a1C03-a2C13+a3C23-a4C33 ; (2)由(1)的结果归纳概 括出关于正整数 n 的一个结论, 并加以证明; (3)设q≠1, Sn是{an} 的前 n 项和, 求 S1Cn0-S2C1n+S3C2n-S4C3n+ … +(-1)nSn+1Cnn.
n+1 项
∵lgx+lgy=a, ∴lg(xy)=a.
∴Sn=
n(n+1) 2
lg(xy)=
n(n2+1)a.
注: 本题亦可用对数的运算性质求解:
∵Sn=lg[xn+(n-1)+…+3+2+1y1+2+3+…+(n-1)+n],
∴Sn=
n(n+1) 2
lg(xy)=
n(n2+1)a.
7.求证: Cn0+3Cn1+5Cn2+…+(2n+1)Cnn=(n+1)2n.
-nn2+,1 2
,
n 为偶数时, n 为奇数时.
将数列的每一项拆(裂开)成两项之差, 使得正负项能相互
抵消, 剩下首尾若干项.

求和
Sn=
1×1 2+
1 2×3
+…+
1 n(n+1)
.
n n+1

高中数学《数列求和》课件

高中数学《数列求和》课件

练习4 已知数列-1,4,-7,10,…,(-1)n·(3n- 2),…,求其前n项和Sn. 解 n为偶数时,令n=2k (k∈N*), Sn=S2k=-1+4-7+10+…+(-1)n(3n-2) =(-1+4)+(-7+10)+…+[(-6k+5)+(6k-2)] =3k=2(3)n;
当n为奇数时,令n=2k+1 (k∈N*). Sn=S2k+1=S2k+a2k+1=3k-(6k+1)=2(-3n+1). ∴Sn=(n为偶数).(3n)
∴Sn=2n+1(1)=n+1(2n).
要点四 奇偶并项求和 例4 求和:Sn=-1+3-5+7-…+(-1)n(2n- 1). 解 n为奇数时, Sn=(ቤተ መጻሕፍቲ ባይዱ1+3)+(-5+7)+(-9+11)+…+[(-2n +5)+(2n-3)]+(-2n+1) =2·2(n-1)+(-2n+1)=-n. n为偶数时,Sn=(-1+3)+(-5+7)+…+[(-2n +3)+(2n-1)]=2·2(n)=n. ∴Sn=(-1)nn (n∈N*).
练习1. 求数列1,1+a,1+a+a2,…,1+a+a2 +…+an-1,…的前n项和Sn(其中a≠0). 解 当a=1时,则an=n, 于是Sn=1+2+3+…+n=2(n(n+1)). 当a≠1时,an=1-a(1-an)=1-a(1)(1-an). ∴Sn=1-a(1)[n-(a+a2+…+an)] =1-a(1)1-a(a(1-an))
要点三 裂项相消求和 例3 求和:22-1(1)+32-1(1)+42-1(1)+… +n2-1(1),n≥2. 解 ∵n2-1(1)=(n-1)(n+1)(1) =2(1)n+1(1),
∴原式=2(1)5(1) n+1(1)
=2(1)n+1(1)

高三数学数列求和2 优质课件

高三数学数列求和2 优质课件

∵ n≥2,n 1≥1)
作业: 《全案》
速度训练:
P77
训练
5
1. 设 Sn 1234 (1)n1n , 则
S4m S2m1 S2m3( m N* )的值为(B)
(A)0 (B)3 (C)4 (D)随 m 的变化而变化
2.已知
S
1
1 22

1 32

…+
1 n2
系数是 Cn21 =
n(n 1) 2
.

1
an

2
n(n 1)
=
2 n

2 n 1

lim(
n
1
a1

1
a2

=2
1 ) lim(2 2 )
an
n
n 1
返回
例 3 分析: 第⑴小问直接翻译即可. 第⑵小问弄清 f (n) 的意义,然后检验 即可. 第⑶小问关键是求出 P1Pn 2 ? , 然后分析和的结果
xn
nxn nxn1 1 x
1
1 n xn nxn1 1 x
1 1 n xn nxn1
∴当 x 1时, Sn
1 x2
当 x 1时, Sn 1 2 3 4
;
n n1 n
2
返回
例 1.求和:
⑵113

1 35

…+
(2n
常需要求数列的和,而这些求和往往采 用特殊方法.
例 1 求和:
⑴1 2x 3x2 4x3 nxn1.

1 1 3

1 35

…+
(2n

等差数列求和(共24张PPT)

等差数列求和(共24张PPT)
例子二
求1+4+7+10+13的和,这是一个等差数列,公差为3,项数为5。根据等差数 列求和公式,可以得出结果为30。
04
等差数列求和的变种
04
等差数列求和的变种
倒序相加求和
总结词
倒序相加求和是一种特殊的等差数列求和方法,通过将数列倒序排列,再与原数列正序求和,最后除 以2得到结果。
详细描述
倒序相加求和的步骤包括将等差数列倒序排列,然后从第一个数开始与原数列对应项相加,直到最后 一个数。这种方法可以简化等差数列求和的计算过程,特别是对于较大的数列。
计算
使用通项公式,第5项$a_5=a_1+(5-1)d=1+(5-1)times1=5$。

03
等差数列求和公式
03
等差数列求和公式
公式推导
公式推导方法一
利用等差数列的性质,将等差数列的 项进行分组求和,再利用等差数列的 通项公式进行化简,最终得到等差数 列求和公式。
公式推导方法二
利用等差数列的特性,将等差数列的 项进行倒序相加,再利用等差数列的 通项公式进行化简,最终得到等差数 列求和公式。
应用场景二
在金融领域中,等差数列求和公式可以用于计算等额本息还 款法下的贷款总还款额、计算等额本金还款法下的贷款总还 款额等。
公式应用
应用场景一
在数学、物理、工程等领域中,常常需要求解等差数列的和 ,如计算等差数列的各项之和、计算等差数列的和的极限等 。
应用场景二
在金融领域中,等差数列求和公式可以用于计算等额本息还 款法下的贷款总还款额、计算等额本金还款法下的贷款总还 款额等。
定义与特性
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。

第四节 数列求和 课件(共48张PPT)

第四节 数列求和 课件(共48张PPT)


1 n+3
)=
1 2
56-n+1 2-n+1 3. 答案:1256-n+1 2-n+1 3
考点1 分组转化法求和 [例1] (2020·焦作模拟)已知{an}为等差数列,且 a2=3,{an}前4项的和为16,数列{bn}满足b1=4,b4= 88,且数列{bn-an}为等比数列. (1)求数列{an}和{bn-an}的通项公式; (2
an=n(n1+k)型
[例2] (2020·中山七校联考)已知数列{an}为公差 不为0的等差数列,满足a1=5,且a2,a9,a30成等比数列.
(1)求{an}的通项公式; (2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=
3,求数列b1n的前n项和Tn.
1.裂项时常用的三种变形.
(1)n(n1+1)=n1-n+1 1.
(2)n(n1+2)=12n1-n+1 2.
(3)(2n-1)1(2n+1)=122n1-1-2n1+1.
(4)
1 n+
n+1=
n+1-
n.
2.应用裂项相消法时,应注意消项的规律具有对称 性,即前面剩第几项则后面剩倒数第几项.
3.在应用错位相减法求和时,若等比数列的公比为 参数,应分公比等于1和不等于1两种情况求解.
) B. 2 020-1
C. 2 021-1 D. 2 021+1
解析:由f(4)=2,可得4α=2,解得α=12,
则f(x)= x.
所以an=
1 f(n+1)+f(n)

1 n+1+
= n
n+1 -
n,
所以S2 020=a1+a2+a3+…+a2 020=( 2 - 1 )+ ( 3- 2)+( 4- 3)+…+( 2 021- 2 020)=

数列求和的几种方法课件ppt

数列求和的几种方法课件ppt
2、设法消去中间项:
(2)乘公比,错位相减(对“A·G”型);
(3)裂通项,交替相消
1、转化成等差、等比数列求和
(公式法、分组求和法、错位相减法、 裂(并)项法求和)
练习: 指出下列求和的方法:
合并项求和
特殊的数列,在求数列的和时,可将一些项放在一起先求和,然后再求Sn.
[例] 在各项均为正数的等比数列中,若
的值.
求和: (1)Sn=1+(3+4)+(5+6+7)+…+(2n-1+2n+ …+3n-2); (2)Sn=12-22+32-42+…+(-1)n-1·n2.
(1)一般应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为适用特点的形式,从而求和.
数列求和的方法
(2)解决非等差、等比和,两种思路: ①转化的思想,即化为等差或等比数列. ②裂项相消法、错位相减法、倒序相加法等求和.
数列求和的常用方法:
(1) 拆项(对A±G型 如果拆项不明显,写出通项,如例2 )
na1+ d
n(n+1)(2n+1)
n2(n+1)2
倒序相加

例题1. 求和
(1)
[解Байду номын сангаас原式=
n(n+3)/2
(x≠1)
(x=1)
分析:原式=(1+2+3+…+n)+
我们把这种类型的数列称为“A+G”型。而求此类数列的和,一般是把数列的每一项分成两项,再分别利用等差和等比数列的求和公式求解。此方法称为分组求和法。

高三数学一轮复习数列求和的方法总结课件 (共19张PPT)

高三数学一轮复习数列求和的方法总结课件 (共19张PPT)

2 23
3 24
n2n1
n 2n1
由-得
1 2
Sn
1 2
1 22
1 23
1 2n
n 2n1
5
1 2 Sn
1 [1 ( 1 ) n ]
2
2
1 1
n 2 n1
2
得:
Sn
2
2n 2n
6
例、求1, 数 3, 5列 , 7, , 2n1 2 4 816 2n
的前 n项.和 解 S n : 1 2 2 3 2 2 5 3 2 7 4 2 n 2 n 1
1 (1 1 1 1 1 1 )
4 223
n n1
1 (1 1 ) n 4 n 1 4(n 1)
14
五、分组求和法 如果一个数列的通项公式可写成 cn=an+bn的形式,而数列{an},{bn}是 等差数列或等比数列或可转化为能 够求和的数列,可采用分组求和法.
15
例、已知等比数{列 an}的前n项和为Sn, a4 2a3, S2 6. (1)求数列{an}的通项公式. (2)数列{bn}满足:bn an log2 an,求数列 {bn}的前n项和Tn. 解:设数 {an列 }的首项 a1,公 为比q(q为 0) 则 a1q32a1q2
.
.
.
.
.②

-②
:1 2
Sn
1 2
2 22
+
2 23
+
2 24
+
+
2 2n
2n 1 2 n1
11+ 1 + 1 + 2 2 22 23
+
1 2 n1

数列求和ppt课件

数列求和ppt课件
法,分别求和后相加减.
把数列的通项拆成两项之差,在求和时中间的
一些项可以相互抵消,从而求得前n项和.
如果一个数列的各项是由一个等差数列和一个等
比数列的对应项之积构成的,那么求这个数列的前n项
和即可用错位相减法求解.
如果一个数列{an}与首末两端等“距离”的
(4)倒序相加法:
两项的和相等或等于同一个常数,那么求这个数
an,n 为奇数,
2.若数列{cn}的通项公式为 cn=
其中数列{an},{bn}
bn,n 为偶数,
是等比数列或等差数列,可采用分组求和法求{cn}的前 n 项和.
聚焦必备知识
11
突破核心命题
限时规范训练
1.(2023·全国乙卷)记Sn为等差数列{an}的前n项和,已知a2=11,S10
=40.
(1)求{an}的通项公式;
列的前n项和即可用倒序相加法求解.
(3)错位相减法:
聚焦必备知识
4
常用结论
1.一些常见的数列的前 n 项和
n(n+1)
(1)1+2+3+…+n=

2
(2)2+4+6+…+2n=n(n+1);
(3)1+3+5+…+2n-1=n2.
突破核心命题
限时规范训练
聚焦必备知识
5
突破核心命题
限时规范训练
裂项相消法:适用的通项公式如下
( + ) +
聚焦必备知识
16
突破核心命题
考 点 二 裂项相消法求和
1
(1)数列{an}的前 n 项和为 Sn.若 an=
,则 Sn=____
n(n+1)
训练2
已知Sn是数列{an}的前n项和,Sn=n2.

高考专题复习数学数列求和 PPT课件 图文

高考专题复习数学数列求和 PPT课件 图文

设 n N * , xn 是曲线 y x2n2 1 在点 (1,2)
处的切线与 x 轴交点的横坐标.
(1)求数列 {xn} 的通项公式;
(2)记Tn x12x32
x2 2n1
,证明
Tn

1 4n
.
在数 1 和 100 之间插入 n 个实数,使得这 n 2 个数 构成递增的等比数列,将这 n 2 个数的乘积记作Tn , 再令 an lg Tn, n≥1.
(2)求数列an 的通项公式;
(3)是否存在实数 a ,使不等式
(1 1 )(1 1 ) (1 1 ) 2a2 3
a1
a2
an 2a 2n 1
对一切正整数 n 都成立?若存在,
求出 a 的取值范围;若不存在,请说明理由.
设数列an 的前 n 项和为 Sn ,满足
2Sn an1 2n1 1 , n N* ,
则数列

1

的前10
项和为_________
an
设数列an,其前 n 项和 Sn 3n2 ,
bn为单调递增的等比数列, b1b2b3 512 , a1 b1 a3 b3
(1)求数列an, bn的通项公式;
(2)若 cn

bn

bn
2 bn

1 n
bn

bn1
1(n

N* )
.
(1)求 an 与 bn ;(2)记数列{anbn} 的前 n 项和为Tn ,求Tn .
已知数列an ,bn , an 3n 1,bn 2n
记 Tn anb1 an1b2 a1bn , n N * ,求:Tn

人教版高中数学第二章数列数列求和(二)(共15张PPT)教育课件

人教版高中数学第二章数列数列求和(二)(共15张PPT)教育课件

,求数列 的前 n 项和 .
解: 设数列列
的公比为 q,

,,
成等差数列,
,化为
解得





例 3.已知数列 求数列
是递增的等比数列,且 的通项公式;


解:
设 为数列 的前 n 项和,
数列 是递增的等比数列,且
,求数列

的前 n 项和 .
解得



舍 解得 ,即数列 的通项公式


数列 的前 n 项和













:














?










■电你 是否 有这 样经 历, 当你 在做 某一 项工 作和 学习 的时 候, 脑子里 经常 会蹦 出各 种不 同的需 求。 比如 你想 安心 下来 看2小 时的 书, 大脑会 蹦出 口渴 想 喝水, 然后 喝水 的时 候自然 的打 开电 视。 。。 。。 。,一 个小 时过 去了 ,可 能书还 没看 2页 。很 多时候 甚至 你自 己都 没有 意思到 ,你 的大 脑不 停地 超控 你的注 意力 ,你 就这 么轻易 的被 你的 大脑 所左 右。 你已经 不知 不觉 地变 成了 大脑的 奴隶 。尽 管你 在用 它思 考,但 是你 要明 白你 不应 该隶属 于你 的大 脑, 而应该 是你 拥有 你的 大脑, 并且 应该 是你 可以 控制 你的大 脑才 对。 一切 从你 意识到 你可 以控 制你 的大 脑的 时候, 会改 变你 的很 多东 西。比 如控 制你 的情 绪,无 论身 处何 种境 地,都 要明 白自 己所 面临 的痛 苦并没 有自 己所 感受 的那 么强烈 ,我 们当 前再 痛苦 ,在 目前这 个阶 段自 己也 不是 最痛苦 的人 ,尝 试着 运用心 智将 注意 力转 移到其 他的 地方 ,痛 苦就 会自 动消失 ,在 你重 新注 意到 它的时 候, 它不 会回 来。

专题2数列的求和课件——高三数学一轮复习

专题2数列的求和课件——高三数学一轮复习
n( n k ) k n n k
1
1
1 1
1
3. 2

(

)
4n 1 (2n 1)(2n 1) 2 2n 1 2n 1
题型四 裂项相消法
4.
1
n 1 n
n n 1
1
1
5.
( n k n)
n nk k
1
6. log a (1 ) log a (n 1) log a n(a 0且a 1)
a14=b4.
(1)求{an}的通项公式; an=2n-1
bn=3n-1
(2)设cn=an+bn,求数列{cn}的前n项和Sn.

由题意知cn=an+bn=(2n-1)+3n-1,
则数列{cn}的前n项和为Sn=[1+3+…+(2n-1)]+(1+3+9+…+3n-1)
n1+2n-1 1-3n 2 3n-1
1
1
1
1
(

)] =
.
2n 1 2 n 3
6 4n 6
题型四 裂项相消法
练2
[2021·惠州市高三调研考试试题]记Sn为等差数列{an}的前n项和,
若a4+a5=20,S6=48.
(1)求数列{an}的通项公式;
1
1
(2)设bn=
,Tn为数列{bn}的前n项和,证明Tn< .
+1
3S n 1 (2)1 (2) 2 (2) n 1 n (2) n
n
1
(3
n

1)(

2)
1 (2) n
=
n (2) n . 所以 S n

第七章 第四节 数列求和 课件(共42张PPT)

第七章 第四节 数列求和 课件(共42张PPT)

1.一些常见数列的前 n 项和公式 (1)1+2+3+4+…+n=n(n+ 2 1) ; (2)1+3+5+7+…+2n-1=n2; (3)2+4+6+8+…+2n=n2+n.
2.三种常见的拆项公式
1 (1)n(n+1)
=1n
-n+1 1

1 (2)(2n-1)(2n+1)
=12
2n1-1-2n1+1
答案: (1)× (2)√ (3)√
2.(必修 5P47T4 改编)数列{an}的前 n 项和为 Sn,若 an=n(n1+1) ,
则 S5 等于( )
A.1
B.56
C.16
D.310
B [∵an=n(n1+1) =1n -n+1 1 ,∴S5=a1+a2+…+a5=1-12 +12 -13 +…+15 -16 =56 .]
所以 an=-2n1+1 (n 为正奇数), 若 n 为奇数,则 an-1=-2an+21n =(-2)-2n1+1 +21n , 所以 an=21n (n 为正偶数), 所以 a3=-214 =-116 , 因为 an=-2n1+1 (n 为正奇数),所以-a1=--212 =212 ,
因为 an=21n (n 为正偶数),所以 a2=212 , 所以-a1+a2=2×212 , 因为-a3=--214 =214 ,a4=214 , 所以-a3+a4=2×214 , …… -a99+a100=2×21100 .
(2)因为 an=2n,所以 bn=(n+1)log2an=(n+1)log22n=n(n+1), 所以,2n2b+n2 2n =n(n2+1) =21n-n+1 1 , 所以 Tn=21-12+12-13+…+1n-n+1 1 =21-n+1 1 =n2+n1 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n n 1 1 n 2 1 2 n n 1 1 n 1 1 n 2
已知a: n 3n1,求
1 1 1
a1a2 a2a3
anan1
ቤተ መጻሕፍቲ ባይዱ
一、倒序相加法
二、错位相减法: 三、分组求和法: 四、分裂通项法: 五、公式法求和:
一、倒序相加法
如果一个数列{an},与首末
两项等距的两项之和等于首 末两项之和,可采用把正着 写和与倒着写和的两个和式 相加,就得到一个常数列的 和,这一求和的方法称为倒 序相加法.
二、错位相减法:
如果一个数列的各项是由一 个等差数列与一个等比数列 对应项乘积组成,此时求和 可采用错位相减法.
例 : 求 数 列 a , 2a2 , 3a3,…,nan,…
(a≠1)的前n项的和.
三、分组求和法:
把数列的每一项分成两项, 或把数列的项“集”在一块 重新组合,或把整个数列分 成两部分,使其转化为等差 或等比数列,这一求和方法 称为分组求和法.
例:若数列{an}中, an= -2[ n - (-1)n ],求 S10和S99.
四、分裂通项法:
把数列的通项拆成两项之差, 即数列的每一项都可按此法 拆成两项之差,在求和时一 些正负项相互抵消,于是前 n项的和变成首尾若干少数 项之和,这一求和方法称 为分裂通项法.
已a 知 nnn 1 2,求 sn
nn 11n 1n1 -1
2 n 1 1 2 n 1 1 2 2 n 1 1 2 n 1 1
相关文档
最新文档