一元二次方程及解法
一元二次方程的几种解法
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
x2 4x 1 0.
x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
解:
x2 4x 1 0.
6x2 x 5 0.
答:a=6, b=1, c= -5.
例2、 已知:关于x的方程
(2m-1)x2-(m-1)x=5m
是一元二次方程, 求:m的取值范围. 解:∵ 原方程是一元二次方程, ∴ 2m-1≠0,
1 ∴ m≠ 2.
二、一元二次方程的解法
形如 ax2=0 (a≠0) 的一元二次方程的解法:
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
解:
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
除以二次项系数,得
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一次项 x2 4x 4 1 4.
系数一半的平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
开平方,得
x 2 5.
x1 2 5, x2 2 5.
2xx 3 2x2 1 (不是二次方程)
一元二次方 程的一般形式
完全的一元二次方程
一元二次方程的几种解法
写成()2 的形式,得
x2 4x 4 5.
x 22 5.
x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
ቤተ መጻሕፍቲ ባይዱ
x 22 5.
x2 4x 1 0.
(3)3x2 5x 2. 3x2 5x 2 0.
答:a=3, b=-5, c= 2.
(4)2x 13x 2 3. 6x2 4x 3x 2 3,
6x2 x 5 0.
答:a=6, b=1, c= -5.
例2、 已知:关于x的方程
写成()2 的形式,得
x 22 5.
开平方,得
x 2 5.
x1 2 5, x2 2 5.
解这两个方程,得
怎样配方:常数项是一次项 系数一半的平方.
a2±2ab+b2=(a±b)2.
解:
3x2 12x 3 0.
二次项系数化1:两边同时
除以二次项系数,得
x2 2 y 3 0 (不是一元方程)
2xx 3 2x2 1 (不是二次方程)
一元二次方 程的一般形式
完全的一元二次方程
ax2+bx+c=0
ax2+bx+c=0
(a≠0)
不完全的
(a≠0, b≠0, c≠0)
ax2+bx=0 (a≠0,b≠0)
一元二次方程 ax2+c=0 (a≠0,c≠0)
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
一元二次方程四种解法
一元二次方程解法【知识梳理】1. 对一元二次方程的概念及根的考察;2. 一元二次方程的求解;一元二次方程的解法一元二次方程的求解的最根本的思路是“降次”.(1)直接开方法:()m x m m x ±=⇒≥=,02(2)配方法:02=++c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ (3)求根公式法:条件()04,02≥-≠ac b a 且 aac b b x 242-±-= (4)因式分解法:()()021=--x x x x一元二次方程的求解直接开方法:由应用直接开平方法解形如x 2=p (p ≥0),那么x=±p 转化为应用直接开平方法解形如(mx+n )2=p (p ≥0),那么mx+n=±p ,达到降次转化之目的.若p <0则方程无解。
(注:两边同时开平方的时候记得不要忘记加上±号,两根相等时记得要写成x 1=x 2=…;而不是x= ) 例1:直接开方解方程:2x 2-8=0 3592=-x ()0962=-+x配方法:1)现将已知方程化为一般形式;2)化二次项系数为1;3)常数项移到右边;4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±q ;如果q <0,方程无实根. 例1:配方法解方程0462=++x x 03422=-+x x 0142=++x x例2. 试说明:无论x 取何值,代数式542+-x x 的值总大于0,再求出当x 取何值时,代数式542+-x x 的值最小?最小值是多少?公式法(用公式法解一元二次方程是记得要先把方程化成一般式)要点:找出a,b,c 判断:ac b 42-=∆ 应用:aac b b x 242-±-= 例1、用公式法解下列方程(1)解方程x 2-2x-1=0 (2)解方程:-x 2+3x-2=0;变式:用公式法解下列方程(1)3x 2+2x-5=0 (2) x 222-x+1=0.不解方程说明方程根的情况(1) x 2+x-3=0 (2)x (x+8)=16.因式分解的方法:提公因式法、公式法和十字相乘法.1.乘法公式:(1)平方差公式:22()()a b a b a b +-=-;(2)完全平方公式:222()2a b a ab b +=++;222()2a b a ab b -=-+.2.十字相乘法:(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成:()()()b x a x ab x b a x q px x ++=+++=++22. 题型一:因式分解【例1】(1))()(3x 3x x +=+; (2) 016x 2=— (3)09a 1242=++a ;题型二:十字相乘法分解因式【例1】(1)232x x ++=0; (2)212x x --=0; (3)2215x x +-=0.题型三:解一元二次方程【例1】用适当的方法解下列方程:(1)2410x x ++=; (2)210x x +-=; (3)22310x x -+=.【变式练习1】解下列一元二次方程:(1)21304x x ++=; (2)2420x x -+=;(3)2200x x --=; (4)24920x x -+=.【作业布置】(时间:20分;总分:60)用合适的方法解下列方程.(1)3y 2-6y=0 (2)x 2+2x-3=0.(3)x 2+35=12x (4)(x-3)2+9(x-3)=0(5)220x x -=; (6)2430x x +-=;(7) 22)3(4)23(-=+x x (8) )2(5)2(3+=+x x x。
一元二次方程的几种解法
系数一半的平方,得
2 4 4 2
写成()2 的形式,得
x
7 2
49
24 .
4 16 16
开平方,得
x 7 25 .
4
16
2
x1 , x2 3.
1
解这两个方程,得
44
44
x1 , x2 .
75
75
解法2:配方法
配方法的基本步骤:
1、将二次项系数化为1:两边同时除以二次项系数; 2、移项:将常数项移到等号一边; 3、配方:左右两边同时加上一次项系数一半的平方; 4、等号左边写成( )2 的形式; 5、开平方:化成一元一次方程; 6、解一元一次方程; 7、写出方程的解.
2
2x 22 5.
解:系数化1,得 x 22 5 ,
2
开平方,得
x2
5.
2
x 2 10 或 x 2 10 .
2
2
解这两个一元一次方程,得
2
2
x1 2 10 , x2 2 10 .
解法1:直接开平(a≠0, ac<0) 或 a(x+p)2+q=0 (a≠0, aq<0)
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
解:
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
解: 3x2 7,
x2 7 , 3
x 7, 3
x 21 , 3 21
(完整版)一元二次方程的解法大全
一元二次方程的解法大全【直接开平方法解一元二次方程】=0(a≠0),把方程ax2+c例:用直接开平方法解方程:1.9x2-25=0;;2.(3x+2)2-4=04.(2x+3)2=3(4x+3).解:1.9x2-25=0259x2=2.(3x+2)2-4=0(3x+2)2=43x+2=±22±23x=-4.(2x+3)2=3(4x+3)4x2+12x+9=12x+94x2=0∴x1=x=0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除+以二次项系数,使二次项系数为1,如x21.x2-4x-3=0; 2.6x2+x=35;3.4x2+4x+1=7; 4.2x2-3x-3=0.解:1.x2-4x-3=0x2-4x=3x2-4x+4=3+47(x-2)2=3.4x2+4x+1=7一元二次方程ax2+bx+c=0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c 的值代入两根公式中直接解出,所以把这种方法=0(a≠0)的求根公式。
例:用公式法解一元二次方程:2.2x2+7x-4=0;.4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x)2.2x2+7x-4=0∵a=2,b=7,c=-4.81b2-4ac=72-4×2×(-4)=49+32=4.x2-a(3x-2a+b)-b2=0(a-2b≥0)x2-3ax+2a2-ab-b2=0∵a=1,b=-3a,c=2a2-ab-b2b2-4ac=(-3a)2-4×1×(2a2+ab-b2)=9a2-8a2-4ab+4b2=a2-4ab+4b2=(a-2b)22b≥0)时,得当(a-【不完全的一元二次方程的解法】在不完全的一元二次方程中,一次项与常数至少缺一项。
即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:例:解下列一元二次方法:.3.(m2+1)x2=0;其中m2+1>0,x2=0.∴ x1=x2=0.4.16x2-25=06x2=25。
一元二次方程的解法详细解析
一元二次方程的解法详细解析只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。
标准形式:ax²+bx+c=0(a≠0)一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。
下面小编和你具体讲解一元二次方程的四种解法例析。
一元二次方程的解法例析【一元二次方程要点综述】:【要点综述】:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础。
在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别。
根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。
一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。
因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。
下面再讲一元二次方程的解法。
解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。
一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
如下表:方法适合方程类型注意事项直接开平方法≥0时有解,<0时无解。
配方法二次项系数若不为1,必须先把系数化为1,再进行配方。
公式法≥0时,方程有解;<0时,方程无解。
先化为一般形式再用公式。
因式分解法方程的一边为0,另一边分解成两个一次因式的积。
方程的一边必须是0,另一边可用任何方法分解因式。
【举例解析】例1:已知,解关于的方程。
分析:注意满足的的值将使原方程成为哪一类方程。
解:由得:或,当时,原方程为,即,解得. 当时,原方程为,即,解得,. 说明:由本题可见,只有项系数不为0,且为最高次项时,方程才是一元二次方程,才能使用一元二次方程的解法,题中对一元二次方程的描述是不完整的,应该说明最高次项系数不为0。
通常用一般形式描述的一元二次方程更为简明,即形如的方程叫作关于的一元二次方程。
一元2次方程4种解法
一元2次方程4种解法
标题:四种解法揭示一元二次方程的奥秘
引言:一元二次方程是数学中的重要概念,它可以用来解决很多实际问题。
本文将介绍四种不同的解法,帮助读者更好地理解和应用一元二次方程。
第一种解法:因式分解法
当一元二次方程可以被因式分解为两个一次因子时,我们可以通过将方程两边因式分解后,令每个因子等于零来求解方程。
这种解法适用于一元二次方程的解为整数或分数的情况。
第二种解法:配方法
对于一元二次方程,如果无法直接因式分解,我们可以采用配方法。
通过将方程两边用合适的常数进行配方,将方程转化为完全平方的形式,从而求解方程。
这种解法适用于无理数根的情况。
第三种解法:求根公式法
一元二次方程的求根公式是解决方程的重要工具。
该公式是通过将方程转化为标准形式后,利用公式计算出方程的根。
这种解法适用于无法通过因式分解或配方法求解的复杂方程。
第四种解法:图像法
通过绘制一元二次方程的图像,我们可以直观地看出方程的解。
根据图像的形状和位置,我们可以判断方程有几个解,以及解的范围。
这种解法适用于对方程的整体特征有较好了解的情况。
结论:通过以上四种解法,我们可以更全面地理解和应用一元二次方程。
无论是因式分解法、配方法、求根公式法还是图像法,都可以帮助我们解决不同类型的一元二次方程。
掌握这些解法,可以提高我们解决实际问题的能力,并在数学学习中更加得心应手。
一元二次方程的四种解法
一元二次方程的解法(1) 一元二次方程的概念一、考点、热点回顾1、一元二次方程必须同时满足的三个条件:⑴⑵⑶2、一元二次方程的一般形式:二、典型例题例1:判断下列方程是否为一元二次方程:® x2+x = \ ®x~ = 1 ®x2 -2x + 3y = 0 @x2 - 3 = (x-l)(x-4)⑤ax2+bx + c = 0 ®mx2 =0 (m是不为零常数)例2:—元二次方程的二次项系数、一次项系数和常数项.(l)x2-l Ox-900 = 0 (2)5x2 +10—2.2 = 0⑶ 2X2-15=0 (4)X2 + 3x = 0(5) (x + 2)2 =3 (6) (x + 3)(x-3) = 0例3:当加 _______ 时,关于x的方程(m+2) x s +3mx+l=0是一元二次方程。
三、课堂练习1、下列方程中,关于x的一元二次方程是()A.3(X +1)2=2(X+1)B; +丄一 2 = 0xT yC.ax2 + 加 + <? = 0D.x1 + 2x = x,-12、用换元法解方程(X2+X):+(X:+X)=6时,如果设x'+x = y,那么原方程可变形为()A、y:+y—6=0B、y2—y—6 = 01 / 15C、y:—y+6 = 0D、y'+y+6 = 03、已知两数的积是12,这两数的平方和是25,以这两数为根的一元二次方程是4、已知关于x的一元二次方程十一伙+ l)x_6 = 0的一个根是2,求k的值.四、课后练习1•将方程3乂(乂_1) = 5(乂+ 2)化成一元二次方程的一般形式,得____ ;其中二次项系数是_ ; 一次项系数是 __________ ;常数项是_________ .2.方程伙-4),+5x + 2& + 3 = 0是一元二次方程,则£就满足的条件是____________ .3.已知m是方程x'-x-2二0的一个根,则代数式mJn二 __________4.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为wm,则乳满足的方程是( )(A) x2+130A--1400 = 0 (B) x2 +65x-35O = O(C) x2 -130x-1400 = 0 (D) x2 -65x-350 = 05.关于x的方程(加-3),+心+加=0,在什么条件下是一元二次方程?在什么条件下是一元一次方程?(2) 一直接开方法一、考点、热点回顾1、了解形如x2=a(a>0)或(x+h)= k(k^0)的一元二次方程的解法一一直接开平方法小结:如果一个一元二次方程具有(x + /»)2=n(n>0)的形式,那么就可以用直接开平方法求解。
一元二次方程的6种解法
一元二次方程的6种解法
一元二次方程的6种解法如下:
1、因式分解法:将一元二次方程化成 ax^2+bx+c=0 的形式,先将两边同乘以a后,即a(x^2+ b/ax + c/a),然后将此形式拆解为(x+())(x+(/))的形式,得到两个一元一次方程,求出x的值,即可求出原方程的解。
2、公式法:用公式法求解一元二次方程,即通过求解公式:x=(-
b±√(b^2-4ac))/2a来求解,此公式中,b和c为方程的系数,a为系数前的系数。
3、图像法:使用图像法求解一元二次方程,即作出ax^2+bx+c=0方程图象,然后根据图象上的交点判断出方程的解。
4、判别式法:此法根据一元二次方程的判别式来求解,即当判别式b^2-4ac>0时,方程有两个不等实根;当判别式b^2-4ac=0时,方程有一个实根;当判别式b^2-4ac<0时,方程没有实根。
5、求根公式法:此法可以用来求解一元二次方程的实根,即用求根公式x1=(-b+ √(b2- 4ac))÷2a和x2=(-b-√(b2- 4ac))÷2a,其中,b 为系数前的系数,a和c分别为方程的系数。
6、特殊值法:此法适用于一元二次方程中特殊的系数或解。
如当
a=0,系数b和c任意时,可将该方程化为一元一次方程,求解即可;当a=b=0时,可直接算出方程的解。
一元二次方程的解法
一元二次方程的解法汇总1.直接开方法解一元二次方程(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:(点击图片可放大阅览)要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程(点击图片可放大阅览)【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:(点击图片可放大阅览)类型二、因式分解法解一元二次方程(点击图片可放大阅览)【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.(点击图片可放大阅览)【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
一元二次方程的解法
一元二次方程的解法一、知识要点:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视.一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程.解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法.二、方法、例题精讲:1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m± .例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解.(1)(3x+1)2=7 3x+1=2次根下7, 3x=2次根下7-1, x=2次根下7-1/3∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2方程左边成为一个完全平方式:(x+ )2=当b2-4ac≥0时,x+ =±∴x=(这就是求根公式)例2.用配方法解方程3x2-4x-2=0将常数项移到方程右边3x2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2= .3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根.例3.用公式法解方程2x2-8x=-5将方程化为一般形式:2x2-8x+5=0∴a=2, b=-8, c=5b2-4ac=(-8)2-4×2×5=64-40=24>0∴x= = =∴原方程的解为x1=,x2= .4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.例4.用因式分解法解下列方程:(1) (x+3)(x-6)=-8 (2) 2x2+3x=0(3) 6x2+5x-50=0 (选学)(4)x2-2( + )x+4=0 (选学)(1)(x+3)(x-6)=-8 化简整理得x2-3x-10=0 (方程左边为二次三项式,右边为零)(x-5)(x+2)=0 (方程左边分解因式)∴x-5=0或x+2=0 (转化成两个一元一次方程)∴x1=5,x2=-2是原方程的解.(2)2x2+3x=0x(2x+3)=0 (用提公因式法将方程左边分解因式)∴x=0或2x+3=0 (转化成两个一元一次方程)∴x1=0,x2=-是原方程的解.注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.(3)6x2+5x-50=0(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)∴2x-5=0或3x+10=0∴x1=, x2=- 是原方程的解.(4)x2-2(+ )x+4 =0 (∵4 可分解为2 •2 ,∴此题可用因式分解法)(x-2)(x-2 )=0∴x1=2 ,x2=2是原方程的解.小结:一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数.直接开平方法是最基本的方法.公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解.配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好.(三种重要的数学方法:换元法,配方法,待定系数法).例5.用适当的方法解下列方程.(选学)(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0(3)x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算.观察后发现,方程左边可用平方差公式分解因式,化成两个一次因式的乘积.(2)可用十字相乘法将方程左边因式分解.(3)化成一般形式后利用公式法解.(4)把方程变形为4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解.(1)4(x+2)2-9(x-3)2=0[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0(5x-5)(-x+13)=05x-5=0或-x+13=0∴x1=1,x2=13(2)x2+(2- )x+ -3=0[x-(-3)](x-1)=0x-(-3)=0或x-1=0∴x1=-3,x2=1(3)x2-2 x=-x2-2 x+ =0 (先化成一般形式)△=(-2 )2-4 ×=12-8=4>0∴x=∴x1=,x2=(4)4x2-4mx-10x+m2+5m+6=04x2-2(2m+5)x+(m+2)(m+3)=0[2x-(m+2)][2x-(m+3)]=02x-(m+2)=0或2x-(m+3)=0∴x1= ,x2=例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根. (选学)分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方法)[3(x+1)+2(x-4)][(x+1)+(x-4)]=0即(5x-5)(2x-3)=0∴5(x-1)(2x-3)=0(x-1)(2x-3)=0∴x-1=0或2x-3=0∴x1=1,x2=是原方程的解.例7.用配方法解关于x的一元二次方程x2+px+q=0x2+px+q=0可变形为x2+px=-q (常数项移到方程右边)x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)(x+)2= (配方)当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)∴x=- ±=∴x1= ,x2=当p2-4q一般解法1.配方法(可解全部一元二次方程)如:解方程:x^2+2x-3=0把常数项移项得:x^2+2x=3等式两边同时加1(构成完全平方式)得:x^2+2x+1=4因式分解得:(x+1)^2=4解得:x1=-3,x2=1用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当2.公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac0时x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.如:解方程:x^2+2x+1=0利用完全平方公式因式分解得:(x+1﹚^2=0解得:x1=x2=-14.直接开平方法(可解部分一元二次方程)5.代数法(可解全部一元二次方程)ax^2+bx+c=0同时除以a,可变为x^2+bx/a+c/a=0设:x=y-b/2方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为(y^2+b^2/4-by)除以(by-b^2/2)+c=0再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]。
一元二次方程的解法
2
4.解下列一元二次方程: (1)4x2-25=0 (2)9y2-1=0
(3)4x2-5=0
(4)81y2-6=0
第 1 页
例 2:解方程:(1) (2x-1) 2=5
(2) x 2+6x=-1
解:(1)直接开平方,得:2x-1=± 5 即 2x-1= 5 ,2x-1=- 5
练习: 1.解下列一元二次方程: (1)x2=9 (2)y2=16
(3)x2=2
(4)y2=7
2.解下列一元二次方程: (1)49y2=16 (2)64x2=1
(3)16y2=5
(4)25x2=11
3.解下列一元二次方程: 2 2 (1)x -25=0 (2)y -36=0
(3)x -3=0
2
(4)y -5=0
(3)(x-2)2=7
(4)(y+3)2=5
2.解下列一元二次方程: (1)(x-2)2-49=0
(2)(y+3)2+15=16
(3) 121(x-2)2 =9
(4) 144(x-2)2 =7
第 2 页
一元二次方程的解法 【定义】:只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫 做一元二次方程. 一般地,任何一个关于 x 的一元二次方程,经过整理,都能化成如下形式 2 ax +bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式。 解法一 ——直接开方法 适用范围:【可解部分一元二次方程】 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如 p n x2 p或(mx n)2 p( p≥0) 的方程,其解为 x p或x m 例 1:解方程:(1) x2=7 (2) 25x2=9 (3) 121x2-36=0
一元二次方程的解法总结
一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。
一般形式:ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0)。
顶点式:y=a(x—h)²+k(a≠0,a、h、k为常数)交点式:y=a(x—x₁)(x—x₂)(a≠0)[有交点A(x₁,0)和B(x₂,0)的抛物线,即b²—4ac≥0] .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)²=n(n≥0)的方程,其解为x=m±配方法:1。
将此一元二次方程化为ax²+bx+c=0的形式(此一元二次方程满足有实根)2。
将二次项系数化为13。
将常数项移到等号右侧4。
等号左右两边同时加上一次项系数一半的平方5。
将等号左边的代数式写成完全平方形式6。
左右同时开平方7.整理即可得到原方程的根公式法:1。
化方程为一般式:ax²+bx+c=0 (a≠0)2。
确定判别式,计算Δ(=b²—4ac);3。
若Δ>0,该方程在实数域内有两个不相等的实数根:x=若Δ=0,该方程在实数域内有两个相等的实数根:x₁=x₂=若Δ〈0,该方程在实数域内无实数根因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法解一元二次方程的步骤1. 将方程右边化为0;2. 将方程左边分解为两个一次式的积;3. 令这两个一次式分别为0,得到两个一元一次方程;4. 解这两个一元一次方程,它们的解就是原方程的解。
用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x—h)²+k(a≠0)。
一元二次方程五大解法
一元二次方程五大解法
1、直接开平方法。
对于直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1=x2=a的形式,其他的都是比较简单。
2、配方法。
在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是则利用直接开平方法求解即可,如果不是,原方程就没有实数解。
3、公式法。
公式法是解一元二次方程的根本方法,没有使用条件,因此是必须掌握的。
用公式法的注意事项只有一个就是判断“△”的取值范围,只有当△≥0时,一元二次方程才有实数解。
4、因式分解法。
因式分解,在初二下学期的时候重点讲了,之前也有相关的文章,重要性毋庸置疑,在一元二次方程里,因式分解法用的还是挺多的,难度非常容易调节。
5、图像解法。
一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。
当△>0时,则该函数与x轴相交(有两个交点)。
当△=0时,则该函数与x轴相切(有且仅有一个交点)。
当△<0时,则该函数与轴x相离(没有交点)。
一元二次方程的判别式。
利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况。
一元二次方程ax+bx+c=0(a不等于0)的根与根的判别式有如下关系:△=b2-4ac。
①当△>0时,方程有两个不相等的实数根。
②当△=0时,方程有两个相等的实数根。
③当△<0时,方程无实数根,但有2个共轭复根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:复习一元二次方程及其解法
韶关市武江区龙归中学 冯世振
《孙子·谋略》:“知己知彼,百战不殆”
【课前热身】
1.方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 .
2.一元二次方程 x 2=3x 的根是 .
3.一元二次方程2230x x --=的根是 .
4. 关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p =( )
A .4
B .0或2
C .1
D .1- 5.关于x 的一元二次方程1(3)(1)30n n x n x n +++-+=中,则一次项系数是 .
【课标内容解读】
本课时复习主要解决下列问题.
1、 了解一元二次方程的有关概念,知道一元二次方程的一般形式,会从定义上判断方程的
各种类型;
2、 会用直接开平方法、配方法、公式法、因式分解法解简单系数的一元二次方程,并根据
方程的特点,灵活选择方程的解法(重点)
【命题趋向】
一元二次方程始终是中考的重点内容,一元二次方程的解法以选择题和解答题为主。
【考点精要解读】
1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程
叫做一元二次方程.一元二次方程的一般形式是 .(请问哪些情
况方程要强调一般形式① ② ③ ④ )
其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次
项的系数, 叫做一次项的系数。
(警告:判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行
判断,注意一元二次方程一般形式中0≠a .)
2. 一元二次方程的常用解法:
(1)直接开平方法:形如)0(2≥=a a x 或)0()(2
≥=-a a b x 的一元二次方程,就可用直接开平方的方法.
(警告:用直接开平方的方法时要记得取正、负.)
(2)配方法:用配方法解一元二次方程()02
≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和
一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化
原方程为2
()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方
求出方程的解.如果n <0,则原方程无解.
(警告: 用配方法时二次项系数要化1.)
(3)公式法:一元二次方程2
0(0)ax bx c a ++=≠的求根公式是
21,240)x b ac =-≥. (警告:方程要先化成一般形式.)
(4)因式分解法(主要有提取公因式、运用平方差公式、运用完全平方公式、十字相乘
法):因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化
成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两
个一元一次方程,它们的解就是原一元二次方程的解.
(警告:方程要先化成一般形式.)
【典例精析】
例1 请用不同方法解下列方程:
2
2)21()3(x x -=+
例2解下列方程: (1)3x(2x+1)=4x+2; (2)31022
=-x x
.
例3 已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.
【中考演练】
1.方程 (5x -2) (x -7)=9 (x -7)的解是_________. 2.已知2是关于x 的方程
2
3x 2-2 a =0的一个解,则2a -1的值是_________. 3、如果一元二方程043)222=-++-m x x m (有一个根为0,则m= 4.已知关于x 的一元二次方程的一个根是1,写出一个符合条件的方程_________.
5.下列方程中是一元二次方程的有( )
①9 x 2=7 x ②3
2y =8 ③ 3y(y-1)=y(3y+1) ④ x 2-2y+6=0 ⑤ 2( x 2+1)=10 ⑥ 24x
-x-1=0 A . ①②③ B. ①③⑤ C. ①②⑤ D. ⑥①⑤
6. 一元二次方程(4x +1)(2x -3)=5x 2+1化成一般形式ax 2+bx +c =0(a ≠0)后a,b,c 的值为
( )
A .3,-10,-4 B. 3,-12,-2
C. 8,-10,-2
D. 8,-12,4
7.方程5)3)(1(=-+x x 的解是 ( );
A. 3,121-==x x
B. 2,421-==x x
C. 3,121=-=x x
D. 2,421=-=x x
8.用配方法解一元二次方程1442=-x x ,变形正确的是( ) A.0)21
(2=-x B. 21)21
(2=-x C.2
1)1(2=-x D.0)1(2=-x 9.解方程
(1) x 2-5x -6=0 ; (2) 3x 2-4x -1=0(用公式法);
(3) 4x 2-8x +1=0(用配方法); (4)x 222
-x+1=0.
10.阅读材料,解答问题
为了解方程(y ²-1)² -3(y²-1)+2=0,我们将y²-1视为一个整体,解:设 y²-1=a ,
则(y²-1)²=a²,
a² - 3a+2=0, (1)
a 1=1,a 2=2。
当a=1时,y² -1=1,y =± ,
当a=2时,y²-1=2,y=± 所以y 1= ,y 2 =- y 3= y 4= - 解答问题:1、在由原方程得到方程(1)的过程中,利用了 , 达到了降次的目的,体现了 的数学思想。
2223
33
2、用上述方法解下列方程:
11.解关于 x 的方程 :
0)23(22=-+--b b a x a x
12.用22长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成
面积是32㎝2的矩形呢?为什么?
8)2(7)2(01222224=-+-+=--x x x x x x。