【精选】七年级数学上册代数式单元培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)

1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类

①若a≠0,b=c=0,则称该整式为P类整式;

②若a≠0,b≠0,c=0,则称该整式为PQ类整式;

③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;

(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;

(2)说明整式x2﹣5x+5为“PQ类整式;

(3)x2+x+1是哪一类整式?说明理由.

【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.

若a=0,b≠0,c≠0,则称该整式为“QR类整式”.

故答案是:a=b=0,c≠0;a=0,b≠0,c≠0

(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)

=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.

即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”

(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),

∴该整式为PQR类整式.

【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.

(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.

(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.

2.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!

某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:

(1)如果他批发90千克太湖蟹,则他在A家批发需要________元,在B家批发需要________元;

(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);

(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890

(2)54x;45x+1200

(3)解:当x=170时,

54x=54×170=9180,

45x+1200=45×170+1200=8850,

因为9180>8850,所以他选择在B家批发更优惠

【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。

( 2 )A:60×90%x=54x,

B:50×60×95%+100×60×85%+(x-150)×60×75%=45x+1200.

【分析】(1)根据A、B两家的优惠办法分别列式求出在两家批发需要的费用。

(2)根据题意列式分别表示出在A、B两家批发x千克太湖蟹(150<x<200)所需的费用。

(3)将x=170分别代入(2)种表示的在A、B两家批发所需费用的两个式子计算,然后再比较大小即可。

3.根据数轴和绝对值的知识回答下列问题

(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。

例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.

(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?

【答案】(1)3;5

(2)6

(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;

②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4

③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4

④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4

⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6

综上所述,当a=2或3时,原式有最小值4.

故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.

【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5

( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0

则原式=a+4+2-a=6.

【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;

(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;

(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.

4.解答题:

(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.

(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?

(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.

①这10枝钢笔的最高的售价和最低的售价各是几元?

②当小亮卖完钢笔后是盈还是亏?

【答案】(1)解:∵a,b互为相反数,c,d互为倒数,

∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x

∵|x|=1,∴x=±1

∴当x=1时,x2﹣x=0;

当x=﹣1时,x2﹣x=2

(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣3

30×10+(﹣3)=897

答:这10箱苹果的总质量是897千克.

(3)解:①最高售价为6+9=15元

最低售价为6﹣2.1=3.9元

②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50

=16.3元

答:小亮卖完钢笔后盈利16.3元.

【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答

相关文档
最新文档