有限元法介绍
有限元方法的基本原理

有限元方法的基本原理
有限元方法是一种数值分析方法,用于求解复杂结构的力学问题。
其基本原理如下:
1. 将结构离散化:首先将结构分割成许多小的单元(有限元),每个单元可视作一个简单的结构部件。
这样可以将原始连续结构的复杂问题简化为每个小单元的简单问题。
2. 定义弯曲关系:对每个单元建立力学模型,包括定义材料的弹性模量、泊松比、截面积等力学性质参数。
3. 建立单元的位移方程:利用有限元方法,采用适当的形函数,建立每个单元的位移方程,一般为不定位移分析。
4. 组装全局方程:将所有单元的位移方程组装成整个结构的全局方程。
5. 求解方程组:通过数值方法(如高斯消元法、迭代法等),求解结构的位移和应力等力学量。
6. 分析结果:根据结构的位移和应力等力学量,可对结构的强度、刚度、振动等进行分析和评价。
有限元方法的基本原理是将复杂结构的力学问题通过离散化处理,化为易于计算的小单元问题,再通过数值方法求解整个结构的力学行为。
有限元法概述

大型商用的FEM通用软件分类
目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局(NASA)在1956年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国PAFEC,法 国AYATUS,美国ABAUS、ADNA、ANSYS、BERSAF E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 等。下面仅介绍几种当前比较流行的有限元软件。 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、
电磁场分析、声场分析、压电分析以及多物理场的耦分 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力;后处理的计算结果有多种显示和表达 能力。ANSYS软件系统主要包括ANSYS/Mutiphysics 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 工具、Design Space设计前期CAD集成工具、Design Xploere多目标快速优化工具和FE-SAFE结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、流体力 学、热传导、电磁学、声学和生物学等领域,能够求解由 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。
计算电磁学中的有限元方法

计算电磁学中的有限元方法随着计算机技术的不断发展和应用,计算电磁学研究的范围和深度不断提高,其应用领域也越来越广泛。
有限元方法是计算电磁学研究中重要的数值分析方法之一,其可模拟复杂电磁场问题,有着广泛的应用。
本文将简要介绍计算电磁学中的有限元方法的一些基本原理和应用。
一、有限元法基本理论有限元方法是数值分析中一种重要的数学工具,其基本思想是将整个计算区域分割成若干个简单的单元,然后在每个单元内选取一个适当的基函数,通过求解基函数系数来表示数值解。
这种思想很容易扩展到计算电磁场问题上,因为电磁场分布可以被视为由一些小电磁场单元组成。
有限元方法的基本过程包括建立有限元模型、离散化、求解以及后处理。
其中建模是有限元方法中最重要的一个环节。
在建模过程中,首先需要选取合适的计算区域,并将其离散化为若干个小单元(如三角形、四边形等)。
然后,我们需要选取适当的基函数,并确定它们所对应的系数的初始值。
一旦有限元模型被建立,我们就可以进行求解了。
具体来说,有限元法的求解过程需要求解一个大规模的稀疏矩阵方程,其中系数矩阵和右侧向量都与电磁场有关。
这个过程需要借助计算机的优势,通过矩阵解法算法完成求解。
最后,我们通过后处理来获得我们需要的电磁场信息或工程参数,例如电势、磁场强度、感应电动势等。
二、有限元法应用领域有限元法在计算电磁学中广泛应用。
其应用范围涉及电机、变压器、电力电子、雷达、电磁兼容等多个领域。
有限元法可用于仿真复杂的电磁场分布问题,例如在电机设计中,有限元法可用于电机磁场分析、电机振动分析以及谐波分析等。
在电力电子领域中,有限元法可用于设计电感元件和变压器等。
另外,有限元法在雷达技术中也有着广泛的应用,可用于雷达天线设计和仿真。
三、有限元法的优缺点有限元法作为一种数值分析方法,具有一定优缺点。
有限元法的主要优点在于它具有很强的适应性和通用性,可用于模拟各种复杂的材料和几何形状。
此外,有限元法允许我们针对不同的模型选择不同的元素类型和元素尺寸,因此可以根据实际需求自由选择不同的模型。
有限元法的原理_求解域_概述及解释说明

有限元法的原理求解域概述及解释说明1. 引言1.1 概述有限元法是一种数值分析方法,用于求解物理问题的数学模型。
它在工程领域得到了广泛的应用,能够对复杂的结构和系统进行精确的建模和计算。
有限元法通过将连续域划分为许多小的离散单元,在每个单元上使用适当的近似函数来表示待求解的变量,然后利用这些离散单元之间相互连接关系建立代数方程组,并通过求解该方程组得到所需结果。
1.2 文章结构本文将围绕有限元法展开讨论,并按照以下结构组织内容:引言包含概述、文章结构和目的;有限元法的原理部分将涵盖离散化方法、强弱形式及变分问题以及单元划分和网格生成;求解域部分将介绍求解域的定义与划分、边界条件设定和处理以及网格节点和单元的挑选策略;概述及解释说明部分将探讨有限元法在工程领域中的应用、与其他数值方法之间的对比与优势以及未来发展趋势和挑战;最后,本文将总结主要观点,并展望有限元法在应用领域的发展前景。
1.3 目的本文旨在对有限元法进行全面而清晰的介绍和解释,包括其基本原理、求解域的定义与处理方法以及在工程领域中的应用。
通过深入理解有限元法的原理和应用,读者可以更好地了解该方法的优劣势,并掌握将其应用于实际问题求解的能力。
此外,本文还将通过探讨有限元法未来的发展趋势和挑战,为研究者提供对该方法进行进一步改进和扩展的思路。
2. 有限元法的原理2.1 离散化方法有限元法是一种使用离散化方法来对偏微分方程进行求解的数值方法。
它将求解域划分为许多小单元,每个小单元称为有限元。
在这些有限元内,我们假设待求解的场量是线性或非线性的,并通过适当选择合适的函数空间来进行近似。
2.2 强弱形式及变分问题在有限元法中,我们将偏微分方程转化为一个弱形式或者说变分问题。
这是通过将原始方程乘以一个测试函数并进行积分得到的。
这样可以减小方程中高阶导数项对近似解产生的影响,并提供了更好的数学性质以进行计算。
2.3 单元划分和网格生成为了进行离散化,求解域需要被划分成一系列小单元。
有限元法介绍

通俗地说,有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。
这项技术带来的好处就是,在图纸设计阶段就能够让人们在计算机上观察到设计出的产品将来在使用中可能会出现什么问题,不用把样机做出来在实验中检验会出现什么问题,可以有效降低产品开发的成本,缩短产品设计的周期。
有限元法也叫有限单元法(finite element m ethod, FEM),是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
五十年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析中,用以求得结构的变形、应力、固有频率以及振型。
由于这种方法的有效性,有限单元法的应用已从线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料,从连续体扩展到非连续体。
有限元法最初的思想是把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。
事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。
理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。
为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。
有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。
大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。
有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。
汽车有限元法概述

汽车有限元法概述有限元法(Finite Element Method,FEM)是一种工程数值分析方法,广泛应用于汽车工程领域,用于模拟和预测汽车结构在受力下的行为和性能。
本文将对汽车有限元法进行概述。
有限元法的基本原理是将连续结构离散化为有限个子结构,每个子结构称为有限元。
每个有限元内的应力和变形可以用简单的方程表示。
通过求解这些方程,可以推导出整个结构的应力和变形情况。
汽车有限元法主要有以下几个步骤:1.建模:将汽车的零部件、结构和系统进行建模,将其分割成有限元。
这个过程需要根据实际情况选择适当的网格划分和元素类型。
常见的元素包括线元素、面元素和体元素。
建模的准确性和合理性对于后续的分析和计算结果具有重要影响。
2.边界条件:确定模型的边界条件,包括支撑条件和外部加载条件。
支撑条件包括固定支撑和弹性支撑。
外部加载条件包括重力、加速度、风压等。
准确描述和设置边界条件是模拟计算的关键步骤。
3.材料特性:为每种材料分配相应的材料特性参数。
常见的材料特性包括弹性模量、泊松比、材料密度等。
这些参数将决定材料在受力下的行为和响应。
4.模拟计算:利用有限元软件对建模后的汽车结构进行计算和模拟。
通过求解每个有限元的位移和应变,再结合材料特性进行力学分析,得到汽车结构在受力下的应力和变形情况。
5.结果评估:根据计算得到的应力和变形结果,对汽车结构的强度、刚度、耐久性等性能进行评估和分析。
如果发现问题或不合理现象,可以进行模型修正和参数优化,以提高结构的性能。
在汽车工程领域,有限元法主要应用于以下几个方面:1.结构强度分析:通过有限元法,可以对汽车结构的强度进行评估和分析。
例如,分析车身在碰撞时的变形情况,以及主要部件在受力下的应力情况。
2.动态响应分析:有限元法可以模拟汽车在动力加载下的振动和动态响应情况。
例如,模拟车辆在行驶过程中的悬挂系统振动,以及发动机振动对车身的影响。
3.疲劳寿命评估:通过有限元法,可以分析汽车结构在复杂工况下的疲劳寿命。
《有限元分析及应用》课件

受垂直载荷的托架
31
体单元
•线性单元 / 二次单元 –更高阶的单元模拟曲面的精度就越高。
低阶单元
更高阶单元
32
有限元分析的作用
复杂问题的建模简化与特征等效 软件的操作技巧(单元、网格、算法参数控制) 计算结果的评判 二次开发 工程问题的研究 误差控制
36
第二章 有限元分析的力学基础
(3) 研究的基本技巧
采用微小体积元dxdydz的分析方法(针对任意变
形体)
40
2.2 弹性体的基本假设
为突出所处理的问题的实质,并使问题简单化和抽 象化,在弹性力学中,特提出以下几个基本假定。
物质连续性假定: 物质无空隙,可用连续函数来描述 ;
物质均匀性假定: 物体内各个位置的物质具有相同特 性;
0.02 0.04 0.06 0.08
0.1
0.12
X
0.056
0.058
X
0.06
28
Y
Y
0 -0.02 -0.04 -0.06 -0.08
0
-0.001
-0.002
-0.003 0.054
-0.1 0
0.02 0.04 0.06 0.08
0.1
0.12
X
0.056
0.058
X
0.06
29
30
y
dy zy
1 2
zy
z
dz
0
略去微量项,得 yz zy
MY 0 zx xz
MZ 0
xy yx
剪切力互等定律
53
二维问题: 平衡微分方程
x yx X 0
x y xy y Y 0 x y
剪切力互等定律
有限元法概述

(2)MSC/NASTRAN。 MSC/NASTRAN是在原NAST RAN基础上进行大量改进后的系统软件,主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能
.
5.在产品制造或工程施工前预先发现潜在的问题; 6. 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。
轴承强度分析
.
汽车碰撞实验
.
刹车制动时地盘的应力分析
.
钢板精轧机热轧制分析
.
三维椭圆封头开孔补强
.
水轮机叶轮的受力分析模拟
.
人体股骨端受力分析
.
半导体芯片温度场的数值仿真
知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法
中位移法应用范围最广。
.
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到Courantl在1 943年的工作,他第一次尝试应用定义在三角形区域上的 分片连续函数和最小位能原理相结合,来求解St·Venant 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。
.
4、有限元的特点
(1) 概念清楚,容易理解。可以在不同的专业背景和水平 上建立起对该方法的理解。从使用的观点来讲,每个人的 理论基础不同,理解的深度也可以不同,既可以通过直观的 物理意义来学习,也可以从严格的力学概念和数学概念推 导。
有限元法及其应用 pdf

有限元法及其应用 pdf标题:有限元法及其应用引言概述:有限元法是一种数值分析方法,广泛应用于工程领域。
本文将介绍有限元法的基本原理和应用领域,并详细阐述其在结构分析、流体力学、热传导、电磁场和生物力学等方面的具体应用。
正文内容:1. 结构分析1.1 结构力学基础1.1.1 杆件和梁的有限元分析1.1.2 平面和空间框架的有限元分析1.1.3 壳体和板的有限元分析1.2 结构动力学分析1.2.1 振动问题的有限元分析1.2.2 地震响应分析1.2.3 结构非线性分析2. 流体力学2.1 流体流动的有限元分析2.1.1 稳态流动问题的有限元分析2.1.2 非稳态流动问题的有限元分析2.1.3 多相流动问题的有限元分析2.2 流体结构耦合分析2.2.1 气动力和结构响应的有限元分析2.2.2 液固耦合问题的有限元分析2.2.3 流体流动与热传导的有限元分析3. 热传导3.1 热传导方程的有限元分析3.1.1 稳态热传导问题的有限元分析3.1.2 非稳态热传导问题的有限元分析3.1.3 辐射传热问题的有限元分析3.2 热结构耦合分析3.2.1 热应力分析3.2.2 热变形分析3.2.3 热疲劳分析4. 电磁场4.1 静电场和静磁场的有限元分析4.1.1 静电场的有限元分析4.1.2 静磁场的有限元分析4.2 电磁场的有限元分析4.2.1 电磁场的有限元分析方法4.2.2 电磁场与结构的耦合分析4.2.3 电磁场与流体的耦合分析5. 生物力学5.1 生物组织的有限元分析5.1.1 骨骼系统的有限元分析5.1.2 软组织的有限元分析5.1.3 生物材料的有限元分析5.2 生物力学仿真5.2.1 运动学分析5.2.2 力学分析5.2.3 生物仿真与设计总结:有限元法是一种广泛应用于工程领域的数值分析方法。
本文从结构分析、流体力学、热传导、电磁场和生物力学五个大点详细阐述了有限元法的应用。
通过对各个领域的具体应用介绍,我们可以看到有限元法在工程领域中的重要性和广泛性。
有限元课件ppt

将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等
。
线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量
有限元法简介

有限元法简介
有限元法(Finite Element Method,FEM),也称有限单元法或有限元素法,基本思想是将求解区域离散为一组有限的且按一定方式相互连接在一起的单元组合体。
有限单元法分析问题的思路是从结构矩阵分析推广而来的。
起源于50年代的杆系结构矩阵分析,是把每一杆件作为一个单元,整个结构就看作是由有限单元(杆件)连接而成的集合体,分析每个单元的力学特性后,再集中起来就能建立整体结构的力学方程式,然后利用计算机求解。
有限元离散化是假想把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连(如图1所示)。
根据物体的几何形状特征、载荷特征、边界约束特征等,把单元划分为各种类型。
节点一般都在单元边界上,节点的位移分量是作为结构的基本未知量。
这样组成的有限单元结合体,在引进等效节点力及节点约束条件后,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体。
图1 二维有限元离散图
1
在此基础上,对每一单元根据分块近似的思想,假设一个简单的函数来近似模拟其位移分量的分布规律,即选择位移模式,再通过虚功原理(或变分原理或其他方法)求得每个单元的平衡方程,就是建立单元节点力与节点位移之间的关系。
最后,把所有单元的这种特性关系,按照保持节点位移连续和节点力平衡的方式集合起来,就可以得到整个物体的平衡方程组。
引入边界约束条件后,解此方程就求得节点位移,并计算出各单元应力。
完整的有限元分析(FEA)流程图如图2所示。
图2 有限元分析流程
2。
《有限元法及其应用》课件

某型战斗机的机翼设计过程中,通过有限元分析,优化了机翼的结构和材料分布,提高了机翼的抗弯和 抗扭能力,同时减小了机翼的气动阻力,为飞机的高性能提供了保障。
汽车碰撞模拟
01
总结词
利用有限元法模拟汽车碰撞过程,评估汽车的安全性能和 改进设计方案。
02 03
详细描述
汽车碰撞是交通事故中最为严重的一种情况,有限元法能 够模拟汽车碰撞过程,对汽车的结构、材料和吸能设计等 进行评估,为汽车的安全性能提供科学依据。同时,通过 模拟不同碰撞条件下的结果,可以为汽车设计提供改进方 案。
通过离散化的方法,将连续的偏微分 方程转化为离散的代数方程组。
刚度矩阵与载荷向量
刚度矩阵
描述了每个单元的刚度关系,反 映了单元之间的相互作用。
载荷向量
描述了作用在每个节点上的外力 。
位移求解与应力分析
位移求解
通过求解离散化的代数方程组,得到每个节点的位移。
应力分析
根据位移求解的结果,通过计算得到每个单元的应力应变状态。
有限元法的应用领域
结构分析
有限元法在结构分析中应用最为广泛,可 以用于分析各种结构的应力、应变、位移
等。
电磁场分析
有限元法可以用于分析电磁场中的电场强 度、磁场强度、电流密度等,如电磁兼容
性分析、天线设计等。
流体动力学
有限元法可以用于模拟流体在各种复杂环 境下的流动行为,如航空航天、船舶、汽 车等领域的流体动力学问题。
应用领域
广泛应用于科学研究和工 程领域,如化学、生物医 学、电磁学等。
FE-SAFE
概述
FE-SAFE是一款用于结构疲劳分析的有限元软件 ,基于有限元方法进行疲劳寿命预测。
特点
有限元法介绍

有限元法介绍周宇 2012330300302 12机制(1)班理论研究、科学实验以及计算分析是人们进行科学研究和解决实际工程问题的重要手段,随着计算机技术及数值分析方法的发展,以有限元方法为代表的数值计算技术得到越来越广泛的应用。
有限元法是一种高效能、常用的数值计算方法。
科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。
有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。
一、基本思想有限元方法是一种求解复杂对象方程的方法,基本思想来源于“化整为零”、“化弧为直”的直观思路,将实体的对象分割成不同大小、种类、小区域称为有限元。
根据不同领域的需求推导出每一个元素的作用力方程,组合整个系统的元素并构成系统方程组,最后将方程组求解。
由有限元的发展,该法具有下列的特色:1、整个系统散为有限个元素;2、利用能量最低原理与泛函数值定理(见附录)转换成一组线性联立方程;3、处理过程简明;4、整个区域左离散处理,需庞大的资料输出空间与计算机内存,解题耗时;5、线性、非线性均适用;6、无限区域的问题较难仿真。
二、基本概念1、有限元法是把分析的连续体假想地分割成有限个单元所组合成的组合体;2、这些单元仅在顶角处相互联接,这些联接点称为结点。
离散化的组合体和真实的弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。
但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠——单元之间只能通过结点来传递内力。
通过结点来传递的内力称为结点力,作用在结点上的载荷称为结点载荷。
当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,称为结点位移。
在有限元中,常以结点位移作为基本未知量。
并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理(见附录)或其他方法,建立结点里与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。
有限元法的基本概念和特点

边界条件和载荷对分析结果的影 响
边界条件和载荷的设置直接影响分析结果 的精度和可靠性,因此需要仔细考虑和验 证。
03 有限元法的特点
适应性
有限元法能够适应各种复杂形状和边 界条件,通过将连续的求解域离散化 为有限个小的单元,实现对复杂问题 的近似求解。
有限元法的适应性表现在其能够处理 不规则区域、断裂、孔洞等复杂结构 ,并且可以根据需要自由地组合和修 改单元,以适应不同的求解需求。
降低制造成本。
THANKS FOR WATCHING
感谢您的观看
通过将不同物理场(如结构、流体、电磁等)耦 合在一起,可以更准确地模拟复杂系统的行为。
多物理场耦合分析将为解决复杂工程问题提供更 全面的解决方案面具有重要作用。
通过先进的建模技术和优化 算法,可以更有效地设计出 高性能、轻量化的结构。
有限元法在结构优化方面的应 用将有助于提高产品的性能和
近似性
利用数学近似方法对每个单元体的行 为进行描述,通过求解代数方程组来 获得近似解。
通用性
适用于各种复杂的几何形状和边界条 件,可以处理多种物理场耦合的问题。
高效性
通过计算机实现,能够处理大规模问 题,提高计算效率和精度。
02 有限元法的基本概念
离散化
离散化
将连续的物理系统分割成有限个小的、相互连接的单元,每个单 元称为“有限元”。
随着计算机技术的发展,有限元法的精度不断提高,对于一些高精度要求的问题 ,有限元法已经成为一种重要的数值分析工具。
04 有限元法的应用领域
工程结构分析
01
02
03
结构强度分析
通过有限元法,可以对工 程结构进行强度分析,评 估其在各种载荷条件下的 稳定性。
有限元

但在 23 边两端节点仅有二个节点法向导数值,不能唯
一确定 的二次函数,它与单元另一个节点 1 处的变
形有关。
2.2单元刚度矩阵
• 与上节矩形板弯曲单元的推导过程一样,单元刚度矩阵[k]的 计算公式是
• 式中
(2.7)
考虑到
式中
为常数矩阵,上式可改写为
(2.8)
式中
• 根据面积坐标求导公式
• 和
确定。由此证明,相邻单元在共同边界上位移连续, 在单元边界上由于法向
导数是 y(或 x)的三次多项式,而边界两端的两个节点上仅已知两个法向导数,
不能维一确定法向导数,故相邻单元在共同边界上法向导数不连续。
• 将节点坐标 1(-a,-b),2(a,-b),3(a,b),4(-a,b)代入挠度表达式(1.2)及其转 角表达式 中,列出各节点挠度值及转角值与待定系数
• 等等,代回(2.9)式得
(2.11)
左侧小孔固定 右侧小孔下侧受 压力作用
这是一个直角 支架的结构静 力分析的例子
ANSYS中支 架计算模型
ANSYS中计算 模型的网格划 分图
支架应力
彩图
• 及(1.9)式,得内力列阵
(1.14)
式中 为内力矩阵。弹性矩阵 见上页式,
见(1.8)式。 。再由(1.14)
求解线性方程组,就可得到单元节点位移列阵
式求出内力列阵
有 x、y坐标变量,因此内力列阵 有关。
。值得指出的是, 矩阵内含
与计算点的坐标值 x、y
有了计算点(x,y)处的内力列阵,就可计算该处的应力列阵 {σ},考虑到在板表面 处有最大应力,因此
是保证刚体运动条件所必需的,中间三项
是保证常曲
有限元法的基本原理

有限元法的基本原理有限元法(Finite Element Method, FEM)是一种数值分析方法,用于求解边界值问题和偏微分方程。
它将连续的物理问题离散化为有限数量的小区域,通过对每个小区域进行数学建模和计算,最终得到整个问题的近似解。
有限元法在工程、物理学、地质学、生物学等领域都有着广泛的应用。
有限元法的基本原理可以分为以下几个步骤,建立数学模型、离散化、建立方程、求解方程、后处理。
下面将逐一介绍这些步骤。
首先,建立数学模型。
将实际问题抽象为数学模型是使用有限元法的第一步。
这需要对问题进行合理的假设和简化,以便将其表达为数学形式。
例如,对于结构力学问题,可以假设材料是均匀、各向同性的,结构是线性弹性的。
然后,将问题的几何形状、材料性质、边界条件等信息输入模型中。
其次,离散化。
将连续的问题划分为有限数量的小区域,即有限元。
这需要选择合适的离散化方法和网格划分技术,以确保模型的准确性和计算效率。
通常情况下,问题的复杂性会决定有限元的数量和类型。
然后,建立方程。
利用变分原理或最小势能原理,可以得到问题的弱形式,再通过有限元离散化,得到线性方程组。
这些方程通常是大型、稀疏的,需要采用合适的数值方法进行求解,如直接法、迭代法等。
接着,求解方程。
通过数值计算方法,求解得到方程组的近似解。
在这一步中,需要考虑数值稳定性、收敛性和计算精度等问题,以确保结果的可靠性。
最后,进行后处理。
对求解得到的数值结果进行分析和解释,得出对实际问题有意义的结论。
这包括计算应力、应变、位移等物理量,评估结构的安全性和稳定性,优化设计等。
总之,有限元法是一种强大的数值分析工具,可以有效地解决各种工程和科学问题。
通过建立数学模型、离散化、建立方程、求解方程和后处理,可以得到问题的近似解,并为实际工程和科学研究提供有力的支持。
有限元法的基本原理和应用

有限元法的基本原理和应用前言有限元法(Finite Element Method,简称FEM)是一种常用的数值分析方法,用于求解工程和物理问题。
它能够将一个复杂的问题分解为许多小的、简单的部分,通过数学方法将这些部分逼近为连续函数,并进行求解。
本文将介绍有限元法的基本原理和应用。
基本原理1.离散化:有限元法将连续域分解为多个离散的小单元,这些小单元称为有限元。
离散化可以将复杂问题简化为易于处理的小部分。
每个有限元由节点和单元组成,节点是问题解的近似点,单元是在节点周围定义的几何形状。
2.变量表示:在有限元法中,通过数学函数对变量进行近似表示。
常用的近似函数有线性、二次、三次等。
通过选择合适的形状函数,可以有效地近似解决问题。
3.形成方程:根据物理方程,将离散域中每个有限元的贡献进行求和,形成一个整体方程。
这个整体方程可以是线性方程、非线性方程、常微分方程等。
通过求解这个整体方程,可以得到问题的解。
应用领域有限元法广泛应用于各个领域,包括但不限于: - 结构分析:有限元法可以用来模拟和分析工程结构的强度、刚度和振动等特性。
通过对结构进行有限元分析,可以预测和优化结构的性能。
- 热传导:有限元法可以用来模拟物体内部的温度分布和热传导过程。
通过对热传导问题进行有限元分析,可以优化物体的热设计和散热能力。
- 流体力学:有限元法可以用来模拟和分析流体的流动和压力分布。
通过对流体力学问题进行有限元分析,可以优化管道、风扇等设备的设计。
- 电磁场:有限元法可以用来模拟和分析电磁场的分布和电磁设备的性能。
通过对电磁场问题进行有限元分析,可以优化电磁设备的设计和电磁干扰问题。
有限元法的优点和局限性•优点:有限元法适用于复杂的几何形状和边界条件,并可以考虑多物理场耦合。
它具有较高的灵活性,可以适应各种问题的求解。
•局限性:有限元法的计算精度和效率受到离散化精度和网格剖分的影响。
对于高度非线性和大变形问题,有限元法可能需要更多的时间和计算资源。
有限单元法知识点总结

有限单元法知识点总结1. 有限元法概述有限单元法(Finite Element Method ,简称FEM)是一种数值分析方法,适用于求解工程结构、热传导、流体力学等领域中的强耦合、非线性、三维等问题,是一种求解偏微分方程的数值方法。
有限元法将连续的物理问题抽象为由有限数量的简单几何单元(例如三角形、四边形、四面体、六面体等)组成的离散模型,通过对单元进行适当的数学处理,得到整体问题的近似解。
有限元法广泛应用于工程、材料、地球科学等领域。
2. 有限元法基本原理有限元法的基本原理包括离散化、加权残差法和形函数法。
离散化是将连续问题离散化为由有限数量的简单单元组成的问题,建立有限元模型。
加权残差法是选取适当的残差形式,并通过对残差进行加权平均,得到弱形式。
形函数法是利用一组适当的形函数来表示单元内部的位移场,通过形函数的线性组合来逼近整体位移场。
3. 有限元法的步骤有限元法的求解步骤包括建立有限元模型、建立刚度矩阵和载荷向量、施加边界条件、求解代数方程组和后处理结果。
建立有限元模型是将连续问题离散化为由简单单元组成的问题,并确定单元的连接关系。
建立刚度矩阵和载荷向量是通过单元的应变能量和内力作用,得到整体刚度矩阵和载荷向量。
施加边界条件是通过给定位移或力的边界条件,限制未知自由度的取值范围。
求解代数方程组是将有限元模型的刚度方程和载荷方程组成一个大型代数方程组,通过数值方法求解。
后处理结果是对数值结果进行处理和分析,得到工程应用的有用信息。
4. 有限元法的元素类型有限元法的元素类型包括结构单元、板壳单元、梁单元、壳单元、体单元等。
结构单元包括一维梁单元、二维三角形、四边形单元、三维四面体、六面体单元。
板壳单元包括各种压力单元、弹性单元、混合单元等。
梁单元包括梁单元、横梁单元、大变形梁单元等。
壳单元包括薄壳单元、厚壳单元、折叠单元等。
体单元包括六面体单元、锥体单元、八面体单元等。
5. 有限元法的数学基础有限元法的数学基础包括变分法、能量方法、有限元插值等。
有限元法的原理及应用

有限元法的原理及应用1. 引言有限元法是一种数值计算方法,广泛应用于工程和科学领域,用于解决复杂的物理问题。
本文将介绍有限元法的基本原理和其在不同领域的应用。
2. 原理有限元法基于数学原理和工程实践,将复杂的连续体分割为许多小的有限元,然后使用离散化的方法对每个有限元进行数值计算。
具体原理如下:2.1 有限元离散化有限元法将连续问题离散化为离散的有限元问题。
首先,将连续域划分为有限个互不重叠的有限元。
每个有限元由一个或多个节点和连接节点的单元组成。
节点是问题的离散点,而单元是问题的局部区域。
2.2 描述方程在每个有限元内,使用形函数来近似描述问题的解。
形函数是定义在某个节点上的函数,它可以以节点为中心表示整个有限元的解。
然后,在每个有限元内,建立描述问题的偏微分方程,通常是通过泛函求解所得。
2.3 组装方程组将每个有限元的形函数和描述方程组装成整个问题的方程组。
通过施加边界条件和合理选择形函数的类型和数量,可以得到与原问题相对应的离散化方程组。
2.4 求解方程组将离散化的方程组转化为代数方程组,并应用数值方法求解。
通常采用矩阵运算等技术,利用计算机进行求解。
3. 应用有限元法在多个领域有重要的应用,以下列举了一些常见的应用:3.1 结构力学有限元法在结构力学领域广泛应用,用于分析和优化结构的强度、稳定性和刚度。
通过建立合适的有限元模型,可以计算结构的应力、应变和变形等重要参数。
有限元法在建筑、航空航天和汽车等工程领域具有广泛应用。
3.2 流体力学有限元法在流体力学领域用于模拟流动的行为,如气体和液体的流动、湍流和传热等。
通过将流体领域离散为小的有限元,可以计算流体的速度、压力和温度分布等参数。
有限元法在船舶设计、空气动力学和燃烧等领域得到了广泛应用。
3.3 热传导有限元法可应用于热传导问题,用于分析材料内部的温度分布和热流。
通过建立材料的有限元模型,可以计算材料的温度变化、热传导和热辐射等参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在位移法中,只有{δ}是未知的,求解该线性方程组就可得到各结点 的位移。将结点位移代入相应方程中可求出单元的应力分量。 有限元法不仅可以求结构体的位移和应力,还可以对结构体进行稳定 性分析和动力分析。例如,结构体的整体动力方程 : [M]{δ}+[C]{δ}+[K]{δ}={F}
[M]——整体质量矩阵;[C]——整体阻尼矩阵; [K]——整体刚度矩阵; {δ}——整体结 点位移向量; {F}——整体结点荷载向量。
节点位移
ui v i u j v j u m v m
节点力
U i V i U j V j U m Vm
e
F e
取决于材料性质、形状、尺寸
有限元法
学院:机械电子工程学院 专业:机械制造及其自动化 姓名:李淑磊 班级:17-1班 学号:201782050009
• 一、有限元法的概念 • 二、基本计算步骤 • 三、发展与应用
基本思想
一、几个基本概念
• 有限元法是把要分析的连续体假想地分割成有限个单元所 组成的组合体,简称离散化。 • 这些单元仅在顶角处相互联接,称这些联接点为节点。 • 离散化的组合体与真实弹性体的区别在于:组合体中单元 与单元之间的联接除了结点之外再无任何关联。但是这种 联接要满足变形协调条件,即不能出现裂缝,也不允许发 生重叠。显然,单元之间只能通过结点来传递内力。 • 通过结点来传递的内力称为节点力,作用在结点上的荷载 称为节点荷载。当连续体受到外力作用发生变形时,组成 它的各个单元也将发生变形,因而各个结点要产生不同程 度的位移,这种位移称为节点位移。
焊接过程的温度分布与轴向残余应力
结构与焊缝布置
有限元方法的应用
• BMW曲轴的感应淬火 (用SysWeld软件完成)
ห้องสมุดไป่ตู้
有限元方法的应用
• 复杂形状工件的组织转变预测(石伟,用NSHT3D 完成):预测工件的组织分布和机械性能
二分之一工件的有限 元模型 淬火3.06 min 时的温度 分布
淬火3.06 min 时的马 氏体分布
求出结构的自激振动频率、振型等动力响应,以及动变形和动应力 等。
4. 求解未知节点位移
可以根据方程组的具体特点来选择合适的计算方法。 传统有限元分析的数值计算方法之中,有直接计算 法(Direct Solver)与迭代法(Iterative)两种。 由于在过去的经验中,迭代法一直无法直接而有效 的保证数值计算的收敛性,因此,直接计算法在多 数有限元素分析软件中,仍然是一种主流的计算方 法。
2) ( 2) σ( 106 ×(-6.667) × 10-4 = - 6667 (磅 / 英寸) 2 el = Eε el = 10 ×
三、有限元法的发展与与应用
在大力推广CAD技术的今天,从自行车到航天飞 机,所有的设计制造都离不开有限元分析计算, FEA在工程设计和分析中将得到越来越广泛的重 视。 国际上早在20世纪50年代末、60年代初就投入大 量的人力和物力开发具有强大功能的有限元分析 程序。其中最为著名的是由美国国家宇航局 (NASA)在1965年委托美国计算科学公司和贝 尔航空系统公司开发的NASTRAN有限元分析系 统。该系统发展至今已有几十个版本,是目前世 界上规模最大、功能最强的有限元分析系统。
• 目前应用较多的通用有限元软件如下表所列:
软件名称
MSC/Nastran
简介
著名结构分析程序,最初由 NASA研制
MSC/Dytran
MSC/Marc ANSYS
动力学分析程序
非线性分析软件 通用结构分析软件
ADINA
ABAQUS
非线性分析软件
非线性分析软件
• 另外还有许多针对某类问题的专用有限元软件,例 如金属成形分析软件Deform、Autoform。
弹性体
有限元模型
有限元法的基本计算步骤
3. 单元组集
利用结构力的平衡条件和边界条件把各个单元按 原来的结构重新连接起来,形成整体的有限元方程。 对由各个单元组成的整体进行分析,建立节点外载 荷与结点位移的关系,以解出节点位移,这个过程 为整体分析。
Pi y Pi x
i节点的节点力:
(1) (2) (3) ( e) Fix Fix Fix Fix e
• 其他的应用还包括: 电磁学、流体力学、电磁场等等等等等 等等等等…………………
发展趋势:
1、从单纯结构力学计算发展到求解许多物理 场问题
有限元分析方法最早是从结构化矩阵分析发展而来, 逐步推广到板、壳和实体等连续体固体力学分析,实 践证明这是一种非常有效的数值分析方法。 有限元方法已发展到流体力学、温度场、电传导、磁 场、渗流和声场等问题的求解计算,最近又发展到求 解几个交叉学科的问题。
单元节点力
(1) (2) (3) (e) Fiy Fiy Fiy Fiy e
集中力
i节点的平衡方程:
(e) x F P ix i e (e) y Fiy Pi e
3. 单元组集
最终,将所有单元组合起来得到整体的方程: [K]{δ}={R}
[K]——整体刚度矩阵; {δ}——全部结点位移组成的列阵; {R}——全部结点荷载组成的 列阵。
Ka 0 u1 F1 K a F2 K a K a K b K b u 2 F 0 u K K b b 3 3
F = 10000 磅
例子:
面积 A = 1.5 英寸2 弹性模量 E = 10×106 磅/英 寸2 面积 A = 2.0 英寸2 弹性模量 E = 10×106 磅/英寸
2. 单元特性分析
① 分析单元的力学性质 根据单元的材料性质、形状、尺寸、节点数 目、位置及其含义等,找出单元节点力和节点 位移的关系式,这是单元分析中的关键一步。 此时需要应用弹性力学中的几何方程和物理方 程来建立力和位移的方程式,从而导出单元刚 度矩阵,这是有限元法的基本步骤之一。
平面问题的三角形单元的例子:单元有三个结点I、J、M, 每个结点有两个位移u、v和两个结点力U、V。
e e e F K 位移法:选择节点位移作为基本未知量称为位移法;
③ 计算等效节点力:将外在的负载力等效到各个节点上。 物体离散化后,假定力是通过节点从一个单元传递 到另一个单元。但是,对于实际的连续体,力是从单元 的公共边传递到另一个单元中去的。因而,这种作用在 单元边界上的表面力、体积力和集中力都需要等效的移 到节点上去,也就是用等效的节点力来代替所有作用在 单元上得力。
2
L = 10 英寸YIN
L = 10 英寸
1、建立结构有限元模型
L=10英寸 A=1.5英寸2
结点 3#
单元 ②
结点 2# L=10英寸 A=2.0英寸2 单元 ①
结点 1#
2、形成单元刚度矩阵
3、总装刚度矩阵
4、施加边界条件
5、施加作用载荷
6、求解矩阵方程
7、计算单元应力
(el1)
(el2)
有限元法的基本计算步骤
物体离散化 单元特性分析
分析单元的力学性质 选择位移模式 计算等效节点力
单元组集 求解未知节点位移
1. 物体离散化
– 单元选择:应根据连续体的形状选择最能完满地描述 连续体形状的单元。常见的单元有:杆单元,梁单元, 三角形单元,矩形单元,四边形单元,曲边四边形单 元,四面体单元,六面体单元以及曲面六面体单元等 等。 – 单元划分:进行单元划分,单元划分完毕后,要将全 部单元和结点按一定顺序编号,每个单元所受的荷载 均按静力等效原理移植到结点上,并在位移受约束的 结点上根据实际情况设置约束条件。
L u 2 u1 0.005 0.0 0.0005 L L 10
L u 3 u 2 0.01167 0.005 0.0006667 L L 10
1) (1) σ( 106 ×(-5) × 10-4 = - 5000 (磅 / 英寸) 2 el = Eε el = 10 ×
非线性的数值计算是很复杂的,很难为一般工 程技术人员所掌握。为此近年来国外一些公司 花费了大量的人力和投资开发诸如MARC、 ABQUS和ADINA等专长于求解非线性问题的 有限元分析软件,并广泛应用于工程实践。
3、增强可视化的前置建模和后置数据处理功 能
随着数值分析方法的逐步完善,尤其是计算机 运算速度的飞速发展,整个计算系统用于求解 运算的时间越来越少,而数据准备和运算结果 的表现问题却日益突出。 在现在的工程工作站上,求解一个包含10万个 方程的有限元模型只需要用几十分钟。工程师 在分析计算一个工程问题时有80%以上的精力 都花在数据准备和结果分析上。
Fe K e e
② 选择位移模式:在反映力和位移的关系式中,依据那一 个量是未知量,可建立不同的模型。
力法:选择节点力作为基本未知量时称为力法; 混合法:取一部分节点力和一部分节点位移作为基 本未知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法 中位移法应用范围最广。
• • • • •
单元 节点 节点力 节点荷载 节点位移
• 在有限元中,常以结点位移作为基本未知量。并 对每个单元根据分块近似的思想,假设一个简单 的函数近似地表示单元内位移的分布规律,再利 用力学理论中的变分原理或其他方法,建立结点 力与位移之间的力学特性关系,得到一组以结点 位移为未知量的代数方程,从而求解结点的位移 分量。然后利用插值函数确定单元集合体上的场 函数。显然,如果单元满足问题的收敛性要求, 那么随着缩小单元的尺寸,增加求解区域内单元 的数目,解的近似程度将不断改进,近似解最终 将收敛于精确解。
3维实体的4面 体单元划分